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QUARKÄGLUON PLASMA,
COLOR GLASS CONDENSATE AND GLASMA:

3 LECTURES AT LAKE BAIKAL

L.McLerran1

Brookhaven National Laboratory and RIKEN Brookhaven Center, Physics Dept., Upton, NY, USA

These lectures concern the properties of strongly interacting matter at very high energy density.
I begin with the properties of the QuarkÄGluon Plasma and Quarkyonic Matter. I later discuss the
Color Glass Condensate and the Glasma, matter that controls the earliest times in hadronic collisions.
I then describe the QuarkÄGluon Plasma, matter produced from the thermalized remnants of the Glasma.
The discussion will be intuitive and based on simple structural aspects of QCD. There will be some
discussion of experimental tests of these ideas.
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INTRODUCTION

These lectures concern the properties of strongly interacting matter at high energy density.
Such matter occurs in a number of contexts. The high-density partonic matter that controls
the early stages of hadronic collisions at very high energies is largely made of very coherent
gluonic ˇelds. In a single hadron, such matter forms the small x part of a wavefunction, a
Color Glass Condensate. After a collision of two hadrons, this matter almost instantaneously
is transformed into longitudinal color electric and color magnetic ˇelds. The ensemble of
these ˇelds in their early time evolution is called the Glasma. The decay products of these
ˇelds thermalize and form a high-temperature gas of quarks and gluons, the QuarkÄGluon
Plasma. In collisions at lower energy, and perhaps in naturally occurring objects such as
neutron stars, there is high baryon density matter at low temperature. This is Quarkyonic
matter.
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There is a very well developed literature concerning these various forms of matter. It
is not the purpose of these lectures to provide a comprehensive review. I will concen-
trate on motivating and describing such matter from simple intuitive physical pictures and
from simple structural aspects of QCD. I will attempt at various places to relate what
is conjectured or understood about such matter to experimental results from accelerator
experiments.

1. LECTURE I: MATTER AT HIGH TEMPERATURE:
THE QUARKÄGLUON PLASMA

1.1. Matter at Finite Temperature. In this lecture I will describe the properties of matter
at high temperature. The discussion here will be theoretical. There is a wide literature on
the phenomenology of the QuarkÄGluon Plasma and its possible description of heavy-ion
collisions at RHIC energies. The interested reader is referred to that literature. I will here
develop the ideas of deconˇnement, chiral symmetry restoration based in part on a simple
description using the large number of colors limit of QCD.

1.2. Conˇnement. The partition function is

Z = Tr e−βH+βμBNB , (1)

where the temperature is T = 1/β, NB is the baryon number and μB is the baryon number
chemical potential. Operator expectation values are

〈O〉 =
Tr O e−βH+βμBNB

Z
. (2)

Under the substitution e−βH → e−itH , the partition function becomes the time evolution
operator of QCD. Therefore, if we change t → it, redeˇne zeroth components of ˇelds
by appropriate factors of i, and introduce Euclidean gamma matrices with anticommutation
relations

{γμ, γν} = −2δμν , (3)

then for QCD, the partition function has the path integral representation

Z =
∫

[dA][dψ][dψ] exp

⎧⎨
⎩−

β∫
0

d4x

(
1
4
F 2 + ψ

[
1
i
γD + m + iμQγ0

]
ψ

)⎫⎬
⎭ . (4)

Here the fermion ˇeld is a quark ˇeld so that the baryon number chemical potential is

μQ =
1

Nc
μB. (5)

This path integral is in Euclidean space and is computable using Monte Carlo methods
when the quark chemical potential vanishes. If the quark chemical potential is nonzero,
various contributions appear with different sign, and the Monte Carlo integrations are poorly
convergent. Boundary conditions on the ˇelds must be speciˇed on account of the ˇnite
length of the integration in time. They are periodic for Bosons and antiperiodic for Fermions,
and follow from the trace in the deˇnition of the partition function.
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A straightforward way to probe the conˇning properties of the QCD matter is to introduce
a heavy test quark. If the free energy of the heavy test quark is inˇnite, then there is
conˇnement, and if it is ˇnite there is deconˇnement. We shall see below that the free energy
of a quark added to the system is

e−βFq = 〈L〉, (6)

where

L(x) =
1

Nc
TrP exp

[
i

∫
dt A0(x, t)

]
. (7)

So conˇnement means 〈L〉 = 0 and deconˇnement means that 〈L〉 is ˇnite. The path ordered
phase integration which deˇnes the line operator L is shown in Fig. 1. Such a path ordered
phase is called a Polyakov loop or Wilson line.

