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MAGNETIC MONOPOLES
Ya. Shnir'

Department of Mathematical Sciences, Durham University, Durham, UK

These are notes of the first part of the lectures given at the JINR-ISU Baikal Summer School on
Physics of Elementary Particles and Astrophysics (July 2010). I review classical monopole solutions of
the SU(2) Yang-Mills-Higgs theory, providing a pedagogical introduction into to the theory of non-
Abelian monopoles both in the BPS limit and beyond of it. I briefly discuss monopole dynamics, the
idea of the moduli space and some of the basic properties which are connected with the field theoretical
aspects of these classical solutions.

DT0 nepB 4 Y CTh JEKIM, IPOYUT HHBIX H b K JIbCKOM mIKOJIe 10 (PU3UKE BIEMEHT PHBIX U CTHUI]
u crpodusuke, opr Hu30B HHOW OUAU u UI'Y (wroms 2010 r.). Ilpenct BieH 0630p pelieHHid c
moHomomsimu SU (2) teopun Sur —Mumic . [l eTcst mex rorudeckoe BBEACHHE B He OelieBy TEOPHIO
MoHomoneir B mpenene BPS m 3 ero p Mk mu. Kp TKo 06cyXn IoTcs OWH MUK MOHOMOJIEH, nyes
MPOCTP HCTB MOJY/IEH U HEKOTOPBIE U3 OCHOBHBIX UJEH, CBSI3 HHBIX C TEOPETHMYECKHMH CIIEKT MM 3THX
KJI CCUYECKUX peIlIeHHH.

PACS: 12.39.Dc; 12.39.Fe

’t HOOFT-POLYAKOV MONOPOLE

We consider non-Abelian classical Lagrangian of a Yang—Mills—Higgs theory with the
gauge group SU(N), which describes coupled gauge and Higgs fields:

L= 3T B ¥ 4 T DugD¥ o~ V(g) = — L Fi F 4 L(DA6°)(Dy6) ~ V(9). (1)
Here, A;, = AjT* is an SU(N) connection with field strength F),, = F};, T, ¢ = ¢*T* and
we use standard normalization of the Hermitian generators of the gauge group: Tr (T°7T?) =
1/2645, a,b = 1,2,3, which satisfy the Lie algebra [T%,T? = ic.p.T°. The scalar field
¢ = ¢*T* transforms in the adjoint representation of SU(N) with the covariant derivative
defined by D¢ = 0,¢+ie[A,, ¢]. The nonzero vacuum expectation value of the scalar field
corresponds to the symmetry-breaking Higgs potential V' (¢):

V(g) = A(|¢|* — v*)?, 2)

where the group norm of the scalar field is defined as ||? = 2 Tr ¢? = ¢%¢°.
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In the simplest nontrivial case of SU(2) group we have T% = ¢%/2 and V(¢) = A(¢*¢® —
v?)2. The energy of the configuration is minimal if the following conditions are satisfied:

¢*¢" =v?, Fp,=0, Dy¢"=0. 3)

These conditions define the vacuum. Note that the very definition (3) forces the classical
vacuum of the SU(2) Yang-Mills-Higgs theory to be degenerated. Indeed, the condition
V(¢) = 0 means that |¢| = v, i.e., the set of vacuum values of the Higgs field forms a sphere
S2 .. All the points on this sphere are equivalent because there is a well-defined SU(2) gauge
transformation which connects them. If v # 0 the SU(2) symmetry is spontaneously broken
to U(1).

Thus, the solutions of the classical field equations map the vacuum manifold M = S2, .
onto the boundary of 3-dimensional space, which is also a sphere S?. These maps are
characterized by a winding number n = 0,+1,+2... which is the number of times S2,. is
covered by a single turn around the spatial boundary S2. The celebrated *t Hooft—Polyakov
solution [3,4] corresponds to the «hedgehog» asymptotic of the scalar field:

vre

" — : “4)

r—oo T

Such a behavior obviously mixes the spatial and isotopic indices and defines a single mapping
of the vacuum M onto the spatial asymptotic.

As was mentioned by ’t Hooft [3], the configurations which are characterized by different
winding numbers cannot be continuously deformed into each other. Indeed, the gauge trans-
formation of the form U = e(7x?%)0/2 rotates the isovector to the third axis. However, if we
try to «comb the hedgehog», that is, to rotate the scalar field everywhere in space to a given
direction (so-called unitary or Abelian gauge), the singularity of the gauge transformation on
the south pole does not allow us to do it globally. Thus, there is no well-defined global
gauge transformation which connects the trivial and the «hedgehog» configurations and this
singularity results in the infinite barrier separating them.

