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A strongly coupled quarkÄgluon plasma (QGP) of heavy constituent quasiparticles is studied by a
path-integral Monte Carlo method, which improves the corresponding classical simulations by extending
them to the quantum regime. It is shown that this method is able to reproduce the lattice equation of
state and also yields valuable insight into the internal structure of the QGP. The results indicate that
the QGP reveals liquid-like rather than gas-like properties. At temperatures just above the critical one it
was found that bound quarkÄantiquark states still survive. These states are bound by effective string-like
forces. Quantum effects turned out to be of prime importance in these simulations.

PACS: 12.38.Mh

INTRODUCTION

Investigation of properties of the quarkÄgluon plasma (QGP) is one of the main challenges
of strong-interaction physics, both theoretically and experimentally. Many features of this
matter were experimentally discovered at the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven. The most striking result, obtained from analysis of these experimental data [1],
is that the deconˇned quarkÄgluon matter behaves as an almost perfect �uid rather than a
perfect gas, as could be expected from the asymptotic freedom.

There are various approaches to studying QGP. Each approach has its advantages and
disadvantages. The most fundamental way to compute properties of the strongly interacting
matter is provided by the lattice QCD [2Ä4]. Interpretation of these very complicated com-
putations requires application of various QCD motivated, albeit schematic, models simulating
various aspects of the full theory. Moreover, such models are needed in cases when the
lattice QCD fails, e.g., at large baryon chemical potentials and out of equilibrium.

A semiclassical approximation, based on a point-like quasiparticle picture, has been in-
troduced in [5]. It is expected that the main features of non-Abelian plasmas can be under-
stood in simple semiclassical terms without the difˇculties inherent in a full quantum ˇeld
theoretical analysis. Independently the same ideas were implemented in terms of molecular
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dynamics (MD) [6]. Recently this MD approach was further developed in a series of works [7,
8]. The MD allowed one to treat soft processes in the QGP which are not accessible by
perturbative means.

A strongly correlated behavior of the QGP is expected to show up in long-ranged spatial
correlations of quarks and gluons which, in fact, may give rise to liquid-like and, possibly,
solid-like structures. This expectation is based on a very similar behavior observed in electro-
dynamic plasmas [7, 9]. This similarity was exploited to formulate a classical nonrelativistic
model of a color Coulomb-interacting QGP [7] which was numerically analyzed by classi-
cal MD simulations. Quantum effects were either neglected or included phenomenologically
via a short-range repulsive correction to the pair potential. Such a rough model may become
a critical issue at high densities. For temperatures and densities of the QGP considered in [7],
these effects are very important as the quasiparticle thermal wavelength is of order the average
interparticle distance.

In this contribution we extend previous classical nonrelativistic simulations [7] based on
a color Coulomb interaction to the quantum regime. We develop an approach based on path
integral Monte Carlo (PIMC) simulations of the strongly coupled QGP which self-consistently
takes into account the Fermi (Bose) statistics of quarks (gluons). Following an idea of
Kelbg [10], quantum corrections to the pair potential are rigorously derived [11]. This method
has been successfully applied to strongly coupled electrodynamic plasmas [12,13]. Examples
are partially ionized dense hydrogen plasmas, where liquid-like and crystalline behavior was
observed [14, 15]. Moreover, also partial ionization effects and pressure ionization could be
studied from ˇrst principles [16]. The same methods have also been applied to electronÄ
hole plasmas in semiconductors [17,18], including excitonic bound states, which have many
similarities to the QGP due to smaller mass differences as compared to electronÄion plasmas.

First results of applications of the PIMC method to the nonideal QGP have already been
brie�y reported in [19].

1. BASICS OF THE MODEL

Our model is based on a resummation technique and lattice simulations for dressed quarks,
antiquarks and gluons interacting via the color Coulomb potential. The assumptions of the
model are similar to those of [7]:

I. All color quasiparticles are heavy; i.e., their mass (m) is higher than the mean kinetic
energy per particle. For instance, at zero net-baryon density it amounts to m > T , where T is
a temperature. Therefore, these particles move nonrelativistically. This assumption is based
on the analysis of lattice data [20,21].