It is possible to prove that the free energy of a heavy static quark added to the system is
given by Eq. (6) using the effective action for a very heavy quark:

SHQ =
∫

dt ψ(x, t)
1
i
γ0D0 ψ(x, t). (8)

The YangÄMills action is invariant under gauge transformations that are periodic up to an
element of the center of the gauge group. The center of the gauge group is a set of diagonal

Fig. 1. The contour in the t plane which de-

ˇnes the Polyakov loop. The space is closed
in time because of the periodic boundary con-

ditions imposed by the deˇnition of the par-

tition function

matrices Zp = e2πip/N I , where I is an identity
matrix. The quark contribution to the action is not
invariant, and L → ZpL under this transformation.
In a theory with only dynamical gluons, the energy
of a system of n quarks minus antiquarks is in-
variant under the center symmetry transformation
only if n is an integer multiple of N . Therefore,
when the center symmetry is realized, the only
states of ˇnite free energy are baryons plus color
singlet mesons.

The realization of the center symmetry, L →
ZpL, is equivalent to conˇnement. This symmetry is like the global rotational symmetry of
a spin system, and it may be either realized or broken. At large separations, the correlation
of a line and its adjoint, corresponding to a quarkÄantiquark pair, is

lim
r→∞

〈L(r)L†(0)〉 = C e−κr + 〈L(0)〉〈L†(0)〉, (9)

since upon subtracting a mean ˇeld term, correlation functions should vanish exponentially.
Since

e−βFqq(r) = 〈L(r)L†(0)〉, (10)

we see that in the conˇned phase, where 〈L = 0〉, the potential is linear, but in the unconˇned
phase, where 〈L〉 is nonzero, the potential goes to a constant at large separations.

The analogy with a spin system is useful. For the spin system corresponding to QCD
without dynamical quarks, the partition function can be written as

Z =
∫

[dA] exp
(
− 1

g2
S[A]

)
. (11)
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The effective temperature of the spin system associated with the gluon ˇelds is Teff ∼ g2. By
asymptotic freedom of the strong interactions, as real temperature gets larger, the effective
temperature gets smaller. So at large real temperature (small effective temperature) we expect
an ordered system, where the ZN symmetry is broken, and there is deconˇnement. For small
real temperature corresponding to large effective temperature, there is disorder or conˇnement.

The presence of dynamical fermions breaks the ZN symmetry. This is analogous to placing
a spin system in an external magnetic ˇeld. There is no longer any symmetry associated with
conˇnement, and the phase transition can disappear. This is what is believed to happen in
QCD for physical masses of quarks. What was a ˇrst-order phase transition for the theory
in the absence of quarks becomes a continuous change in the properties of the matter for the
theory with quarks.

Another way to think about the conˇnementÄdecoˇnement transition is a change in the
number of degrees of freedom. At low temperatures, there are light meson degrees of freedom.

Fig. 2. The energy density scaled by T 4 for

QCD in the absence of dynamical quarks

Since these are conˇned, the number of degrees of
freedom is of order one in the number of colors.
In the unconˇned world, there are 2(N2

c −1) glu-
ons and 4NcNf fermions, where Nf is the num-
ber of light-mass fermion families. The energy
density scaled by T 4 is a dimensionless number
and directly proportional to the number of degrees
of freedom. We expect it to have the property
shown in Fig. 2 for pure QCD in the absence of
quarks. The discontinuity at the deconˇnement
temperature, Td, is the latent heat of the phase
transition.

The energy density can be computed using
lattice Monte Carlo methods. The result of such
computation is shown in Fig. 3. The discontinuity present for the theory with no quarks
becomes a rapid crossover when dynamical quarks are present.

Fig. 3. The energy density scaled by T 4 measured in QCD from lattice Monte Carlo simulation. Here

there are quarks with realistic masses
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The large Nc limit gives some insight into the properties of high-temperature matter [1Ä
4]. As Nc → ∞, the energy density itself is an order parameter for the decoˇnement phase
transition. Viewed from the hadronic world, there is an amount of energy density ∼ N2

c which
must be inserted to surpass the transition temperature. At inˇnite Nc this cannot happen, as
this involves an inˇnite amount of energy. There is a Hagedorn limiting temperature, which
for ˇnite Nc would have been the deconˇnement temperature.

