
�¨¸Ó³  ¢ �—�Ÿ. 2011. ’. 8, º7(170). ‘. 1288Ä1297

”ˆ‡ˆŠ� �‹…Œ…�’���›• —�‘’ˆ– ˆ �’�Œ��ƒ� Ÿ„��. ’…��ˆŸ

ON FERMIONIC TILDE-CONJUGATION RULES
AND THERMAL BOSONIZATION.
HOT AND COLD THERMOFIELDS

S. E. Korenblit1, V. V. Semenov
Department of Theoretical Physics, Irkutsk State University, Irkutsk, Russia

A generalization of Ojima tilde-conjugation rules is suggested, which is useful for the thermoˇeld
bosonization. The notion of hot and cold thermoˇelds is introduced to distinguish different thermoˇeld
representattions giving the correct normal form of thermoˇeld solution for the ˇnite-temperature Thirring
model with correct renormalization and anticommutation properties.
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1. THERMODYNAMICS OF IDEAL 1-DIMENSION GASES

From the standard course [1] it is known that equilibrium thermodynamics of the free
massless bosons in the 1-dimension box L coincides with that of the free massless spin-1/2
fermions at the same temperature kBT = 1/ς only for both zero chemical potentials μ(B),(F ) =
0 [2], giving a simplest example of thermal bosonization for pressure P , internal energy U
and entropy S:

P(B),(F ) =
U(B),(F )

L
=

π2

3ς2hc
,

S(B),(F )

kBL
=

2π2

3ςhc
, (1)

however, for n(B),(F ) =
N(B),(F )

L
, h = 2π�, c Å speed of light: (2)

μ(B) =
1
ς

ln
(
1 − e−n(B)ςhc/2

)
, μ(F ) =

1
ς

ln
(
en(F )ςhc/4 − 1

)
. (3)

Thus, ®equilibrium¯ here means also that both systems for the same ς, L have the same P ,U , S
and other thermodynamic potentials. The condition μ(B) = 0 for arbitrary temperature implies
an inˇnite boson density, n(B) �→ ∞, corresponding to speciˇc case of thermodynamic limit
N(B) → ∞, L → ∞ for bosonic ®picture¯. The ®equilibrium¯ fermion pressure (1) actually
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is a sum of partial ones for left fermions and right antifermions with opposite values of
chemical potentials μ± = ±μ(F ) [11]:

P(F ) = P+ + P− =
π2

3ς2hc
+

μ2
(F )

hc
, and for N+

(F ) + N−
(F ) = N(F ), (4)

the ®equilibrium¯ for Gibbs potentials reads as

N+
(F )μ

+ + N−
(F )μ

− =
(
N+

(F ) − N−
(F )

)
μ(F ) = N(B)μ(B) =⇒ 0, (5)

which takes place for μ(F ) �= 0, only if N+
(F ) = N−

(F ). (6)

Nevertheless, μ(F ) �→ 0 for n(F ) = 4 ln 2/(ςhc). We want to point out that for nonzero
temperature the usual infrared regularization parameter L acquires physical meaning as ther-
modynamical parameter of the box size, so corresponding dependence requires additional care.

2. ON FERMIONIC TILDE-CONJUGATION RULES

Following Ojima [10], let us start with simplest fermionic oscillator, which has only two
normalized states |0〉, |1〉, with energy 0 and ω, annihilated or created by fermionic operators
b, b†: b|0〉 = 0, and |1〉 = b†|0〉, {b, b†} = 1, {b, b} = 0. The temperature vacuum appears
as a normalized sum of tensor products of two independent copies of these states |00̃〉, |11̃〉,
weighted with corresponding Gibbs and relative phase exponential factors [10], so that for
{b, b̃#} = 0 (̃b# = b̃, b̃†):

|0(ς)〉(F ) =
|00̃〉 + eiΦe−ςω/2|11̃〉[

〈00̃|00̃〉 + e−ςω〈11̃|11̃〉
]1/2

≡ cosϑ
(
1 + eiΦ tanϑ b†b̃†

)
|00̃〉 = V−1

ϑ(F )|00̃〉,

(7)
where

tan2 ϑ(k1, ς) = e−ςω, ω = ω(k1), (8)

V−1
ϑ(F ) = exp

{
eiΦ tan ϑ G+

}
exp

{
− ln(cos2 ϑ)G3

}
exp

{
−e−iΦ tanϑ G−

}
, (9)