II. Since the particles are nonrelativistic, interparticle interaction is dominated by a color-
electric Coulomb potential, see Eq. (1). Magnetic effects are neglected as subleading ones.

III. Relying on the fact that the color representations are large, the color operators are
substituted by their average values, i.e., by classical color vectors, the time evolution of which
is described by Wong's dynamics [22].

The quality of these approximations and their limitations were discussed in [7]. Thus, this
model requires the following quantities as an input:

1) the quasiparticle mass, m, and
2) the coupling constant g2.
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All the input quantities should be deduced from the lattice data or from an appropriate
model simulating these data.

Thus, we consider a three-component QGP consisting of a number of dressed quarks (Nq),
antiquarks (Nq̄) and gluons (Ng) represented by quasiparticles. In thermal equilibrium the
average values of these numbers can be found in the grand canonical ensemble deˇned by
the temperature-dependent Hamiltonian, which can be written as Ĥ = K̂ + Û . The kinetic
and color Coulomb interaction energy of the quasiparticles are

K̂ =
∑

i

[
mi(T, μq) +

p̂2
i

2mi(T, μq)

]
, Û =

1
2

∑
i,j

g2(|ri − rj |, T, μq)〈Qi|Qj〉
4π|ri − rj |

. (1)

Here the Qi denotes Wong's color variable (8-vector in the SU(3) group), T is the temperature
and μq is the quark chemical potential. In fact, the quasiparticle mass and the coupling
constant, as deduced from the lattice data, are functions of T and, in general, μq . Moreover, g2

is a function of distance r, which produces a linearly rising potential at large r [23].

The thermodynamic properties in the grand canonical ensemble with given temperature T ,
chemical potential μq and ˇxed volume V are fully described by the grand partition function

Z (μq, β, V ) =
∑

Nq,Nq̄,Ng

exp (μq(Nq − Nq̄)/T )
Nq!Nq̄!Ng!

∑
σ

∫
V

dr dQ ρ(r, Q, σ; Nq, Nq̄, Ng; β), (2)

where ρ(r, Q, σ; Nq, Nq̄, Ng; β) denotes the diagonal matrix elements of the density operator
ρ̂ = exp (−βĤ), and β = 1/T . Here σ, r and Q denote the spin, spatial and color degrees of
freedom of all quarks, antiquarks and gluons in the ensemble, respectively. Correspondingly,
the σ summation and integration dr dQ run over all individual degrees of freedom of the
particles. Since the masses and the coupling constant depend on the temperature and chem-
ical potential, special care should be taken to preserve thermodynamical consistency of this
approach. In order to preserve the thermodynamical consistency, thermodynamic functions
such as pressure, P , entropy, S, baryon number, NB , and internal energy, E, should be
calculated through respective derivatives of the logarithm of the partition function:

P =
∂(T ln Z)

∂V
, S =

∂(T ln Z)
∂T

,

NB =
1
3

∂(T ln Z)
∂μq

, E = −PV + TS + 3μqNB.

(3)

This is a conventional way of maintaining the thermodynamical consistency in approaches of
the GinzburgÄLandau type as they are applied in high-energy physics.

The exact density matrix of interacting quantum systems can be constructed using a path

integral approach [24,25] based on the operator identity e−βĤ = e−ΔβĤ · e−ΔβĤ · · · e−ΔβĤ ,
where the r.h.s. contains n + 1 identical factors with Δβ = β/(n + 1), which allows us to
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rewrite1 the integral in Eq. (2):

∑
σ

∫
dr(0)dQ(0) ρ(q(0), Q(0), σ; Nq, Nq̄, Ng; β) =

=
∫

dr(0)dQ(0)dr(1)dQ(1) · · ·dr(n)dQ(n) ρ(1) · ρ(2) · · · ρ(n)×

×
∑

σ

∑
Pq

∑
Pq̄

∑
Pg

(−1)κPq +κPq̄ S(σ, P̂qP̂q̄P̂gσ
′) P̂qP̂q̄P̂gρ

(n+1)
∣∣
r(n+1)=r(0),σ′=σ

=

=
∫

dQ(0)dr(0)dr(1) · · · dr(n)ρ̃(r(0), r(1), . . . , r(n); Q(0); Nq, Nq̄, Ng; β). (4)