The Hagedorn limiting temperature can be understood from the viewpoint of the hadronic
world as arising from an exponentially growing density of states. In a few paragraphs, we
will argue that mesons and glueballs are very weakly interacting in the limit of large Nc.
Therefore, the partition function is

Z =
∫

dm ρ(m) e−m/T . (12)

Taking ρ(m) ∼ mα eκm, so that

〈m〉 ∼ 1
1/T − κ

(13)

diverges when T → 1/κ.
1.3. A Brief Review of the Large Nc Limit. The large Nc limit for an interacting theory

takes Nc → ∞ with the 't Hooft coupling g2
′tHooft = g2Nc ˇnite. This approximation

has the advantage that the interactions among quarks and gluons simplify. For example,
at ˇnite temperature, the disappearance of conˇnement is associated with Debye screening
by gluon loops, as shown in Fig. 4, a. This diagram generates a screening mass of order
M2

screen ∼ g2
′tHooftT

2. On the other hand, the quark loop contribution is smaller by a power
of Nc and vanishes in the large Nc limit.

To understand interactions, consider Fig. 5, a. This corresponds to a mesonic currentÄ
current interaction through quarks. In powers of Nc, it is of order Nc. Gluon interactions
will not change this overall factor. The three-current interaction is also of order Nc, as shown
in Fig. 5, b. The three-meson vertex G, which remains after amputating the external lines, is
therefore of order 1/

√
Nc. A similar argument shows that the four-meson interaction is of

order 1/Nc. Using the same arguments, one can show that the 3-glueball vertex is of order
1/Nc and the four-glueball interaction of order 1/N2

c .
These arguments show that QCD at large Nc becomes a theory of noninteracting mesons

and glueballs. There are an inˇnite number of such states because excitations can never
decay. In fact, the spectrum of mesons seen in nature does look to a fair approximation like
noninteracting particles. Widths of resonances are typically of order 200 MeV, for resonances
with masses up to several GeV.

Fig. 4. a) The gluon loop contribution to the

heavy-quark potential. b) The quark loop contri-
bution to the potential

Fig. 5. a) The quark loop corresponding to a

currentÄcurrent interaction. b) A quark loop cor-
responding to a three-current interaction
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1.4. Mass Generation and Chiral Symmetry Breaking. QCD in the limit of zero quark
masses has a U(1)×SUL(2)×SUR(2) symmetry. (The U5(1) symmetry is explicitly broken
due to the axial anomaly.) Since the pion ˇeld ψτaγ5ψ is generated by an SUL−R(2)
transformation of the sigma ˇeld ψψ, the energy (or potential) in the space of the pion-sigma
ˇeld is degenerate under this transformation. In nature, pions have anomalously low masses.
This is believed to be a consequence of chiral symmetry breaking, where the σ ˇeld acquires
an expectation value, and the pion ˇelds are Goldstone bosons associated with the degeneracy
of the potential under the chiral rotations.

Such symmetry breaking can occur if the energy of a particleÄantiparticle pair is less than
zero, as shown in Fig. 6. On the left of this ˇgure is the naive vacuum where the negative
energy states associated with quark are ˇlled. The right-hand side of the ˇgure corresponds
to a particle hole excitation, corresponding to a sigma meson. Remember that a hole in the
negative energy sea corresponds to an antiparticle with the opposite momentum and energy.
If the σ-meson excitation has negative energy, the system is unstable with respect to forming
a condensate of these mesons.

Fig. 6. The energy levels of the Dirac equation. Unˇlled

states are open circles and ˇlled states are solid circles.

For the free Dirac equation, negative energy states are
ˇlled and positive energy states are unoccupied, as shown

on the left-hand side. A mesonic excitation corresponding
to a particleÄhole pair is shown on the right-hand side

At sufˇciently high temperature, the chiral condensate might melt. Indeed this occurs [5].
For QCD, the chiral and deconˇnement phase transitions occur at the same temperature. At a
temperature of about 170Ä200 MeV, both the linear potential disappears and chiral symmetry
is restored. It is difˇcult to make a precise statement about the indentiˇcation of the chiral
and deconˇnement phase transitions, since as argued above, for QCD with quarks, there is
not a real phase transition associated with deconˇnement [6,7]. Also, when quarks have ˇnite
masses, as they do in nature, chiral symmetry is not an exact symmetry, and there need be
no strict phase transition associated with its restoration. Nevertheless, the crossover is quite
rapid, and there are rapid changes in both the potential and the sigma condensate 〈ψψ〉 at
temperatures which are in a narrow range.