Note that the electric charge of the massive vector bosons AT is given by the unbroken
U(1) subgroup. In general, this is a subgroup H of the gauge group G, the action of which
leaves the Higgs vacuum invariant. Obviously, that is a little group of the rotation in isospace
about the direction given by the vector ¢*. The generator of it, (¢*T*)/a, must be identified
with the operator of electric charge (). Thus, the expression for the covariant derivative can
be written in the form

D, =0y +ieAT* = 0, +iQA}" (5)

that allows us to define the «electromagnetic projection» of the gauge potential
em 1 a ja 1 a a
AT = —ALB", Q=e—¢"T". (6)
a a

Taking into account the definition of the generators T'* of the gauge group, we can easily see
that the minimal allowed eigenvalues of the electric charge operator now are ¢ = +e/2.

Thus, it would be rather natural to introduce the electromagnetic potential as a projection
of the SU(2) gauge potential Aj, onto that direction, see Eq.(6). Furthermore [5], a general
solution of the equation D,¢* = 0, for ¢p®¢* = a?, can be written as

a 1 b c 1 a
A# = %(&Lbcd) a/l.¢ + a@b A;La @)
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where A, is an arbitrary 4-vector. It can be identified with the electromagnetic potential
because Eq.(7) yields for ¢*¢?® = a?

¢a a J— em
;AF" - A'u = AH .

Inserting Eq. (7) into the definition of the field strength tensor yields

a

a ¢ ]' a C
&ﬁﬂ@;,WMWszmm—@M+E?W¢M¢@¢ (8)

This gauge-invariant definition of the electromagnetic field strength tensor F),,, suggested
by ’t Hooft [3] has a very deep meaning. It is rather obvious that in the topologically trivial
sector the last term in Eq. (8) vanishes and then we have

Fl = 0,4, — 0,4,

This is precisely the case of standard Maxwell electrodynamics. Of course, in this sector
there is no place for a monopole because the Bianchi identities are satisfied: 0*F),, = 0.

However, for the configuration with nontrivial boundary conditions (4), (14), also the
Higgs field gives a nonvanishing contribution to the electromagnetic field strength tensor (8).
Then, the second pair of Maxwell equations becomes modified:

O F = k. ©)

Note that, if the electromagnetic potential A7 is regular, the magnetic, or topological current
k,, is expressed via the scalar field alone:

1 1
k= §5MVP(,8”F”" = ﬁswwsabcawaawbawﬁ (10)

At first glance this current is independent of any property of the gauge field. It is conserved
by its very definition:
Ouk, =0, (11)

unlike a Noether current which is conserved because of some symmetry.
The static regular solution of the corresponding field equations was constructed numerically
by employing the spherically symmetric ansatz [3,4] for the gauge and the Higgs fields,

respectively:
,,,a m

(R a __ ’I’_ _ a __
¢ - 67"2 (6)7 An = Eamn 67"2 [1 K(é-)L AO - 07 (12)

where H(§) and K (§) are functions of the dimensionless variable £ = ver.

The condition of vanishing covariant derivative of the scalar field on the spatial asymp-
totic (3), together with the choice of the nontrivial hedgehog configuration, implies that
atr — oo

D, (T—> —eeape Al = 0. (13)
T T

The simple transformation

2
re T 5(171 TaTn 1 TeTk TeTk
an - 3 - (6an60k 5ak5nc) 2 EabcEbnk 3
T T T T T
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then provides an asymptotic form of the gauge potential

o 1 n
Ak(’l") ’I"?())O gEank;r—2. (14)

This corresponds to the non-Abelian magnetic field

Tal'n

BCL

¢ :
r—oo ert

(15)

Therefore, the boundary conditions (4), (14) are compatible with the existence of a long-range
gauge field associated with an Abelian subgroup which is unbroken in the vacuum. Since
this field decays like 1/72, which is typical behavior of the Coulomb-like field of a point-like
charge, and since the electric components of the field strength tensor vanish, we can recognize
a monopole in such a «hedgehog» configuration with a finite energy.

