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CHIRAL AND DECONFINEMENT TRANSITIONS
IN QCD WITH THE HIGHLY IMPROVED STAGGERED
QUARK (HISQ) ACTION

A. Bazavov °, P. Petreczky b
(for HotQCD Collaboration)

“ Department of Physics, University of Arizona, Tucson, AZ, USA
® Physics Department, Brookhaven National Laboratory, Upton, NY, USA

We report preliminary results on the chiral and deconfinement aspects of the QCD transition at finite
temperature using the Highly Improved Staggered Quark (HISQ) action on lattices with temporal extent
of N; =6 and 8. The chiral aspects of the transition are studied in terms of quark condensates and the
disconnected chiral susceptibility. We study the deconfinement transition in terms of the strange quark
number susceptibility and the renormalized Polyakov loop. We find reasonably good agreement between
our results and the recent continuum extrapolated results obtained with the stout staggered quark action.

PACS: 11.10.Ef

INTRODUCTION

Improved staggered fermion formulations are widely used to study QCD at nonzero tem-
peratures and densities, see, e.g., [1,2] for recent reviews, for, at least, two reasons: they
preserve a part of the chiral symmetry of continuum QCD which allows one to study the chiral
aspects of the finite temperature transition, and are relatively inexpensive to simulate numer-
ically because, due to the absence of an additive mass renormalization, the Dirac operator is
bounded from below. However, lattice artifacts related to taste symmetry breaking turned out
to be numerically large. To reduce the taste violations, smeared links, i.e., weighted averages
of different paths on the lattice that connect neighboring points, are used in the staggered
Dirac operator, and several improved staggered formulations, like p4, asqtad, stout and HISQ
differ in the choice of the smeared gauge links. The ones in the p4 and asqtad actions are
linear combinations of single links and different staples [3,4] and therefore are not elements
of the SU(3) group.

It is known that projecting the smeared gauge fields onto the SU(3) group greatly improves
the taste symmetry [5]. The stout action [6] and the HISQ action implement the projection of
the smeared gauge field onto the SU(3) (or simply U(3)) group and thus achieve better taste
symmetry at a given lattice spacing. For studying QCD at high temperature it is important
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to use discretization schemes which improve the quark dispersion relation, thus eliminating
the tree-level O(a?) lattice artifacts in thermodynamic quantities. The p4 and asqtad actions
implement this improvement by introducing 3-link terms in the staggered Dirac operator.

In this paper we report preliminary results on the chiral and deconfinement transitions
in QCD at nonzero temperature obtained with the HISQ action which combines the removal
of tree-level O(a?) lattice artifacts with the addition of projected smeared links that greatly
improve the taste symmetry. We also compare our results to the continuum extrapolated
results obtained with the stout action [7].

1. ACTION AND RUN PARAMETERS

The Highly Improved Staggered Quark (HISQ) action developed by the HPQCD/UKQCD
Collaboration [8] reduces taste symmetry breaking and decreases the splitting between differ-
ent pion tastes by a factor of about three compared to the asqtad action. The net result, as
recent scaling studies show [9,10], is that a HISQ ensemble at lattice spacing a has scaling
violations comparable to ones in an asqtad ensemble at lattice spacing 2a/3.

In this study we used the HISQ action in the fermion sector and the tree-level Symanzik
improved gauge action. The strange quark mass ms was set to its physical value adjusting
the quantity \/2m?% — m2 = m,,, ~ \/2Bm, to the physical value 686.57 MeV. We used
two values of the light quark mass: m; = 0.05m4 and m; = 0.20m,. These correspond
to the lightest pion mass of about 160 and 320 MeV, respectively [11]. Calculations have
been performed on 243 x 6 and 323 x 8 lattices for the smaller quark mass, while for the
larger quark mass we used 163 x 6 lattices. At several values of the lattice spacings zero
temperature simulations have been performed on 32* lattices for m; = 0.05m, and on 163 x 32
lattices for m; = 0.2ms. The molecular dynamics (MD) trajectories have length of 1 time
unit (TU) and the measurements were performed every 5 TUs at zero and 10 TUs at finite
temperature. However, for the few smallest beta values the trajectories had length of 1/2 or
1/3 TU. In this case measurements have been performed after each 20 or 30 trajectories (which
corresponds, again, to 10 TUs). Typically, at least 300 TUs were discarded for equilibration
at the beginning of the simulations.