2. LECTURE II: MATTER AT HIGH BARYON NUMBER DENSITY:
QUARKYONIC MATTER

I now turn to a discussion of the phase diagram of QCD at ˇnite baryon number density.
In the large Nc limit of QCD, the nucleon mass is of order Nc [1Ä3]. This means that in

the conˇned phase of hadronic matter, for baryon chemical potential μB � MN , the baryon
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number density is essentially zero:

〈NB〉 ∼ e(μB−MN )/T ∼ e−Nc . (14)

For temperatures above the deconˇnement phase transition, the baryon number is nonzero
since there the baryon number density is controlled by e−Mq/T ∼ 1, and quark masses are
independent of Nc. For sufˇciently large chemical potential, the baryon number density can
be also nonzero. The Hadronic Matter phase of QCD is characterized in large Nc by zero
baryon number density, but at higher density there is a new phase.

In the large Nc limit, fermion loops are suppressed by a factor of 1/Nc. Therefore, the
contribution to Debye screening from quarks cannot affect the quark potential until

M2
Debye ∼ α′tHooft μ2

quark/Nc ∼ Λ2
QCD. (15)

Here the quark chemical potential is μB = Ncμquark. The relationship involving the Debye
mass means there is a region parametrically large chemical potential MN � μB �

√
NcMN

where matter is conˇned, and has ˇnite baryon number. This matter is other than either
the Hadronic Matter or the Deconˇned Phases. It is called Quarkyonic because it exists at
densities parametrically large compared to the QCD scale, where quark degrees of freedom
are important, but it is also conˇned so the degrees of freedom may be thought of also as
those of conˇned baryons [8,9].

The width of the transition region between the Hadronic phase and the Quarkyonic phase
is estimated by requiring that the baryon number density become of order NB/V ∼ k3

Fermi ∼
Λ3

QCD. Recall that the baryon chemical potential is μB ∼ MN + k2
f/2MN for small kF , so

that the width of the transition in μB is very narrow, of order 1/Nc. This is δμquark ∼ 1/N2
c

when expressed in terms of μquark which is the ˇnite variable in the large Nc limit.
The transition from Hadronic Matter to that of the QuarkÄGluon Plasma may be thought

of as a change in the number of degrees of freedom of matter. Hadronic Matter at low
temperatures has 3 pion degrees of freedom. The quarkÄgluon plasma has of order 2(N2

c −1)
degrees of freedom corresponding to gluons and 4Nc degrees of freedom for each light-mass
quark. The change in degrees of freedom is of order N2

c in the large Nc limit. At very high
baryon number densities, the quarks in the Fermi sea interact at short distances, and although
strictly speaking are conˇned, behave like free quarks. The number of degrees of freedom
is therefore of order Nc. Each phase has different numbers of degrees of freedom, and is
presumably separated from the other by a rapid crossover.

Quarkyonic matter is conˇned and therefore thermal excitations such as mesons, glueballs,
and Fermi surface excitations must be thought of as conˇned. The quarks in the Fermi sea
are effectively weakly interacting since their interactions take place at short distances. So
in some sense, the matter is ®deconˇned¯ quarks in the Fermi sea with conˇned glueball,
mesons and Fermi surface excitations [10].

In Hadronic Matter, chiral symmetry is broken and in Deconˇned Matter it is broken.
In Quarkyonic Matter chiral symmetry is broken by the formation of charge density waves
from binding of quark and quark hole excitations near the Fermi surface [11]. In order
that the quark hole have small relative momentum to the quark, the quark hole must have
momentum opposite to that of the quark. This means the quarkÄquark hole excitation has
total net momentum, and therefore the ˇnite wavelength of the corresponding bound state
leads to a breaking of translational invariance. The chiral condensate turns out to be a chiral
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spiral where the chiral condensate rotates between different Goldstone bosons as one moves
through the condensate [12]. Such condensation may lead to novel crystalline structures [13].