G+ = b†b̃†, G− = b̃b = (G+)† , G3 =
1
2

(
b†b + b̃†b̃ − 1

)
, (10)

[G+, G−] = 2G3, [G3, G±] = ±G±, (11)

thus,
V−1

ϑ(F ) = exp
{
ϑ

[
eiΦG+ − e−iΦG−

]}
= V−ϑ(F ) (12)

is a standard form of operator of the coherent state for group SU(2) [3]. This observation
allows one to identify the algebra (12) as ®quasi-spin¯ algebra [4], with the cold vacuum |00̃〉
as its lowest state for representation with ®quasi-spin¯ 1/2, and the state |11̃〉 as the highest
one:

|00̃〉 =
∣∣∣∣12 ,−1

2

〉
, |11̃〉 =

∣∣∣∣12 ,
1
2

〉
, (13)

G3

∣∣∣∣12 ,±1
2

〉
= ±1

2

∣∣∣∣12 ,
1
2

〉
, G±

∣∣∣∣12 ,±1
2

〉
= 0. (14)
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The unique appearing arbitrary relative phase Φ re	ects now the fact that the quantum state
is not a vector, rather a ray. Thus, the thermal vacuum (7), as a coherent state, is annihilated
by operator G−, as well as by operators:

b(ς) = V−1
ϑ(F ) bVϑ(F ) = b cosϑ − b̃†eiΦ sin ϑ,

(15)
b
∼
(ς) = V−1

ϑ(F ) b̃Vϑ(F ) = b̃ cosϑ + b†eiΦ sin ϑ.

Up to now the b̃# is only notation that does not deˇne any operation. To ˇx it as an
operation: b

∼
(ς) �→ b̃(ς), one should choose the value of Φ. The popular choice Φ = 0 leads to

complicated tilde-conjugation rules for the fermionic case, different from the bosonic one [9].
The Ojima choice Φ = −π/2 gives the same rules for both bosonic and fermionic cases [10].
We see now that the choice Φ = π/2 is also good and, as well as the original Ojima's

one, satisˇes the properties of antilinear homomorphism and the condition
˜̃
b(ς) = b(ς). It

seems very convenient for the purposes of bosonization that the tilde operation has the same
properties for both Fermi and Bose cases. As a byproduct, we observe a useful interpretation of
the thermal vacuum, deˇned by Bogolubov transformation (7), as a coherent state, obtained by
coherent SU(2) rotation of vacuum states for all Fermi oscillators as a lowest quasi-spin states,
around the unit vector u = (sin Φ, cosΦ, 0), on the angle −2ϑ: V−1

ϑ(F ) = exp [i2ϑ (u ·G)] [3].
Analogous picture may be obtained for bosonic temperature Bogolubov transformation

Vϑ(B) leading to connection between the bosonic thermal vacuum and coherent state for the
discrete series representation of group SU(1, 1) [3]. However, for this case the numerator
in (7) contains a countable number of terms with countable number of arbitrary phases
Φn [10]. The coherent state of the type (9), (12) would be obtained only for countable
number of coherent choices: Φn �→ nΦ, n = 0, 1, 2, . . . We did not ˇnd a reason to prefer
this choice instead of the usual one Φn = 0 [9, 10].

3. HOT AND COLD THERMOFIELDS

So, at ˇnite temperature, in the framework of thermoˇeld dynamics [9] it is necessary
to double the number of degrees of freedom by providing all the ˇelds Ψ with their tilde
partners Ψ̃. According to [9], the resulting theory will be determined by the Hamiltonian
Ĥ[Ψ, Ψ̃] = H [Ψ] − H̃ [Ψ̃], where H̃[Ψ̃] = H∗[Ψ̃∗], with H [Ψ] = H0[Ψ](x0) + HI[Ψ](x0), so

that for Thirring model [7] H̃I[˜Ψ] = HI[˜Ψ] and H̃0[˜Ψ] = −H0[˜Ψ]. Though the substitution

like (15), for the free massless Dirac thermoˇelds, χ(x) �→ χ(x, ς), also does not change [9]
the form of the free operator: Ĥ0[χ, χ̃] = H0[χ]−H̃0[χ̃], these free ˇelds, generally speaking,
are not now the physical ˇelds of this QFT model [5, 11], and, as is well known [5,9], each
term H [Ψ] in Ĥ [Ψ, Ψ̃] must be equivalent in a weak sense to the free Hamiltonian of massless
(pseudo) scalar ˇelds (φ(x)), ϕ(x), at least at T = 0.

