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MAGNETIC MONOPOLES
Ya. Shnir1

Department of Mathematical Sciences, Durham University, Durham, UK

These are notes of the ˇrst part of the lectures given at the JINRÄISU Baikal Summer School on
Physics of Elementary Particles and Astrophysics (July 2010). I review classical monopole solutions of
the SU(2) YangÄMillsÄHiggs theory, providing a pedagogical introduction into to the theory of non-
Abelian monopoles both in the BPS limit and beyond of it. I brie	y discuss monopole dynamics, the
idea of the moduli space and some of the basic properties which are connected with the ˇeld theoretical
aspects of these classical solutions.
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't HOOFTÄPOLYAKOV MONOPOLE

We consider non-Abelian classical Lagrangian of a YangÄMillsÄHiggs theory with the
gauge group SU(N), which describes coupled gauge and Higgs ˇelds:

L = −1
2
Tr FμνFμν + TrDμφDμφ−V (φ) = −1

4
F a

μνF aμν +
1
2
(Dμφa)(Dμφa)−V (φ). (1)

Here, Aμ = Aa
μT a is an SU(N) connection with ˇeld strength Fμν = F a

μνT a, φ = φaT a and

we use standard normalization of the Hermitian generators of the gauge group: Tr (T aT b) =
1/2δab, a, b = 1, 2, 3, which satisfy the Lie algebra [T a, T b] = iεabcT

c. The scalar ˇeld
φ = φaT a transforms in the adjoint representation of SU(N) with the covariant derivative
deˇned by Dμφ = ∂μφ+ ie[Aμ, φ]. The nonzero vacuum expectation value of the scalar ˇeld
corresponds to the symmetry-breaking Higgs potential V (φ):

V (φ) = λ(|φ|2 − v2)2, (2)

where the group norm of the scalar ˇeld is deˇned as |φ|2 = 2 Tr φ2 = φaφa.
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In the simplest nontrivial case of SU(2) group we have T a = σa/2 and V (φ) = λ(φaφa−
v2)2. The energy of the conˇguration is minimal if the following conditions are satisˇed:

φaφa = v2, F a
mn = 0, Dnφa = 0. (3)

These conditions deˇne the vacuum. Note that the very deˇnition (3) forces the classical
vacuum of the SU(2) YangÄMillsÄHiggs theory to be degenerated. Indeed, the condition
V (φ) = 0 means that |φ| = v, i.e., the set of vacuum values of the Higgs ˇeld forms a sphere
S2

vac. All the points on this sphere are equivalent because there is a well-deˇned SU(2) gauge
transformation which connects them. If v2 �= 0 the SU(2) symmetry is spontaneously broken
to U(1).

Thus, the solutions of the classical ˇeld equations map the vacuum manifold M = S2
vac

onto the boundary of 3-dimensional space, which is also a sphere S2. These maps are
characterized by a winding number n = 0,±1,±2 . . . which is the number of times S2

vac is
covered by a single turn around the spatial boundary S2. The celebrated 't HooftÄPolyakov
solution [3,4] corresponds to the ®hedgehog¯ asymptotic of the scalar ˇeld:

φa −→
r→∞

vra

r
. (4)

Such a behavior obviously mixes the spatial and isotopic indices and deˇnes a single mapping
of the vacuum M onto the spatial asymptotic.

As was mentioned by 't Hooft [3], the conˇgurations which are characterized by different
winding numbers cannot be continuously deformed into each other. Indeed, the gauge trans-
formation of the form U = ei(σkϕ̂k)θ/2 rotates the isovector to the third axis. However, if we
try to ®comb the hedgehog¯, that is, to rotate the scalar ˇeld everywhere in space to a given
direction (so-called unitary or Abelian gauge), the singularity of the gauge transformation on
the south pole does not allow us to do it globally. Thus, there is no well-deˇned global
gauge transformation which connects the trivial and the ®hedgehog¯ conˇgurations and this
singularity results in the inˇnite barrier separating them.

Note that the electric charge of the massive vector bosons A± is given by the unbroken
U(1) subgroup. In general, this is a subgroup H of the gauge group G, the action of which
leaves the Higgs vacuum invariant. Obviously, that is a little group of the rotation in isospace
about the direction given by the vector φa. The generator of it, (φaT a)/a, must be identiˇed
with the operator of electric charge Q. Thus, the expression for the covariant derivative can
be written in the form

Dμ = ∂μ + ieAa
μT a = ∂μ + iQAem

μ (5)

that allows us to deˇne the ®electromagnetic projection¯ of the gauge potential

Aem
μ =

1
a
Aa

μφa, Q = e
1
a
φaT a. (6)

Taking into account the deˇnition of the generators T a of the gauge group, we can easily see
that the minimal allowed eigenvalues of the electric charge operator now are q = ±e/2.