A ˇgure of the hypothetical phase diagram of QCD is shown in Fig. 7 for Nc = 3. Also
shown is the weak liquidÄgas phase transition, and the phase associated with color supercon-
ductivity. Although the color superconducting phase cannot coexist with quarkyonic matter
in inˇnite Nc, for ˇnite Nc there is such a possibility. The lines on this phase diagram might
correspond to true phase transitions or rapid crossovers. The conˇnementÄdeconˇnement tran-

Fig. 7. The revised phase diagram of QCD

Fig. 8. Chemical potentials and temperatures at decoupling
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sition is known to be a crossover. In the FPPÄNJL model [14Ä16], the HadronicÄQuarkyonic
transition is ˇrst-order [17], but nothing is known from lattice computations. If as we conjec-
ture, there is a region where chiral symmetry is broken by translationally noninvariant modes,
then this region must be surrounded by a line of phase transitions. I call this region Happy
Island because it is an island of matter in the μB − T plane.

A remarkable feature of this plot is the triple point where the Hadronic Matter, Deconˇned
Matter and Quarkyonic Matter all meet [18].vadjust This triple point is reminiscent of the
triple point for the liquid, gas and vapor phases of water.

Since we expect a rapid change in the number of degrees of freedom across the transitions
among these forms of matter, an expanding system crossing such a transition would undergo
much dilution at a ˇxed value of temperature or baryon chemical potential. One might expect
in heavy ions to see decoupling of particle number changing processes at this transition, and
the abundances of produced particles will be characteristic of the transition.

Fig. 9. Ratios of abundances of various particles
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Fig. 10. Energy density stored in baryons compared to that stored in mesons

In Fig. 8, the expectations for the conˇnementÄdeconˇnement transition are shown with
the dotted line 1. It is roughly constant with the baryon chemical potential, and the constant
value of temperature is taken from lattice estimates. The dashed curve 2 represents μB −T =
const × MN , corresponding to a simple model for the Quarkyonic transition. Such a very
simple description does remarkably well.

A triple point is suggested at a baryon chemical potential near 400 MeV, and temperature
near 160 MeV. This corresponds to a center-of-mass energy for PbÄPb collisions of 9Ä10 GeV.
This is near where there are anomalies in the abundances of ratios of particles [19], as shown
in Fig. 9. Shown are ˇts using statistical models of abundances of particles using chemical
potentials and temperature extracted from experimental data. The sharp peak re	ects the
change in behavior as one proceeds along the dashed line of Fig. 8 corresponding to the
Quarkyonic transition and joins to the dotted line 1 of the deconˇnement transition.

It is remarkable that the value of beam energy where this occurs corresponds to the
hypothetical triple point of Fig. 8, and that this is the density where the energy density stored
in baryons becomes equal to that stored in mesons (Fig. 10).

3. LECTURE III: THE COLOR GLASS CONDENSATE AND THE GLASMA

The parton distributions of gluons, valence quarks and sea quarks can be measured for
some momentum scale less than a resolution scale Q as a function of their fractional momen-
tum x of a high energy hadron. The lowest value of x accessible for a ˇxed hadron energy E
is typically xmin ∼ ΛQCD/Ehadron. The small x limit is therefore the high energy limit.

It is remarkable that as x is decreased, as we go to the high energy limit, the gluon density
dominates the constituents of a hadron for x � 10−1. The various distributions are shown as
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Fig. 11. The parton distribution as a function of x

a function of x in Fig. 11. The gluon density rises like a power of x (like x−δ), δ ∼ 0.2−0.3
at accessible energies. The area of a hadron grows slowly with energies. Cross sections
grow roughly as ln2(1/x) for small x. This means that the rapidly growing gluon distribution
results in a high density system of gluons. At high density, the gluons have small separation
and by asymptotic freedom, the intrinsic strength of their interaction must be weak.

A small intrinsic interaction strength does not mean that interactions are weak. Consider
gravity: The interactions between single protons is very weak, but the force of gravity is long
range, and the protons in the earth act coherently, that is, always with the same sign. This
results in a large force of gravity. This can also happen for the gluons inside a hadron, if
their interactions are coherent.

To understand how this might happen, suppose we consider gluons of a ˇxed size r0 ∼
1/pT , where pT is its transverse momentum. We assume that at high energy, the gluons
have been Lorentz contracted into a thin sheet, so we need only consider the distribution of
gluons in the transverse plane. If we start with a low density of gluons at some energy, and
then evolve to higher energy, the density of gluons increases. When the density is of order
one gluon per size of the gluon, the interaction remains weak because of asymptotic freedom.
When the density is of order 1/αS , the coherent interactions are strong, and adding another
gluon to the system is resisted by a force of order 1. The gluons act as hard spheres. One
can add no more gluons to the system of this size. It is however possible to add in smaller
gluons, in the space between the closely packed gluons of size r0. This is shown in Fig. 12.