For any functional F [Ψ] of Heisenberg ˇelds (HF) in the given representation of physical
ˇelds ψ(x), Å dynamical mapping (DM), Ψ(x) = Υ[ψ(x)] [9] for the zero temperature, to
be interesting in the matrix elements for the thermal vacuum of the type

〈0(ς)|F [Ψ(x)]|0(ς)〉 = 〈00̃|VϑF [Ψ(x)]V−1
ϑ |00̃〉 = 〈00̃|F

[
VϑΨ(x)V−1

ϑ

]
|00̃〉, (16)
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we come to formal mapping:

VϑΨ(x)V−1
ϑ = Ψ(x, ς) = Υ

[
Vϑψ(x)V−1

ϑ

]
= Υ [ψ(x, [−]ς)] (17)

onto the ®cold¯ physical thermoˇeld:

ψ(x, [−]ς) = Vϑψ(x)V−1
ϑ , (18)

essentially with the same coefˇcient functions as for the initial DM Ψ(x) = Υ[ψ(x)], contrary
to [9, 10], thus transferring so all the temperature dependence from the state (7) onto these
®cold¯ physical thermoˇelds. However, to compute the matrix element (16), it is necessary
to substitute into the r.h.s. of (16), (17) the cold physical thermoˇelds (18) again in terms
of the initial physical ˇelds ψ(x) via obtained from (18) their linear combinations, analogous
(but not the same!) to Eqs. (15), and reordering again the so obtained operator with respect
to the initial physical ˇelds ψ(x). The same operations also convert the formal mapping (17)
into temperature-dependent DM over the cold vacuum |00̃〉, and precisely in such sense we
call further the r.h.s. of (17) again as DM.

On the contrary, the standard computation way [9, 10] implies the substitution into the
l.h.s. of (16) of the inverse to (15) linear expressions of physical ˇelds ψ(x) in terms of
the ®hot¯ physical thermoˇelds, ψ(x, [+]ς) = V−1

ϑ ψ(x)Vϑ, given by (15), and reordering the
so obtained operator with respect to this hot physical thermoˇeld over the thermal (®hot¯)
vacuum (7), (8). Of course, such operations give DM for the initial HF Ψ(x) over this thermal
vacuum. To avoid some ambiguities [12Ä14], one should carefully distinguish the hot and
cold physical thermoˇelds ψ(x, [±]ς).

The kinematical independence of tilde-conjugate ˇelds Ψ̃ means{
Ψξ(x), Ψ̃#

ξ′ (y)
}∣∣∣

x0=y0
= 0,

{
Ψξ(x), Ψ̃#

ξ′(y)
}∣∣∣

(x−y)2<0
= 0 (19)

and corresponds to the above independence of their Hamiltonians and their HEqs. This allows
one to consider a solution only for one of them. Since the thermal transformations Vϑ(F ),
Vϑ(B) do not depend on coordinates and time, they can be applied directly to zero temperature
HEq of Thirring model [8], resulting1 in the same HEqs for the new HF (17):

i∂0Ψ(x, ς) =
[
Ψ(x, ς), Ĥ [Ψ, Ψ̃]

]
=

[
E(P 1) + gγ0γνJν

(Ψ)(x, ς)
]
Ψ(x, ς), (20)

or
2∂ξΨξ(x, ς) = −igJ−ξ

(Ψ)(x, ς)Ψξ(x, ς), ξ = ± (21)

for each ξ-component of the ˇeld that are also related to the corresponding current compo-
nents as

Jξ
(Ψ)(x, ς) = J0

(Ψ)(x, ς) + ξJ1
(Ψ)(x; ς) �−→ 2Ψ†

ξ(x, ς)Ψξ(x, ς), ξ = ±. (22)

1Here: xμ =
(
x0, x1

)
; x0 = t; � = c = 1; ∂μ = (∂0, ∂1); for gμν : g00 = −g11 = 1; for εμν :