The spin gives rise to the spin part of the density matrix (S) with exchange effects ac-
counted for by the permutation operators P̂q , P̂q̄ and P̂g acting on the quark, antiquark and
gluon spatial r(n+1) and color Q(n+1) coordinates, as well as on the spin projections σ′.
The sum runs over all permutations with parity κPq and κPq̄ . In Eq. (4) the index l =
1, . . . , n+1 labels the off-diagonal density matrices ρ(l) ≡ ρ

(
r(l−1), Q(l−1); r(l), Q(l); Δβ

)
≈

〈r(l−1)|e−ΔβĤ |r(l)〉δε(Q(l−1) − Q(l)), where δε(Q(l−1) − Q(l)) is a delta function at ε → 0.
Accordingly, each a particle is represented by a set of n + 1 coordinates (®beads¯), i.e., by

(n + 1) 3-dimensional vectors {r(0)
a , . . . , r

(n)
a } and an 8-dimensional color vector Q(0) in the

SU(3) group, since all beads are characterized by the same color charge.
The main advantage of the decomposition (4) is that it allows us to use a semiclassical

approximation for density matrices ρ(l), which is applicable due to smallness of artiˇcially in-
troduced factor 1/(n+1). This parameter makes the thermal wavelength Δλa =

√
2πΔβ/ma

of a bead of type a (a = q, q, g), smaller than a characteristic scale of variation of the potential
energy. In the high-temperature limit ρl can be approximated by a product of two-particle
density matrices. Generalizing the electrodynamic plasma results [13] to the case of an
additional bosonic species (i.e., gluons), we write

ρ̃(r(0), r(1), . . . , r(n); Q(0); Nq, Nq̄, Ng; β) =

=
∑
s,k

Cs
Nq

2Nq

Ck
Nq̄

2Nq̄

exp {−βU(r, Q, β)}
λ

3Nq
q λ

3Nq̄

q̄ λ
3Ng
g

=

= per ||φ̃n,0||glue det ||φ̃n,0||s det ||φ̃n,0||k
n∏

l=1

N∏
p=1

φl
pp, (5)

where N = Nq + Nq̄ + Ng, s and k are numbers of quarks and antiquarks, respectively,
with the same spin projection, λa =

√
2πβ/ma is a thermal wavelength of an a particle,

Cs
Na

= Na!/[s!(Na−s)!], the antisymmetrization and symmetrization are taken into account by
the symbols ®det¯ and ®per¯ denoting the determinant and permanent, respectively. Functions

φl
pp ≡ exp

[
−π

∣∣∣ξ(l)
p

∣∣∣2
]

and matrix elements φ̃n,0
to = exp

(
−π

∣∣∣(r(0)
t −r

(0)
o )+y

(n)
t

∣∣∣2 /Δλ2
a

)
×

1For the sake of notation convenience, we ascribe superscript (0) to the original variables.
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×δε(Qt − Qo), where t and o are particle's indexes, are expressed in terms of distances

(y(1)
a , . . . , y

(n)
a ) and dimensionless distances (ξ(1)

a , . . . , ξ
(n)
a ) between neighboring beads of an

a particle, deˇned as r
(l)
a = r

(0)
a +y

(l)
a , l > 0, and y

(l)
a = Δλa

l∑
k=1

ξ
(k)
a . Notice that the ||φ̃n,0||

matrix consists of three nonzero blocks related to quarks, ||φ̃n,0||s, antiquarks, ||φ̃n,0||k, and
gluons, ||φ̃n,0||glue. The density matrix (5) has been transformed to a form which does not
contain an explicit sum over permutations. Let us stress that the determinants depend also on
the color variables.