The lattice spacing has been determined by measuring the static quark—antiquark potential.
As in the previous studies by the MILC Collaboration the static potential was calculated fixing
to Coulomb gauge and considering temporal Wilson lines of different extent. Forming the
ratio of these correlators and fitting them to a constant plus linear Ansatz we extracted the
static potential V' (r). We have calculated the Sommer scale ¢ defined as

av
r?— = 1.65. (1)
dr |,
The potential has been normalized to the string potential
m
V;tring = _E +or (2)

at r = 1.5r¢ or equivalently to the value 0.91/r¢ at » = 9. The additive constant determined
by this normalization is used to calculate the renormalization constant for the Polyakov loop
as will be discussed later. To convert from lattice units to physical units we use the value
ro = 0.469 fm as determined in [12].
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2. CHIRAL AND DECONFINEMENT TRANSITIONS IN QCD

2.1. The Chiral Transition. In the limit of zero light quark masses QCD has a chiral
symmetry and the finite temperature transition is a true phase transition. The order parameter
for this transition is the light chiral condensate (17));. However, even at finite values of the
quark mass the chiral condensate will show a rapid change in the transition region indicating
an effective restoration of chiral symmetry. The fluctuations of the chiral condensate, also
called the disconnected chiral susceptibility, will have a peak at the transition temperature.
Recent studies with the p4 action suggest that for physical strange quark mass and 2 light
quarks the chiral transition is second order for vanishing light quark mass, belonging to
the O(N) universality class [13]. Thus, the universal properties of the chiral transition in
the limit of zero light quark masses govern the transition for sufficiently small but nonzero
light quark masses [13]. The corrections to scaling turned out to be small for m; = m;/20
and thus the temperature variation of the chiral condensate is to a large extent determined
by the singular part of the free energy density which is universal [13]. This allows one
to determine the chiral transition temperature for nonzero quark masses. The temperature
derivative of the chiral condensate and disconnected chiral susceptibility will diverge in the
limit m; — 0. Since the chiral condensate has an additive ultraviolet renormalization, we
consider the subtracted chiral condensate [23]

Ay(T) = ——— s . 3)

Here the subscript [ and s refer to light and strange chiral condensates, while subscript 0 and
7 — to the expectation value at zero and nonvanishing temperature. Another possibility to
get rid of the additive renormalization in the chiral condensate is to consider the quantity

AF(T) = —marg (D)1 — (P)10) )

which up to a constant multiplicative factor is identical to the quantity introduced in [7] and
was called the renormalized chiral condensate. In Fig. 1 we show our numerical results for
Ay and AF and compare them to the continuum extrapolated stout results [7]. To facilitate
this comparison for m; = 0.05ms, we performed a combined polynomial fit of the N, =6
and N, = 8 results allowing for lattice spacing-dependent coefficients in this fit. This allows
us to give an estimate of these quantities in the continuum limit shown as the solid black
lines. The continuum estimates for HISQ are different from the continuum extrapolated stout
results. This is presumably due to the fact that the quark masses used in the stout calcula-
tions are smaller, namely m; = m,/27.3 [14]. The transition temperature is decreasing with
decreasing quark mass. Also the chiral condensates at fixed temperature decrease with de-
creasing quark mass. Thus at a qualitative level this discrepancy could be understood. Future
calculations on N, = 12 lattices and smaller quark masses will be needed to clarify this issue
quantitatively.

We also calculated the disconnected chiral susceptibility. In Fig. 2 we show the light quark
disconnected chiral susceptibility. The peak position in this quantity also defines the chiral
transition temperature. To estimate the peak position in this quantity, we have performed
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Fig. 1. The subtracted chiral condensate (a) and AlR (b) compared to the continuum estimate for the
stout action [7]. The solid black line is our continuum estimate for the HISQ action
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Fig. 2. The disconnected chiral susceptibility calculated with the HISQ action on N, = 6 and 8 lattices
for m; = 0.05ms and m; = 0.20m

fits of the lattice data using different functional forms. We also varied the fit intervals. Our
analysis gives

N, =6:T.=168(4)(5) MeV (0.05ms); T.=185(4)(5) MeV (0.20m); 5)
N, =8:T,=165(4)(5) MeV (0.05m), (6)
where the first error reflects the uncertainty in the determination of the peak position estimated
using different fit forms and varying the fit range. The second error is due to the scale

determination. The peak positions in the disconnected chiral susceptibilities are significantly
lower than those obtained with p4 and asqtad actions for N, < 8 [16,17], though they are
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compatible with the recent estimates for asqtad on N, = 12 lattices [11]. Unfortunately,
no published stout data are available for the disconnected chiral susceptibility, and direct
comparison between HISQ and stout results is not possible here. Therefore, in [11] we
compared HISQ and stout data for the renormalized chiral susceptibility introduced in [15].
Some small discrepancies between the stout and HISQ results have been found there which
again are probably due to slightly different quark masses. Note that within the errors of the
calculations, the peak positions in the renormalized chiral susceptibility are consistent between
HISQ and stout [11].