ε01 = −ε10 = 1; Ψ(x) = Ψ†(x)γ0; γ0 = σ1, γ1 = −iσ2, γ5 = γ0γ1 = σ3, γμγ5 = −εμνγν , where σi Å
Pauli matrices, and I Å unit matrix; xξ = x0 + ξx1, 2∂ξ = 2∂/∂xξ = ∂0 + ξ∂1, P 1 = −i∂1, E(P 1) = γ5P 1;
summation over ξ is nowhere implied.
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Thus, to integrate these HEqs, we can consequently repeat all the steps of our previous
works [8] with the same linearization, renormalization and bosonization conditions (here w
means week equality):

γ0γνJν
(Ψ)(x, ς) w�−→ β

2
√

π
γ0γν Ĵν

(χ)(x, ς), (23)

Ĵν
(χ)(x, ς) = lim

ε,(ε̃)→0
Ĵν

(χ) (x; ε(ε̃), ς) ≡ : Jν
(χ)(x, ς) : , (24)

that for the same subsequently renormalized (normal ordered) current

J0
(Ψ)(x, ς) �−→ lim

ε̃→0
Ĵ0

(Ψ)(x; ε̃, ς) = Ĵ0
(Ψ)(x, ς), (25)

J1
(Ψ)(x, ς) �−→ lim

ε→0
Ĵ1

(Ψ)(x; ε, ς) = Ĵ1
(Ψ)(x, ς), (26)

where at ˇrst ε̃0 = ε1 → 0, when ε̃1 = ε0, ε2 = −ε̃2 > 0, for (27)

Ĵν
(Ψ)(x; a, ς) = Z−1

(Ψ)(a)
[
Ψ(x + a, ς)γνΨ(x, ς) − 〈0|Ψ(x + a, ς)γνΨ(x, ς)|0〉

]
, (28)

leads again to the linearization of both equations (20) and (21) in the representation of these
free ˇelds χ(x, ς) with the same free bosonization rules:

Ĵμ
(χ)(x, ς) =

1√
π

∂μϕ(x, ς) = − 1√
π

εμν∂νφ(x, ς), (29)

Ĵ−ξ
(χ)(x, ς) =

2√
π

∂ξϕ
ξ
(
xξ, ς

)
. (30)

The thermoˇelds ϕ(x, ς) and φ(x, ς) are deˇned in (40) below as unitarily inequivalent
representations of the massless scalar and pseudoscalar KleinÄGordon ˇelds: ∂μ∂μϕ(x, ς) =
0, and ∂μ∂μφ(x, ς) = 0, and are taking again mutually dual and coupled by the symmetric
integral relations:

φ(x, ς)
ϕ(x, ς)

}
= −1

2

∞∫
−∞

dy1ε
(
x1 − y1

)
∂0

{
ϕ

(
y1, x0, ς

)
,

φ
(
y1, x0, ς

)
,

(31)

with corresponding charges

O(ς)
O5(ς)

}
= lim

L→∞

∞∫
−∞

dy1Δ
(

y1

L

)
∂0

{
ϕ

(
y1, x0, ς

)
φ

(
y1, x0, ς

) }
=⇒
Δ=1

(32)

=⇒
Δ=1

{
φ(−∞, x0, ς) − φ(∞, x0, ς)
ϕ(−∞, x0, ς) − ϕ(∞, x0, ς). (33)

Right and left ˇelds ϕξ
(
xξ, ς

)
and their charges Qξ(ς) are deˇned again by linear combina-

tions [5]:

ϕξ
(
xξ, ς

)
=

1
2

[ϕ(x, ς) − ξφ(x, ς)] for ξ = ±, (34)

Qξ(ς) =
1
2

[O(ς) − ξO5(ς)] = ±2ϕξ
(
x0 ±∞, ς

)
. (35)
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The ˇelds ϕ(x, ς), φ(x, ς), ϕξ(xξ, ς) and their charges obey the commutation relations that
do not depend on temperature, for example:

[ϕ(x, ς), ∂0ϕ(y, ς)]
∣∣
x0=y0 = [φ(x, ς), ∂0φ(y, ς)]

∣∣
x0=y0 = iδ(x1 − y1), (36)

[ϕ(x, ς), ϕ(y, ς)] = [φ(x, ς), φ(y, ς)] = −i
ε(x0 − y0)

2
θ
(
(x − y)2

)
, (37)[

ϕξ (s, ς) , ϕξ′
(τ, ς)

]
= − i

4
ε(s − τ)δξ,ξ′ ,

[
ϕξ(s, ς),Qξ′

(ς)
]

=
i

2
δξ,ξ′ . (38)

Moreover, the same commutation relations take place for their tilde partner, that remain
kinamatically independent also at ˇnite temperature. So, up to now we cannot distinguish the
hot and cold physical thermoˇelds.