In Eq. (5) the total color interaction energy

U(r, Q, β) =
1

2(n + 1)

∑
p�=t

n+1∑
l=1

Φpt(|r(l−1)
p − r

(l−1)
t |, |r(l)

p − r
(l)
t |, Qp, Qt) (6)

is deˇned in terms of off-diagonal two-particle effective quantum potential Φpt, which is
obtained by expanding the two-particle density matrix ρpt up to the ˇrst order in small
parameter 1/(n + 1):

ρpt(r, r′, Qp, Qt, Δβ) ≈ ρ0
pt(r, r

′, Qp, Qt, Δβ)−

−
1∫

0

dτ

∫
dr′′

Δβg2(|r′′|, T, μq)〈Qp|Qt〉
4π|r′′|Δλ2

pt

√
τ(1 − τ)

exp
(
− π|r′ − r′′|2

Δλ2
pt(1 − τ)

)
×

× exp
(
−π|r′′ − r|2

Δλ2
ptτ

)
≈ ρ0

pt exp [−ΔβΦpt(r, r′, Qp, Qt)], (7)

where r = rp − rt, r′ = r′p − r′t, Δλpt =
√

2πΔβ/mpt, mpt = mpmt/(mp + mt), and ρ0
pt

is the two-particle density matrix of the ideal gas. The result for the diagonal color Kelbg
potential can be written as

Φpt(r, r, Qp, Qt) ≈
g2(T, μq) 〈Qp|Qt〉

4πΔλptxpt

{
1 − e−x2

pt +
√

πxpt [1 − erf(xpt)]
}

, (8)

where xpt = |rp − rt|/Δλpt. Here the function g2(T, μq) = g2(r′′, T, μq), resulting from
averaging of the initial g2(r′′, T, μq) over relevant distances of order Δλpt, plays the role
of an effective coupling constant. Note that the color Kelbg potential approaches the color
Coulomb potential at distances larger than Δλpt. What is of prime importance, the color Kelbg
potential is ˇnite at zero distance, thus removing in a natural way the classical divergences and
making any artiˇcial cut-offs obsolete. This potential is straightforward generalizations of the
corresponding potentials of electrodynamic plasmas [26]. The off-diagonal elements of the
effective interaction are approximated by the diagonal one by means of Φpt(r, r′, Qp, Qt) ≈
[Φpt(r, r, Qp, Qt) + Φpt(r′, r′, Qp, Qt)]/2.

The described path-integral representation of the density matrix is exact in the limit
n → ∞. For any ˇnite number n, the error of the above approximations for the whole
product in the r.h.s. of Eq. (4) is of the order of 1/(n + 1), whereas the error of each ρl is of
the order of 1/(n + 1)2, as was shown in [13].

The main contribution to the partition function comes from conˇgurations in which the
®size¯ of the cloud of beads of quasiparticles is of the order of their thermal wavelength λa,
whereas characteristic distances between beads of each quasiparticle are of the order of Δλa.
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2. TESTING THE METHOD WITHIN THE CANONICAL ENSEMBLE

To test the developed approach, we consider the QGP only at zero baryon density and
further simplify the model by additional approximations, similarly to [7]:

IV. We replace the grand canonical ensemble by a canonical one. The thermodynamic
properties in the canonical ensemble with given temperature T and ˇxed volume V are fully

described by the density operator ρ̂ = e−βĤ with the partition function deˇned as follows:

Z(Nq, Nq̄, Ng, V ; β) =
1

Nq!Nq̄!Ng!

∑
σ

∫
V

dr dQ ρ(r, Q, σ; β), (9)

with Nq = Nq̄ and hence NB = 0. In order to preserve the thermodynamical consistency of
this formulation, thermodynamic quantities should be calculated through respective derivatives
of the logarithm of the partition function similarly to that in Eq. (3) with the exception that
now Na are independent variables.

V. Since the masses of quarks of different �avors extracted from lattice data are very
similar, we do not distinguish between quark �avors. Moreover, we take the quark and gluon
quasiparticle masses being equal because their values deduced from the lattice data [20, 21]
are very close.

VI. Because of the equality of masses and approximate equality of number of degrees of
freedom of quarks, antiquarks and gluons, we assume that these species are equally represented
in the system: Nq = Nq̄ = Ng .