The physical picture we derive means that below a certain momentum scale, the saturation
scale Qsat, the gluon density is saturated and above this scale it is diffuse. The saturation
momentum scale grows with energy and need not itself saturate [20Ä23].

The high phase space density of gluons, dN/dy d2pT d2rT ∼ 1/αS, suggests that one can
describe the gluons as a classical ˇeld. A phase space density has a quantum mechanical
interpretation as density of occupation of quantum mechanical states. When the occupation
number is large, one is in the classical limit.

One can imagine this high density gluon ˇeld generated from higher momentum partons.
We introduce the idea of sources corresponding to high x partons and ˇelds as low x partons.
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Fig. 12. Increasing the gluon density in a

saturated hadron when going to higher energy

Fig. 13. The collision of two sheets of CGC

Because the high x parton sources are fast moving, their evolution in time is Lorentz time
dilated. The gluon ˇeld produced by these sources is therefore static and evolves slowly
compared to its natural time scale of evolution. This ultimately means that the different
conˇgurations of sources are summed over incoherently, as in a spin glass.

We call this high energy density conˇguration of colored ˇelds a Color Glass Condensate.
The word ®color¯ is used because the gluons that make it are colored. The word ®condensate¯
is used because the phase space density of gluons is large, and because this density is generated
spontaneously. The word ®glass¯ is used because the typical time scale of evolution of the
classical ˇelds is short compared to the Lorentz time dilated scales associated with the sources
of color.

There is an elaborate literature on the Color Glass Condensate and an excellent review is
by Iancu and Venugopalan [24]. Evolution of the CGC to small values of x is understood,
as well as many relationships among deep inelastic scattering, deep inelastic diffraction and
high-energy nucleusÄnucleus, protonÄnucleus and protonÄproton scattering. The CGC is a
universal form of matter in the high energy limit. The theoretical ideas underlying the CGC
are largely unchallenged as a description of the high energy limit of QCD, but the issue of
when the approximations appropriate for the high energy limit are valid remains contentious.

In the description of high-energy hadronÄhadron collisions, we consider the collision of
two sheets of CGC as shown in Fig. 13. The color electric and color magnetic ˇelds of the
CGC are visualized as sheets of LenardÄWiechart potentials. These are classical gluon ˇelds
whose polarization and color are random, with an intensity distribution determined by the
underlying theory of the CGC.

Upon collision of these sheets, the sheets become charged with color magnetic and color
electric charge distributions of equal magnitude but opposite sign locally in the transverse
plane of the sheets [25Ä32]. In the high energy limit, sources of color electric and color
magnetic ˇeld must be treated on an equal footing because of the self-duality of QCD. This
induced charge density produces longitudinal color electric and color magnetic ˇelds between
the two sheets. These ˇelds are longitudinally boost invariant and therefore have the correct
structure to account for Bjorken's initial conditions in heavy-ion collisions [33]. The typical
transverse length scale over which the 	ux tubes vary is 1/Qsat. The initial density of
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Fig. 14. Glasma 	ux tube produced after the collision

produced gluons is on dimensional grounds

1
πR2

dN

dy
∼ Q2

sat

αS
. (16)

Because there are both color electric and color magnetic ˇelds, there is a topological charge
density of maximal strength induced FFD ∼ Q2

sat/αS .
The decay of products of the Glasma is what presumably makes a thermalized Quark

Gluon Plasma. It is not clear how this thermalization takes place. It is quite likely that in the
decay of these ˇelds, a turbulent 	uid arises, and perhaps this 	uid can generate an expansion
dynamics similar to that of a thermalized QGP for at least some time [34].

3.1. Concluding Comments on the CGC and the Glasma. There is now a wide variety or
experimental data largely consistent with the CGC and Glasma-based description. There is a
well-developed theoretical framework that provides a robust phenomenology of both electro-
hadron scattering and hadron scattering, There will no doubt be future developments related to
the LHC. The interested reader is referred to ®The Color Glass Condensate: What Have We
Learned at RHIC¯, a workshop held at the RIKEN Brookhaven Center in the winter of 2010.
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