The kinematic independence of the tilde partners is breaking and the difference between the
hot and cold physical thermoˇelds appears on going to the ®frequency¯ parts of corresponding
ˇelds ϕξ(±)

(
xξ, ς

)
and their charges Qξ(±)(ς). It manifests itself in the commutators of

annihilation (+) and creation (−) (frequency) parts, deˇned by annihilation and creation
operators over the initial cold vacuum |00̃〉 for the pseudoscalar ˇelds [8]: c(k1)|00̃〉 =
c̃(k1)|00̃〉 = 0, for both hot [+] and cold [−] thermoˇelds, in the form

|0(ς)〉 = V−1
ϑ(B)|00̃〉 ≡ V(B)[−ϑ]|00̃〉, tanh2 ϑ = e−ςk0

, ϑ = ϑ(k1; ς), (39)

ϕ(x; [±]ς) = V∓1
ϑ(B)ϕ(x)V±1

ϑ(B) =⇒ ϕ(+)(x; [±]ς) + ϕ(−)(x; [±]ς), (40)

and so on for all other ˇelds, with corresponding Fourier expansions and commutators, where
we put corresponding ± into respective braces, k0 = |k1|:

ϕξ(+)
(
xξ; [±]ς

)
= − ξ

2π

∞∫
−∞

dk1

2k0
θ
(
−ξk1

) [
cosh ϑc

(
k1

)
e−ik0xξ∓ (41)

∓ sinhϑc̃
(
k1

)
eik0xξ

]
, ϕξ(−)

(
xξ; [±]ς

)
=

{
ϕξ(+)

(
xξ; [±]ς

)}†
, (42)

ϕ̃ξ(+)
(
xξ; [±]ς

)
= − ξ

2π

∞∫
−∞

dk1

2k0
θ
(
−ξk1

) [
cosh ϑc̃

(
k1

)
eik0xξ∓ (43)

∓ sinhϑc
(
k1

)
e−ik0xξ

]
, ϕ̃ξ(−)

(
xξ; [±]ς

)
=

{
ϕ̃ξ(+)

(
xξ; [±]ς

)}†
, (44)

Qξ(+)([±]ς) = lim
L→∞

i
ξ

2

∞∫
−∞

dk1θ
(
−ξk1

) [
coshϑc

(
k1

)
e−ik0 x̂0± (45)

± sinhϑc̃
(
k1

)
eik0x̂0

]
δL

(
k1

)
, Qξ(−)([±]ς) =

{
Qξ(+)([±]ς)

}†
, (46)

Q̃ξ(+)([±]ς) = lim
L→∞

−i
ξ

2

∞∫
−∞

dk1θ
(
−ξk1

) [
coshϑc̃

(
k1

)
eik0x̂0± (47)

± sinhϑc
(
k1

)
e−ik0x̂0

]
δL

(
k1

)
, Q̃ξ(−)([±]ς) =

{
Q̃ξ(+)([±]ς)

}†
. (48)
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Here the x̂0-dependence of charge frequence parts is ˇctitious and unphysical. It is the artefact
of space regularization (32) and should be removed at the end of calculation.

Only for hot [+] thermoˇelds one has

〈0(ς)|ϕξ(s; [+]ς)ϕξ′
(τ ; [+]ς)|0(ς)〉 = 〈0|ϕξ(s), ϕξ′

(τ)|0〉 = (49)

=
[
ϕξ(+)(s), ϕξ′(−)(τ)

]
=

δξ,ξ′

i
D(−)(s − τ). (50)

But for both of them (here D(−)(s) = lim
ς→∞

D(−)(±s, ς; μ1))

〈00̃|ϕξ(s; [±]ς)ϕξ′
(τ ; [±]ς)|00̃〉 =

[
ϕξ(+)(s; [±]ς), ϕξ′(−)(τ ; [±]ς)

]
, (51)

[
ϕξ(±) (s; [±]ς) , ϕξ′(∓) (τ ; [±]ς)

]
= (±1)

δξ,ξ′

i
D(−)(±(s − τ), ς; μ1) =

= (∓1)
1
4π

δξ,ξ′

{
ln

(
iμ

ς

π
sinh

(
π

ς
(±(s − τ) − i0)