VII. For the sake of technical simplicity, the SU(3) color group is replaced by SU(2).
Thus, this simpliˇed model requires an additional quantity as an input:
3) The density of quasiparticles (Nq + Nq̄ + Ng)/V = n(T ) as a function of the tem-

perature.
Although this density is unknown from the QCD lattice calculations and we use it as a ˇt

parameter, it is very important to partially overcome constraints of the above simpliˇcations.
First, it concerns the use of the SU(2) color group, which ˇrst of all reduces the degeneracy
factors of the quark and gluon states, as compared to the SU(3) case, and thereby reduces
pressure and all other thermodynamic quantities. A proper ˇt of the density allows us to
remedy this deˇciency of the normalization. Second, in fact we consider the system of
single quark �avor; i.e., all quarks are identical, which also reduces the normalization of all
thermodynamic quantities. The density ˇt cures the deˇciency of this normalization, though
the excessive anticorrelation of quarks remains.

Ideally the parameters of the model should be deduced from the QCD lattice data. How-
ever, presently this task is still quite ambiguous. Therefore, in the present simulations we
take a possible (maybe, not the most reliable) set of parameters. Following [7, 21], the
parametrization of the quasiparticle mass is taken in the form

m(T )
Tc

=
0.9

(T/Tc − 1)
+ 3.45 +

0.4T

Tc
, (10)

where Tc = 175 MeV is the critical temperature. This parametrization ˇts the quark mass
at two values of temperature obtained in the lattice calculations [20]. According to [20], the
masses are quite large: mq/T 	 4 and mg/T 	 3.5. These are essentially larger than masses
required for quasiparticle ˇts [27, 28] of the lattice thermodynamic properties of the QGP:



Quantum Simulations of Strongly Coupled QuarkÄGluon Plasma 55

mq/T 	 1−2 and mg/T 	 1.5−3. Moreover, the pole quark mass mq/T 	 0.8 was reported
in recent work [29], as deduced from lattice calculations. Nevertheless, in spite of the fact
that it obviously produces too high masses, we use the parametrization (10) in order to be
compatible with the input of classical MD of [7]. The T -dependence of this mass is illustrated
in Fig. 1, a.

The coupling constant used in the simulations is displayed in Fig. 1 as well. From the point
of view of the QCD phenomenology [30], it is too high at low energies, i.e., at T/Tc 	 1−2.
However, the high values of masses require such a large value of g2, e.g., to be consistent
with the HTL results for the quasiparticle masses. The large value of g2 is also required
to simulate larger values of Casimirs (deˇning the normalization of the color vectors) in
the SU(3) group as compared to the SU(2) one used here. Moreover, such high g2 are not
inconsistent with the lattice data [31].

The density of quasiparticles, which is additionally required within the canonical-ensemble
approach, was chosen on the condition of the best agreement of the calculated pressure with
the corresponding lattice result, see Fig. 1, b. It was taken to be n(T ) = 0.24T 3. At ˇrst
glance, it is a very low density. For example, in the classical simulations of [7] it was taken
as n(T )/T 3 = 6.3, which corresponds to the density of an ideal gas of massless quarks,
antiquarks and gluons. Since the quasiparticles are very heavy in the present model (as
well as in that of [7]), the latter density looks unrealistically high. Even in quasiparticle
models [27, 28], where the masses are lower, the density turns out to be n(T )/T 3 ≈ 1.4.
Since Eq. (10) gives even larger masses than those in [27, 28] and in view of the adopted
large coupling, the chosen value of n(T ) does not look too unrealistic. The T -dependence
of n(T ) is presented in Fig. 1, a in terms of the mean interparticle distance rs(T ) in units of
σ = 1/Tc = 1.1 fm (WignerÄSeitz radius). Notice that the present choice of n(T ) corresponds
to the relation Trs(T ) = 1.

Thus, although the chosen set of parameters is still debatable, it is somehow self-consistent.
In the future we are going to get rid of the n(T ) parameter, by applying the grand-canonical
approach, and by using more moderate (and maybe realistic) sets of parameters.