Thus, it would be rather natural to introduce the electromagnetic potential as a projection
of the SU(2) gauge potential Aa

μ onto that direction, see Eq. (6). Furthermore [5], a general
solution of the equation Dμφa = 0, for φaφa = a2, can be written as

Aa
μ =

1
a2e

εabcφ
b∂μφc +

1
a
φaΛμ, (7)
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where Λμ is an arbitrary 4-vector. It can be identiˇed with the electromagnetic potential
because Eq. (7) yields for φaφa = a2

φa

a
Aa

μ = Λμ ≡ Aem
μ .

Inserting Eq. (7) into the deˇnition of the ˇeld strength tensor yields

F a
μν = Fμν

φa

a
, where Fμν = ∂μAν − ∂νAμ +

1
a3e

εabcφ
a∂μφb∂νφc. (8)

This gauge-invariant deˇnition of the electromagnetic ˇeld strength tensor Fμν suggested
by 't Hooft [3] has a very deep meaning. It is rather obvious that in the topologically trivial
sector the last term in Eq. (8) vanishes and then we have

Fμν = ∂μAν − ∂νAμ.

This is precisely the case of standard Maxwell electrodynamics. Of course, in this sector
there is no place for a monopole because the Bianchi identities are satisˇed: ∂μF̃μν ≡ 0.

However, for the conˇguration with nontrivial boundary conditions (4), (14), also the
Higgs ˇeld gives a nonvanishing contribution to the electromagnetic ˇeld strength tensor (8).
Then, the second pair of Maxwell equations becomes modiˇed:

∂μF̃μν = kν . (9)

Note that, if the electromagnetic potential Aem
μ is regular, the magnetic, or topological current

kμ is expressed via the scalar ˇeld alone:

kμ =
1
2
εμνρσ∂νF ρσ =

1
2a3e

εμνρσεabc∂
νφa∂ρφb∂σφc. (10)

At ˇrst glance this current is independent of any property of the gauge ˇeld. It is conserved
by its very deˇnition:

∂μkμ ≡ 0, (11)

unlike a Noether current which is conserved because of some symmetry.
The static regular solution of the corresponding ˇeld equations was constructed numerically

by employing the spherically symmetric ansatz [3, 4] for the gauge and the Higgs ˇelds,
respectively:

φa =
ra

er2
H(ξ), Aa

n = εamn
rm

er2
[1 − K(ξ)], Aa

0 = 0, (12)

where H(ξ) and K(ξ) are functions of the dimensionless variable ξ = ver.
The condition of vanishing covariant derivative of the scalar ˇeld on the spatial asymp-

totic (3), together with the choice of the nontrivial hedgehog conˇguration, implies that
at r → ∞

∂n

(
ra

r

)
− eεabcA

b
n

rc

r
= 0. (13)

The simple transformation

∂n

(
ra

r

)
=

r2δan − rarn

r3
=

1
r

(δanδck − δakδnc)
rcrk

r2
= −εabcεbnk

rcrk

r3
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then provides an asymptotic form of the gauge potential

Aa
k(r) −→

r→∞

1
e
εank

rn

r2
. (14)

This corresponds to the non-Abelian magnetic ˇeld

Ba
n −→

r→∞

rarn

er4
. (15)

Therefore, the boundary conditions (4), (14) are compatible with the existence of a long-range
gauge ˇeld associated with an Abelian subgroup which is unbroken in the vacuum. Since
this ˇeld decays like 1/r2, which is typical behavior of the Coulomb-like ˇeld of a point-like
charge, and since the electric components of the ˇeld strength tensor vanish, we can recognize
a monopole in such a ®hedgehog¯ conˇguration with a ˇnite energy.

The explicit forms of the shape functions of the scalar and gauge ˇeld can be found
numerically. It turns out that the functions H(ξ) and K(ξ) approach rather fast the asymptotic
values. Thus, there is almost vacuum outside of some region of the order of the characteristic
scale Rc, which is called the core of the monopole. One could estimate this size by simple
arguments [7]. The total energy of the monopole conˇguration consists of two components:
the energy of the Abelian magnetic ˇeld outside the core and the energy of the scalar ˇeld
inside the core:

E = Emag + Es ∼ 4πg2R−1
c + 4πv2Rc ∼ 4π

e2

(
R−1

c + m2
vRc

)
.