The explicit forms of the shape functions of the scalar and gauge field can be found
numerically. It turns out that the functions H (§) and K (£) approach rather fast the asymptotic
values. Thus, there is almost vacuum outside of some region of the order of the characteristic
scale R, which is called the core of the monopole. One could estimate this size by simple
arguments [7]. The total energy of the monopole configuration consists of two components:
the energy of the Abelian magnetic field outside the core and the energy of the scalar field
inside the core:

E = Euag + Es ~ 4n1g> R 4 410° R, ~ i_g (R;'+mlR.).
This sum is minimal if R, ~ m; 1 In other words, inside the core at distances shorter
than the wavelength of the vector boson m, ! ~ (ve)~1, the original SU(2) symmetry is
restored. However, outside the core this symmetry is spontaneously broken down to the
Abelian electromagnetic subgroup.
Note that the solution given by the 't Hooft-Polyakov ansatz (12) corresponds to the
condition A§ = 0. One could consider a more general case, where this time component of
the vector potential is not equal to zero, but is also a function of the spatial coordinates [8]:

rCL

Az =25, (16)

er?

This field configuration corresponds to the non-Abelian dyon, which has both magnetic and
electric charges. The electric charge of the system of the fields can be defined as

1 1 1
g=— /dSn E,=- /dSn Et¢* =~ /d%EgDngzﬂ. (17)
v v v

Here, we invoked the field equations, according to which D, E? = 0, and made use of the
relation eabcqﬁbDogbc = 0, which is valid for the ansatz under consideration. The asymptotic
behavior of the profile function J(r) is very similar to that of the scalar field:

J(r)—0 as r—0, J(r)—Cr as r— oo. (18)

The arbitrary constant C' is connected with the electric charge of the dyon (17) [8]. The
charge vanishes if C' = 0.
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Indeed, substituting the ansatz (12) into the integral (17), after some algebra we obtain

q= anC =Cy. (19)
e
However, on the classical level there is no reason for the electric charge (17), unlike the
magnetic charge, to be quantized and the constant C' in (19) remains an arbitrary parameter.
Finally, we note that the time component of the vector-potential (16) is in isospace parallel
to the direction of the Higgs field. Moreover, one can consider it as an additional triplet of
the scalar fields. This is the so-called Julia—Zee correspondence ¢* = A§.

THE BOGOMOL’NYI LIMIT

Unfortunately, the system of nonlinear coupled differential equations on the functions
H (&) and K (£) in general has no analytical solution. The only known exception is the very
special case of vanishing scalar potential V' = 0 [9-11]. This is the so-called Bogomol nyi—
Prasad—Sommerfield (BPS) limit.

In the BPS limit of vanishing Higgs potential the scalar field also becomes massless and
the energy of the static field configuration is taking the form

L 1
E= / {ZTY ((Eiijij + Dkqﬁ)?) T 5sijkTr (FijDk¢)} Br 20)

Thus, the absolute minimum of the energy corresponds to the static configurations which
satisfy the first-order Bogomol’nyi equations:

eijiliy = £Dyo, (2D
which are solved by
K= ,6 , H=¢&cothé —1. (22)
sinh £

Definitely, the solution to the first-order BPS equation (21) automatically satisfies the system
of field equations of the second order.

BPS monopoles are very remarkable objects. Let us briefly recapitulate the properties of
these solutions:

e The BPS equation, together with the Bianchi identity, means that D,,D,¢* = 0. There-
fore, the condition D, ¢*D,¢* = (1/2)0,,0,(¢*¢*) holds and the energy of the monopole
configuration in the BPS limit is independent of the properties of the gauge field:

_ 47

E = %/d?’xan On(¢%9") = — = gu. (23)

e

If the configuration has both electric and magnetic charges, the monopole mass becomes

M =vy/g%+¢% (24)

This yields the so-called Bogomol’nyi bound on the monopole mass.
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e In comparison with the 't Hooft—Polyakov solution, the behavior of the Higgs field of
the monopole in the BPS limit has changed drastically: as we can see from (22), alongside
with the exponentially decaying component it also obtains a long-distance Coulomb tail

a
¢a—>vf“—r—2 as 1 — 00. (25)
er
The reason for this is that in the limit V' (¢) = 0, the scalar field becomes massless.

e The long-range monopole—monopole interaction is composed of two parts originating
from the long-range scalar force and the standard electromagnetic interaction, which could
be either attractive or repulsive [12]. Mutual compensation of both contributions leaves the
pair of BPS monopoles static but the monopole and antimonopole would interact with double
strength.