Calculation of the equation of state (Fig. 1, b) was used to optimize the parameters of
the model in order to proceed to predictions of other properties concerning the internal
structure and in the future also nonequilibrium dynamics of the QGP. The plasma coupling

Fig. 1. a) Temperature dependence of the model input quantities and the plasma coupling parameter Γ.
b) Equation of state (pressure versus temperature) of the QGP from PIMC simulations compared to

lattice data of [2, 4]
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parameter Γ, deˇned as a ratio of the average potential to average kinetic energy, is also
presented in Fig. 1, a. It turns out to be of the order of unity, which indicates that the QGP
is a strongly coupled Coulomb liquid rather than a gas. In the studied temperature range,
1 < T/Tc < 3, the QGP is, in fact, quantum degenerate, since the degeneracy parameter
χa = naλ3

a varies from 0.1 to 2.
Let us now consider the spatial arrangement of the quasiparticles in the QGP by studying

the pair distribution functions (PDFs) gab(r). They give the probability density to ˇnd a pair
of particles of types a and b at a certain distance r from each other and are deˇned as

gab(R1 − R2) =
1

ZNq!Nq̄!Ng!

∑
σ

∫
dr dQ δ(R1 − ra

1 )δ(R2 − rb
2)ρ(r, Q, σ; β). (11)

The PDFs depend only on the difference of cordinates because of the translational invariance
of the system. In a noninteracting classical system, gab(r) ≡ 1, whereas interactions and
quantum statistics result in a redistribution of the particles. Results for the PDFs at temperature
T/Tc = 3 are shown in Fig. 2, a, b.

At large distances, r/σ � 0.5, all PDFs of identical particles (Fig. 2, a) coincide, approach-
ing unity. At small distances, the gluon PDF increases monotonically when the distance goes
to zero, while the PDF of quarks (and antiquarks) exhibits a broad maximum. In the present

Fig. 2. Pair distribution functions (a, b) and color pair distribution functions (c, d) of identical (a, c)
and different (b, d) quasiparticles at temperature T/Tc = 3, σ = 1/Tc = 1.1 fm
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conditions, the thermal wavelength λ approximately equals 0.37σ; i.e., the difference starts
to appear at distances of the order of λ. The enhanced population of low distance states of
gluons is due to Bose statistics and the color-Coulomb attraction. In contrast, the depletion
of the small distance range for quarks is a consequence of the Pauli principle. In an ideal
Fermi gas g(r) equals zero for particles with the same spin projections and colors, while for
particles with different colors and/or opposite spins the PDF equals unity in the limit r → 0.
As a consequence, the spin and color averaged PDF approaches 0.5. Such a low-distance
behavior is also observed in a nonideal dense astrophysical electronÄion plasma and in a
nonideal electronÄhole plasma in semiconductors [17,18]. The depletion of the probability of
quasiparticles at small distances results in its enhancement at intermediate distances. This is
the reason for the corresponding PDF maxima.

At small distances, r � 0.3σ, a strong increase is observed in all PDFs of particles of
different type (Fig. 2, b), which resembles the behavior of the gluonÄgluon PDF. This increase
is a clear manifestation of an effective pair attraction of quarks and antiquarks as well as
quarks (antiquarks) and gluons. This attraction suggests that the color vectors of nearest
neighbors of any type are antiparallel. If this explanation is correct can be veriˇed by means
of color pair distribution functions (CPDF) deˇned as

cab(R1 − R2) =
1

ZNq!Nq̄!Ng!
×

×
∑

σ

∫
dr dQ 〈Qa

1 |Qb
2〉δ(R1 − ra

1 )δ(R2 − rb
2)ρ(r, Q, σ; β), (12)

which are shown in Fig. 2, c, d. All CPDFs turn out to be negative at small distances, indicating
antiparallel orientation of the color vectors of neighboring quasiparticles. The minimum of cqq

close to r = 0.2σ corresponds to the maximum observed in gqq . The deep minimum in the
gluon CPDF at small distances results from the Bose statistics and complies with the high
maximum of the gluon PDF ggg.

Thus, at T/Tc = 3 we observe signs of a spatial ordering, cf. the peak of the quark
PDF around r/σ = 0.1−0.2, which may be interpreted as emergence of liquid-like behavior
of the QGP. The QGP lowers its total energy by minimizing the color Coulomb interaction
energy via a spontaneous ®antiferromagnetic¯ ordering of color vectors. This gives rise to a
clustering of quarks, antiquarks and gluons.