This sum is minimal if Rc ∼ m−1
v . In other words, inside the core at distances shorter

than the wavelength of the vector boson m−1
v ∼ (ve)−1, the original SU(2) symmetry is

restored. However, outside the core this symmetry is spontaneously broken down to the
Abelian electromagnetic subgroup.

Note that the solution given by the 't HooftÄPolyakov ansatz (12) corresponds to the
condition Aa

0 = 0. One could consider a more general case, where this time component of
the vector potential is not equal to zero, but is also a function of the spatial coordinates [8]:

Aa
0 =

ra

er2
J(r). (16)

This ˇeld conˇguration corresponds to the non-Abelian dyon, which has both magnetic and
electric charges. The electric charge of the system of the ˇelds can be deˇned as

q =
1
v

∫
dSn En =

1
v

∫
dSn Ea

nφa =
1
v

∫
d3xEa

nDnφa. (17)

Here, we invoked the ˇeld equations, according to which DnEa
n = 0, and made use of the

relation εabcφ
bD0φ

c = 0, which is valid for the ansatz under consideration. The asymptotic
behavior of the proˇle function J(r) is very similar to that of the scalar ˇeld:

J(r) → 0 as r → 0, J(r) → Cr as r → ∞. (18)

The arbitrary constant C is connected with the electric charge of the dyon (17) [8]. The
charge vanishes if C = 0.
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Indeed, substituting the ansatz (12) into the integral (17), after some algebra we obtain

q =
4πC

e
= Cg. (19)

However, on the classical level there is no reason for the electric charge (17), unlike the
magnetic charge, to be quantized and the constant C in (19) remains an arbitrary parameter.

Finally, we note that the time component of the vector-potential (16) is in isospace parallel
to the direction of the Higgs ˇeld. Moreover, one can consider it as an additional triplet of
the scalar ˇelds. This is the so-called JuliaÄZee correspondence φa � Aa

0 .

THE BOGOMOL'NYI LIMIT

Unfortunately, the system of nonlinear coupled differential equations on the functions
H(ξ) and K(ξ) in general has no analytical solution. The only known exception is the very
special case of vanishing scalar potential V = 0 [9Ä11]. This is the so-called Bogomol'nyiÄ
PrasadÄSommerˇeld (BPS) limit.

In the BPS limit of vanishing Higgs potential the scalar ˇeld also becomes massless and
the energy of the static ˇeld conˇguration is taking the form

E =
∫ {

1
4
Tr

(
(εijkFij ± Dkφ)2

)
∓ 1

2
εijkTr (FijDkφ)

}
d3r. (20)

Thus, the absolute minimum of the energy corresponds to the static conˇgurations which
satisfy the ˇrst-order Bogomol'nyi equations:

εijkFij = ±Dkφ, (21)

which are solved by

K =
ξ

sinh ξ
, H = ξ coth ξ − 1. (22)

Deˇnitely, the solution to the ˇrst-order BPS equation (21) automatically satisˇes the system
of ˇeld equations of the second order.

BPS monopoles are very remarkable objects. Let us brie	y recapitulate the properties of
these solutions:

• The BPS equation, together with the Bianchi identity, means that DnDnφa = 0. There-
fore, the condition DnφaDnφa = (1/2)∂n∂n(φaφa) holds and the energy of the monopole
conˇguration in the BPS limit is independent of the properties of the gauge ˇeld:

E =
1
2

∫
d3x∂n ∂n(φaφa) =

4πv

e
= gv. (23)

If the conˇguration has both electric and magnetic charges, the monopole mass becomes

M = v
√

g2 + q2. (24)

This yields the so-called Bogomol'nyi bound on the monopole mass.
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• In comparison with the 't HooftÄPolyakov solution, the behavior of the Higgs ˇeld of
the monopole in the BPS limit has changed drastically: as we can see from (22), alongside
with the exponentially decaying component it also obtains a long-distance Coulomb tail

φa → vr̂a − ra

er2
as r → ∞. (25)

The reason for this is that in the limit V (φ) = 0, the scalar ˇeld becomes massless.
• The long-range monopoleÄmonopole interaction is composed of two parts originating

from the long-range scalar force and the standard electromagnetic interaction, which could
be either attractive or repulsive [12]. Mutual compensation of both contributions leaves the
pair of BPS monopoles static but the monopole and antimonopole would interact with double
strength.

• The Bogomol'nyi equation may be treated as a three-dimensional reduction of the
integrable self-duality equations. Indeed, the JuliaÄZee correspondence means that

Dnφa � DnAa
0 ≡ F a

0n,
(26)

Ba
n = Dnφa � F̃0n = F a

0n.