e The Bogomol'nyi equation may be treated as a three-dimensional reduction of the
integrable self-duality equations. Indeed, the Julia—Zee correspondence means that

D" = D, A% = F¢.,,
~ (26)
B = D,¢" = Fy, = Fg.,.

n

Therefore, if we suppose that all the fields are static, the Euclidean equations of self-duality
Fj, = F};, reduce to Eqgs.(21) and the monopole solutions in the Bogomol’nyi limit could
be considered as a special class of self-dual fields.

e The analogy between the Euclidean Yang—Mills theory and the BPS equations can be
traced up to the solutions. It was shown [13, 14] that the solutions of these equations are
exactly equal to an infinite chain of instantons directed along the Euclidean time axis ¢ in
d = 4. More precisely, the BPS monopole is equivalent to an infinite chain of instantons
having identical orientation in isospace and separated by an interval 7o = 27. An alternative
configuration is a chain of correlated instanton—antiinstanton pairs, which corresponds to an
infinite monopole loop.

GAUGE ZERO MODE AND THE ELECTRIC DYON CHARGE

In the BPS limit the Julia—Zee dyonic solutions have a very interesting interpretation [15,
16]. First, we note that for the static ansatz (12), (16) and the choice Ay = 0, the kinetic
energy of the configuration

T = / d*x Tr (E, E,, + Do Do) 27
is equal to zero. Moreover, in this case the Gauss law

DyE, — ic ¢, Dod] = 0 (28)

can be satisfied trivially, with E,, = Dy¢ = 0.
Let us now consider time-dependent fields A, (r,t), ¢*(r,t), but suppose that their time
dependence arises as a result of a gauge transformation of the original static configuration:

An(r,t) = U(r, ) An (v, 0)U " (x, 1) — é U (e, 00,0 (x, 1) . (29)
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Here, U(r,t) = e*“! with w(r) a parameter of the transformation. If the time interval §t is
very small, we can expand

U(r,dt) = 1+ iewdt + ... (30)
Now it follows from (29) that
Ap(r,0t) = A, (r) + (iefw, Ay (r)] — Opw) dt, (31)
and we have
0o A, =iefw, Ap(r)] — Opw = —Dpw. (32)

In a similar way we obtain for the time dependence of the scalar field:

¢ = ie[w, ¢ (33)

These gauge transformations simultaneously affect the time component of the gauge po-
tential, which for the monopole configurations (12), (16) is a pure gauge:

Ap(r,t) = —é U(r,t) 0U  (r,t) = —w. (34)

Since the gauge transformations (32) and (33) do not change the potential energy of the
configuration, the parameter w can be identified with the gauge zero mode. This is one of four
collective coordinates (they are also called moduli) of the one-monopole configuration [16].
The other three specify the position of the monopole in space. Their appearance reflects an
obvious breaking of translational invariance of the original Lagrangian (1) by the monopole
configuration: the position of the monopole in R? can be chosen arbitrarily.

However, defined in this way, the gauge zero mode is not physical, since the gauge
transformations (32) and (33) do not affect the non-Abelian electric field:

Eg = 80An — DnAO = —an + an = 07

35
Do = 0o + ie[Ag, ¢] = ie [w, @] — ie|w, ¢] = 0. 3
Thus, as before, the Gauss law is satisfied trivially and the kinetic energy of the monopole (27)
is still equal to zero.
Now let us suppose that the time dependence of the fields again appears as a result of the
gauge transformations (32) and (33), but that the corresponding gauge zero mode (9pA,,, Jo@)
satisfies the background gauge condition:

Then the Gauss law (28) is satisfied, if Ag = 0 and there is a nontrivial solution of
Eqgs. (32), (33) and (36) [15], where w is proportional to ¢ and an additional time depen-
dence is allowed:

w="T(t)¢,

which corresponds to the gauge transformation

Ulr,t) = exp {ieX(t)o(r)} = 1+ ieT¢dt. (37)
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Here Y(t) is an arbitrary function of time. Indeed, in this case we have JyA, = Tanﬁ
and Op¢ = 0, and, since in the Bogomol’nyi limit D, D,¢ = 0, the background gauge
condition (36) is satisfied by the ansatz (37). However, this solution corresponds to the
generation of a non-Abelian electric field