))
− g (ς, μ1)

}
, (52)[

ϕ̃ξ(±) (s; [±]ς) , ϕ̃ξ′(∓) (τ ; [±]ς)
]

= (±1)
δξ,ξ′

i
D̃(−)(±(s − τ), ς; μ1) =

= (∓1)
1
4π

δξ,ξ′

{
ln

(
iμ

ς

π
sinh

(
π

ς
(∓(s − τ) − i0)

))
− g (ς, μ1)

}
, (53)[

ϕξ(±) (s; [±]ς) , ϕ̃ξ′(∓) (τ ; [±]ς)
]

= (54)

= (±1)[±1]
1
4π

δξ,ξ′

{
ln

(
cosh

(
π

ς
(s − τ)

))
− f(ς, μ2)

}
, (55)

[
ϕξ(±)(s; [±]ς), Qξ′(∓)([±]ς)

]
=

i

4
δξ,ξ′ = −

[
ϕ̃ξ(±)(s; [±]ς), Q̃ξ′(∓)([±]ς)

]
, (56)[

ϕξ(±)(s; [±]ς), Q̃ξ′(∓)([±]ς)
]

= (±1)[±1]δξ,ξ′

(
x̂0 − s

2ς

)
, (57)[

Qξ(±)([±]ς), Qξ′(∓)([±]ς)
]

= (±1)a1δξ,ξ′ =
[
Q̃ξ(±)([±]ς), Q̃ξ′(∓)([±]ς)

]
, (58)[

Qξ(±)([±]ς), Q̃ξ′(∓)([±]ς)
]
=(±1)[∓1]a2δξ,ξ′ =

[
Q̃ξ(±)([±]ς), Qξ′(∓)([±]ς)

]
. (59)

Here the following quantities are deˇned:

g (ς, μ1) =

∞∫
μ1

dk1

k0

2
eςk0 − 1

=⇒ 2
ςμ1

− ln
(

2π

ςμ1

)
, μ1 = μ1eC� → 0, (60)

lim
ς→∞

g (ς, μ1) = 0, (61)

f(ς, μ2) =

∞∫
μ2

dk1

k0

1
sinh(ςk0/2)

=⇒ 2
ςμ2

− ln 2, μ2 → 0, (62)

lim
ς→∞

f(ς, μ2) = 0, (63)

δL

(
k1

)
=

∞∫
−∞

dx1

2π
Δ

(
x1

L

)
e±ik1x1

= LΔ
(
k1L

)
, lim

L→∞
δL

(
k1

)
= δ

(
k1

)
, (64)
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where

a0 = π

∞∫
0

dk1 k1
(
δL(k1)

)2
= π

∞∫
0

dt t(Δ(t))2 ≡ πIΔ
1 , IΔ

n ≡
∞∫
0

dt tn
(
Δ(t)

)2
, (65)

a1 = a0 + 2π

∞∫
0

dk1 k1

(
δL(k1)

)2

eςk0 − 1
= a0 + 2π

∞∫
0

dt t
(Δ(t))2

eςt/L − 1
=⇒ (66)

=⇒ 2πIΔ
0

L

ς
+

π

6
IΔ
2

ς

L
+ O

(( ς

L

)3
)

, L → ∞, (67)

a2 = π

∞∫
0

dk1 k1

(
δL(k1)

)2

sinh(ςk0/2)
= π

∞∫
0

dt t
(Δ(t))2

sinh (tς/2L)
=⇒ (68)

=⇒ 2πIΔ
0

L

ς
+

(π

6
− π

4

)
IΔ
2

ς

L
+ O

(( ς

L

)3
)

, L → ∞, (69)

where C� is the EulerÄMascheroni constant. The value of commutator (57) has no physical
meaning and below is chosen to be equal to 0.