Therefore, if we suppose that all the ˇelds are static, the Euclidean equations of self-duality
F a

μν = F̃ a
μν reduce to Eqs. (21) and the monopole solutions in the Bogomol'nyi limit could

be considered as a special class of self-dual ˇelds.
• The analogy between the Euclidean YangÄMills theory and the BPS equations can be

traced up to the solutions. It was shown [13, 14] that the solutions of these equations are
exactly equal to an inˇnite chain of instantons directed along the Euclidean time axis t in
d = 4. More precisely, the BPS monopole is equivalent to an inˇnite chain of instantons
having identical orientation in isospace and separated by an interval τ0 = 2π. An alternative
conˇguration is a chain of correlated instantonÄantiinstanton pairs, which corresponds to an
inˇnite monopole loop.

GAUGE ZERO MODE AND THE ELECTRIC DYON CHARGE

In the BPS limit the JuliaÄZee dyonic solutions have a very interesting interpretation [15,
16]. First, we note that for the static ansatz (12), (16) and the choice A0 = 0, the kinetic
energy of the conˇguration

T =
∫

d3xTr (EnEn + D0φD0φ) (27)

is equal to zero. Moreover, in this case the Gauss law

DnEn − ie [φ, D0φ] = 0 (28)

can be satisˇed trivially, with En = D0φ = 0.
Let us now consider time-dependent ˇelds An(r, t), φa(r, t), but suppose that their time

dependence arises as a result of a gauge transformation of the original static conˇguration:

An(r, t) = U(r, t)An(r, 0)U−1(r, t) − i

e
U(r, t)∂nU−1(r, t) . (29)
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Here, U(r, t) = eieωt with ω(r) a parameter of the transformation. If the time interval δt is
very small, we can expand

U(r, δt) ≈ 1 + ieωδt + . . . (30)

Now it follows from (29) that

An(r, δt) ≈ An(r) + (ie[ω, An(r)] − ∂nω) δt, (31)

and we have
∂0An = ie[ω, An(r)] − ∂nω = −Dnω. (32)

In a similar way we obtain for the time dependence of the scalar ˇeld:

∂0φ = ie [ω, φ] . (33)

These gauge transformations simultaneously affect the time component of the gauge po-
tential, which for the monopole conˇgurations (12), (16) is a pure gauge:

A0(r, t) = − i

e
U(r, t) ∂0U

−1(r, t) = −ω. (34)

Since the gauge transformations (32) and (33) do not change the potential energy of the
conˇguration, the parameter ω can be identiˇed with the gauge zero mode. This is one of four
collective coordinates (they are also called moduli) of the one-monopole conˇguration [16].
The other three specify the position of the monopole in space. Their appearance re	ects an
obvious breaking of translational invariance of the original Lagrangian (1) by the monopole
conˇguration: the position of the monopole in R

3 can be chosen arbitrarily.
However, deˇned in this way, the gauge zero mode is not physical, since the gauge

transformations (32) and (33) do not affect the non-Abelian electric ˇeld:

Ea
n = ∂0An − DnA0 = −Dnω + Dnω ≡ 0,

(35)
D0φ = ∂0φ + ie[A0, φ] = ie [ω, φ] − ie [ω, φ] ≡ 0.

Thus, as before, the Gauss law is satisˇed trivially and the kinetic energy of the monopole (27)
is still equal to zero.

Now let us suppose that the time dependence of the ˇelds again appears as a result of the
gauge transformations (32) and (33), but that the corresponding gauge zero mode (∂0An, ∂0φ)
satisˇes the background gauge condition:

Dn(∂0An) − ie [φ, (∂0φ)] = 0. (36)

Then the Gauss law (28) is satisˇed, if A0 = 0 and there is a nontrivial solution of
Eqs. (32), (33) and (36) [15], where ω is proportional to φ and an additional time depen-
dence is allowed:

ω = Υ̇(t)φ,

which corresponds to the gauge transformation

U(r, t) = exp {ieΥ(t)φ(r)} ≈ 1 + ieΥ̇φδt. (37)
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Here Υ(t) is an arbitrary function of time. Indeed, in this case we have ∂0An = Υ̇Dnφ
and ∂0φ = 0, and, since in the Bogomol'nyi limit DnDnφ = 0, the background gauge
condition (36) is satisˇed by the ansatz (37). However, this solution corresponds to the
generation of a non-Abelian electric ˇeld

En = ∂0An = Υ̇(t)Dnφ = Υ̇(t)Bn, D0φ = 0, (38)

so the kinetic energy of the monopole (27) is no longer zero:

T =
1
2
Υ̇2

∫
d3xDnφaDnφa =

1
2
Υ̇2

∫
d3xBa

nBa
n = 2πvgΥ̇2 =

1
2
MΥ̇2, (39)

where we make use of the deˇnition of the magnetic charge and take into account that the
mass of the BPS monopole is

M =
4πv

e
.