Figure 3 presents PDFs of the identical particles for two temperatures T = 1.1Tc and
T = 2Tc (panels a and c). These PDFs can be formed either by correlated scattering states
or by bound states of quasiparticles, depending on the relative fractions of these states. In
a strict sense, however, there is no clear subdivision into bound and free ®components¯
due to the mutual overlap of the quasiparticle clouds. In addition, there exists no rigorous
criterion for a bound state at high densities due to the strong effect of the surrounding plasma.
Nevertheless, a rough estimate of the fraction of quasiparticle bound states can be obtained
by the following reasonings. The product r2gab(r) has the meaning of a probability to ˇnd a
pair of quasiparticles at a distance r from each other. On the other hand, the corresponding
quantum mechanical probability is the product of r2 and the two-particle Slater sum

Σab = 8π3/2λ3
ab

∑
α

|Ψα(r)|2 exp (−βEα) = Σd
ab + Σc

ab, (13)



58 Filinov V. S. et al.

Fig. 3. Pair distribution functions at two different temperatures T (a, c) and quarkÄantiquark PDF

multiplied by distance squared (b, d)

where Eα and Ψα(r) are the energy (without center-of-mass energy) and the wave function
of a quasiparticle pair, respectively, and λab =

√
2π�2β(ma + mb)/(mamb). Σab is, in

essence, the diagonal part of the corresponding density matrix. The summation runs over all
states α of the discrete (Σd

ab) and continuous (Σc
ab) spectrum.

At temperatures smaller than the binding energy and distances smaller than or of the
order of several bound state radii, the main contribution to the Slater sum comes from bound
states. In the electromagnetic plasma it was found that the product r2Σd

ab is sharply peaked
at distances around the Bohr radius in this case. Similarly, at low temperature, r2gqq̄(r)
forms a pronounced maximum near r = 0.2 fm, which can be interpreted as the radius of
a bound qq̄ pair. Thus, our calculations support the existence of bound states of medium-
modiˇed (massive) quarks and gluons at moderate temperatures, i.e., just above Tc, proposed
in [33] and later in [34, 35] based on results from lattice QCD calculations of spectral
functions [36, 37]. With the temperature rise these bound states dissolve much faster than it
was assumed in [34,35], which complies with the analysis of [38]. Indeed, at the temperature
of T = 2Tc the bound states completely disappear (Fig. 3, d).

Interesting observations can be done from the analysis of the potential of average force
(PAF) deˇned as the logarithm of the related PDF, Uab(r, T ) = −T ln gab(r, T ). This
deˇnition is motivated by the PDF virial expansion in terms of bare potential (like color
Kelbg potential). Near the QGP phase transition the PAF is a linear function at distances
smaller than the bound-state radius. This suggests that the bound states are bound by string-
like forces. At larger distances the PAF can be very well approximated by an exponentially
screened Coulomb potential (Yukawa-type potential) like that in the electromagnetic plasma.
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CONCLUSION

Quantum Monte Carlo simulations based on the quasiparticle picture of the QGP are able
to reproduce the lattice equation of state (even near the critical temperature) and also yield
valuable insight into the internal structure of the QGP. Our results indicate that the QGP
reveals liquid-like (rather than gas-like) properties even at the highest considered temperature
of 3Tc. At temperatures just above Tc we have found that bound quarkÄantiquark states still
survive. These states are bound by effective string-like forces. Quantum effects turned out to
be of prime importance in these simulations.

Our analysis is still too simpliˇed and incomplete. It is still conˇned only to the case of
zero baryon chemical potential. The input of the model also requires reˇnement. Work on
these problems is in progress. We have also performed ˇrst simulations of dynamic properties
of the QGP based on quantum Wigner dynamics. In particular, these allow us to deduce the
viscosity of the QGP. However, the brief format of the present contribution does not allow
us to report on the respective results.

We acknowledge stimulating discussions with D. Blaschke, M. Bleicher, R. Bock, B. Fri-
man, C. Ewerz, D. Rischke, and H. Stoecker. Yu. I. was partially supported by the Deutsche
Forschungsgemeinschaft (DFG projects 436 RUS 113/558/0-3 and WA 431/8-1), the RFBR
grant 09-02-91331 NNIO a, and grant NS-7235.2010.2.
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