E, = &A, = Y(t)Dn¢ = T(t)B,, D¢ =0, (38)

so the kinetic energy of the monopole (27) is no longer zero:
1. 1. . 1. .
T = §T2/d3an¢“Dn¢“ = §T2/d3xB${B${ = 2mugY? = §MT2, (39)

where we make use of the definition of the magnetic charge and take into account that the

mass of the BPS monopole is
4o

M=—.
e

Since the potential energy of the configuration is time-independent, the gauge transfor-
mations (32) and (33), supplemented with the condition Ay = 0, define a physical collective
coordinate Y'(t), that is a gauge zero mode. Its excitation corresponds to the generation of an
electric charge @ = Tg. Thus, such a gauge-induced time dependence of the fields transforms
the monopole into a dyon.

Note that this collective coordinate is an angular variable, which is defined on a circle S L
Indeed, the points ¥ = 27n, n € Z correspond to the same gauge transformation U(r,t),
which is unity on the spatial asymptotic [15]. However, the points T = 0 and, for example,
T = 27, correspond to different topological classes.

To sum up, the one-monopole configuration in the BPS limit could be characterized by
four zero modes (moduli) that form the so-called moduli space M. It is clear from the above
discussion that M; = R3 x S

Note that we can come back to the Julia—Zee description of a dyon configuration just by
inverting the above discussion: we could start from a system of time-dependent fields and
apply the gauge transformations (32) and (33) to compensate for that dependence. The price
we would have to pay would be the appearance of a nonzero time component of the gauge
potential Ag. This corresponds to the static ansatz (16).

CLASSICAL INTERACTION OF TWO WIDELY SEPARATED DYONS

Now we consider the mechanism of interaction between two widely separated monopoles.
If they are close enough to each other, the cores overlap and we have quite a complicated
picture of short-range interactions mediated by the gauge and scalar fields. However, if we
consider well-separated monopoles, there is some simplification. We may suppose that the
monopole core has a radius that is much smaller than the distance between the monopoles.
Moreover, outside of this core the covariant derivatives of the scalar field vanish and thus the
gauge fields obey the free Yang—Mills equations. This approximation is a standard assumption
in the analysis of monopole interactions.

The result of both analytical and variational calculations confirm a rather surprising con-
clusion, first observed by Manton [12]: there is no interaction between two BPS monopoles
at all, but the monopole—antimonopole pair attracts each other with double strength.
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The reason for this unusual behavior is that the normal magnetostatic repulsion of the two
monopoles is balanced by the long-range scalar interaction: in the BPS limit the quanta of
the scalar field are also massless.

Indeed, we have already noted that there is a crucial difference between the asymptotic
behavior of the Higgs field in the non-BPS and the BPS cases: there is a long-range tail of
the BPS monopole ¢* — vi® — r%/er? as r — oo. The result is that, in a system of two
widely separated monopoles, the asymptotic value of the Higgs field in the region outside
the core of the first monopole is distorted due to the long-range scalar field of the other
monopole: the mass of the first monopole will decrease and the size of its core is increased.
In other words, the additional long-range force appears as a result of violation of the original
scale invariance of the model in the BPS limit A — 0. The scalar charge of a dyon is
just @p = /g% + ¢? [17] and the corresponding Coulomb scalar potential of interaction is
~ —+/g% 4 ¢?/r (recall that the scalar interaction is always attractive). Then the relative
motion of two well-separated BPS dyons is a geodesic motion in the four-dimensional space
of collective coordinates M with one compact variable (moduli space). This dynamics is
governed by the Taub—-NUT (Newman—Unti-Tamburino) metric

2
29 (2°/M)
2= (1 2y T +a-dr)’ 4
ds ( Mr) dr =242/ 0Mr (d a-dr) (40)

A general description of the low-energy dynamics of BPS monopoles on the moduli space is
given by the Atiyah—Hitchin metric, whose asymptotic form is the Taub—NUT metric [18].

Let us stop our discussion at this point. Recent developments in the understanding of
the low-energy dynamics of the supersymmetric monopoles, which basically used the same
simple picture of geodesic motion on the underlying moduli space, have greatly improved
our understanding of the structure of the vacuum of supersymmetric theories. The restricted
volume of our review does not allow us to go into detail of many remarkable works. Because
of lack of time we also do not discuss here the powerful Nahm formalism, which allows us
to obtain many results in a very simple and elegant way. In this rapidly developing situation,
we direct the reader to the original works and reviews.
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