Since the potential energy of the conˇguration is time-independent, the gauge transfor-
mations (32) and (33), supplemented with the condition A0 = 0, deˇne a physical collective
coordinate Υ(t), that is a gauge zero mode. Its excitation corresponds to the generation of an
electric charge Q = Υ̇g. Thus, such a gauge-induced time dependence of the ˇelds transforms
the monopole into a dyon.

Note that this collective coordinate is an angular variable, which is deˇned on a circle S1.
Indeed, the points Υ = 2πn, n ∈ Z correspond to the same gauge transformation U(r, t),
which is unity on the spatial asymptotic [15]. However, the points Υ = 0 and, for example,
Υ = 2π, correspond to different topological classes.

To sum up, the one-monopole conˇguration in the BPS limit could be characterized by
four zero modes (moduli) that form the so-called moduli space M1. It is clear from the above
discussion that M1 = R

3 × S1.
Note that we can come back to the JuliaÄZee description of a dyon conˇguration just by

inverting the above discussion: we could start from a system of time-dependent ˇelds and
apply the gauge transformations (32) and (33) to compensate for that dependence. The price
we would have to pay would be the appearance of a nonzero time component of the gauge
potential A0. This corresponds to the static ansatz (16).

CLASSICAL INTERACTION OF TWO WIDELY SEPARATED DYONS

Now we consider the mechanism of interaction between two widely separated monopoles.
If they are close enough to each other, the cores overlap and we have quite a complicated
picture of short-range interactions mediated by the gauge and scalar ˇelds. However, if we
consider well-separated monopoles, there is some simpliˇcation. We may suppose that the
monopole core has a radius that is much smaller than the distance between the monopoles.
Moreover, outside of this core the covariant derivatives of the scalar ˇeld vanish and thus the
gauge ˇelds obey the free YangÄMills equations. This approximation is a standard assumption
in the analysis of monopole interactions.

The result of both analytical and variational calculations conˇrm a rather surprising con-
clusion, ˇrst observed by Manton [12]: there is no interaction between two BPS monopoles
at all, but the monopoleÄantimonopole pair attracts each other with double strength.
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The reason for this unusual behavior is that the normal magnetostatic repulsion of the two
monopoles is balanced by the long-range scalar interaction: in the BPS limit the quanta of
the scalar ˇeld are also massless.

Indeed, we have already noted that there is a crucial difference between the asymptotic
behavior of the Higgs ˇeld in the non-BPS and the BPS cases: there is a long-range tail of
the BPS monopole φa → vr̂a − ra/er2 as r → ∞. The result is that, in a system of two
widely separated monopoles, the asymptotic value of the Higgs ˇeld in the region outside
the core of the ˇrst monopole is distorted due to the long-range scalar ˇeld of the other
monopole: the mass of the ˇrst monopole will decrease and the size of its core is increased.
In other words, the additional long-range force appears as a result of violation of the original
scale invariance of the model in the BPS limit λ → 0. The scalar charge of a dyon is
just QD =

√
g2 + q2 [17] and the corresponding Coulomb scalar potential of interaction is

∼ −
√

g2 + q2/r (recall that the scalar interaction is always attractive). Then the relative
motion of two well-separated BPS dyons is a geodesic motion in the four-dimensional space
of collective coordinates M0 with one compact variable (moduli space). This dynamics is
governed by the TaubÄNUT (NewmanÄUntiÄTamburino) metric

ds2 =
(

1 − 2g2

Mr

)
dr2 +

(
2g2/M

)2

1 − 2g2/Mr
(dΥ + a · dr)2. (40)

A general description of the low-energy dynamics of BPS monopoles on the moduli space is
given by the AtiyahÄHitchin metric, whose asymptotic form is the TaubÄNUT metric [18].

Let us stop our discussion at this point. Recent developments in the understanding of
the low-energy dynamics of the supersymmetric monopoles, which basically used the same
simple picture of geodesic motion on the underlying moduli space, have greatly improved
our understanding of the structure of the vacuum of supersymmetric theories. The restricted
volume of our review does not allow us to go into detail of many remarkable works. Because
of lack of time we also do not discuss here the powerful Nahm formalism, which allows us
to obtain many results in a very simple and elegant way. In this rapidly developing situation,
we direct the reader to the original works and reviews.
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