2.2. Deconfinement Transition. By the deconfinement transition we mean liberation of
many degrees of freedom, which also could be understood as transition from hadronic de-
grees of freedom to partonic ones, and the onset of color screening. The aspects of the
deconfinement transition related to color screening are studied in terms of the Polyakov loop
and Polyakov loop correlators. The Polyakov loop needs to be renormalized and after proper
renormalization it is related to the free energy of a static quark—antiquark pair at infinite
separation Fo, (T') [18],

Foo(T)
Lyen(T) = — . 7
o) = e (T ) 0
The renormalized Polyakov loop can be obtained from the bare Polyakov loop as
=
Lren(T) - Z(ﬁ)NTLbare(ﬁ) - Z(ﬁ)NT <§TI’ H U()(iC(), QC)> . (8)
:Co=0

Here the multiplicative renormalization constant z(/(3) is related to the additive normalization
of the potential ¢(3) as z(8) = exp(—c(5)/2) discussed in the previous section. The
renormalized Polyakov loop has been calculated for pure gauge theory [18,19], 3-flavor
QCD [20] as well as for 2-flavor QCD [21]. More recently it has been calculated for 2+1
flavor QCD with physical strange quark mass and light quark masses close to the physical
values [7,14,15,23-25]. In Fig.3 we show our results for the renormalized Polyakov loop
calculated with the HISQ action using N, = 6 and 8 lattices and m; = 0.05m, and compare
them to the continuum extrapolated results obtained with the stout action [7]. The decrease of
F(T), and thus the increase in the Polyakov loop could be related to the onset of screening
at high temperatures (e.g., see discussion in [22]). On the other hand, in the low-temperature
region the increase of L., is related to the fact that there are many static-light meson
states that can contribute to the static quark free energy close to the transition temperature,
while far away from the transition temperature it is determined by the binding energy of the
lowest static-light mesons. The strange quark number susceptibility is defined as the second
derivative of the pressure with respect to the quark chemical potential

_0*p(T, ps)

Xs= "5, ©)

pns=0.

It describes strangeness fluctuations at zero strange quark chemical potential. At low
temperatures, strangeness is carried by strange hadrons, which are heavy compared to the
temperature. As a result, strangeness fluctuations are suppressed in the low-temperature
region. At high temperatures, on the other hand, strangeness is carried by light quarks and
strangeness fluctuations are close to the value given by an ideal quark gas. Deconfinement will
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Fig. 3. The renormalized Polyakov loop (a) and the strange quark number susceptibility (b) calculated
with the HISQ action for m; = 0.05m, and compared to the continuum extrapolated stout results

manifest itself as a rapid increase in the strangeness fluctuations in some temperature interval,
reflecting the change in the relevant degrees of freedom from hadronic to partonic. Therefore,
strangeness fluctuations are used as a probe of the deconfinement transition [7, 14,15,23-25].
In Fig.3 we show the strange quark number susceptibility calculated for the HISQ action on
N, = 6 and 8 lattices for m; = 0.05m.

We performed a combined polynomial fit of our lattice results where the coefficient of
the polynomial had a? correction. This allows one to estimate strangeness fluctuations in
the continuum limit. We compared our results to those obtained with the stout action and
extrapolated to the continuum. As one can see, there is reasonable agreement between HISQ
and stout results in the continuum limit. The main difference is the inflection point in the
stout calculations at temperatures of about 165 MeV which is not visible in the HISQ results.
Note, that strangeness fluctuations approach the continuum limit from below. This is expected
due to the lattice spacing dependence of the hadron masses [26].

CONCLUSIONS

We studied the deconfinement and chiral transitions in QCD at nonzero temperature using
the HISQ action and compared our results to recent continuum extrapolated results obtained
with the stout action. We find reasonable agreement in the continuum limit between the
results obtained with different actions for the renormalized Polyakov loop and the strange
quark number susceptibility. We also calculated the chiral condensate and disconnected chiral
susceptibility for the HISQ action. For these quantities a direct comparison with stout results
is more difficult due the slightly different light quark masses used in the two calculations.
Nonetheless, current HISQ results indicate a chiral transition temperature that is significantly
lower than the previous estimates obtained with the asqtad and p4 actions using temporal
extent N, < 8. It would also be interesting to compute the equation of state with the HISQ
action and compare it to the very recent results obtained with the stout action [27].
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