Following [5], by the use of the ˇelds given above, one can construct a variety of different
inequivalent representations of solutions of the Dirac equation for a free massless trial ˇeld at
ˇnite temperature, ∂ξχξ

(
x−ξ, ς

)
= 0 in the form of local normal-ordered exponentials of the

left and right bosonic thermoˇelds ϕξ(xξ, ς) and their charges Qξ(ς) (34), (35). However,
the kinematic independence (19) of the tilde partners can be achieved only ®by mixing¯ in
the same ˇeld both the charges Qξ(ς) and Q̃ξ(ς). Let us choose the most simple of them,
which leads to the bosonization relations (30) for the currents (25)Ä(28) of trial ˇelds χ(x, ς)
with Z(χ)(a) = 1 (here � and Θ are arbitrary initial overal and relative phases):

χξ(x−ξ; [±]ς) = Nϕ

{
eRξ(x−ξ;[±]ς)

}
uξ (μ1, ς) , (70)

Rξ(x−ξ; [±]ς) = −i2
√

π

[
ϕ−ξ

(
x−ξ; [±]ς

)
+

1
4
σξ

1Qξ([±]ς)+

+
1
4
σξ

2Q̃ξ([±]ς) +
1
4
σξ

3Q̃−ξ([±]ς)
]

, (71)

uξ (μ1, ς) =
( μ

2π

)1/2

exp
[
−1

2
g (ς, μ1)

]
exp

(
−π

8
a1

)
exp

(
i� − iξ

Θ
2

)
. (72)

Thus, following [8], we obtain the normal exponent of the DM for Thirring ˇeld in the form
analogous to [5] (Λ is ultraviolet cut-off):

Ψξ(x; [±]ς) = Nϕ

{
eΞξ(x;[±]ς)

}
wξ (μ1, ς) , (73)

Ξξ(x; [±]ς) = −i
[
αϕ−ξ

(
x−ξ; [±]ς

)
+ βϕξ

(
xξ; [±]ς

)
+

+
1
4
ασξ

1Qξ([±]ς) − 1
4
βσξ

1Q−ξ([±]ς) +
1
4
Σξ

2Q̃ξ([±]ς) +
1
4
Σξ

3Q̃−ξ([±]ς)
]

, (74)
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wξ (μ1, ς) =
( μ

2π

)1/2 (μ

Λ

) 1
4π β

2

exp
[
−g (ς, μ1)

(
1
2

+
1
4π

β
2
)]

×

× exp
[
−π

4
a1

(
1
2

+
1
4π

β
2
)]

exp
(

i� − iξ
Θ
2

)
, (75)

(76)

where
Σξ

2 = ασξ
2 − βσξ

3 , Σξ
3 = ασξ

3 − βσξ
2 , (77)

by imposing again the conditions on the parameters that are necessary to have correct Lorentz-
transformation properties corresponding to the spin 1/2, and correct canonical anticommuta-
tion relations, respectively [8]:

α2 − β
2

= 4π, β − βg

2π
= 0. (78)

The following conditions provide all the anticommutation relations for both the free and
Thirring ˇelds and their tilde partners:

σξ
1 = [±] (1 + 2n) + ξ, σξ

2 = (1 + 2n) + [±]ξ, σξ
3 = ξ� (79)

for ξ = ±, n Å integer, and � = ±1. Contrary to [12], the so obtained ˇelds possess the
correct symmetry properties [9, 10] under the ®tilde¯-operation and correct anticommutation
relations, including (19).

Straightforward calculation of the vector current operators (25)Ä(28) for the solution (73)

with Z(Ψ)(a) = (−μ2a2)−β
2
/4π by means of Eqs. (38)Ä(59) and (78), under the conditions [8]

α =
(

2π

β
+

β

2

)
, β =

(
2π

β
− β

2

)
, or

2
√

π

β
=

√
1 +

g

π
, (80)

reproduces the bosonization relations (23)Ä(30), demonstrating self-consistency of all the
above calculations. The obtained normal form of Thirring thermoˇelds has a correct renor-
malization properties:{

Ψξ(x, ς), Ψ†
ξ′(y, ς)

}∣∣∣
x0=y0

= Ẑ(Ψ)δξ,ξ′δ
(
x1 − y1

)
, (81)

Ẑ(Ψ) =
[
−Λ2(x − y)2

]−β
2
/4π

∣∣∣
x0=y0

=
[
Λ2(x1 − y1)2

]−β
2
/4π → 1, (82)

for x1 − y1 � 1/Λ. It also satisˇes ®correspondence principle¯ at T → 0, (ς → ∞), because
the addition [±] (1 + 2n) in σξ

1 becomes irrelevant for this limit.

CONCLUSION

The main lesson of this work is very simple: the true HF should be a fully normal-ordered
operator in the sense of DM, including also all Klein factors. Only this form assures its correct
renormalization, commutation and symmetry properties.
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