
�¨¸Ó³  ¢ �—�Ÿ. �. 2011. ’. 8, º9. ‘. 196Ä200

THREE-PION CORRELATIONS
FOR STUDYING PARTIAL COHERENCE

IN NUCLEAR COLLISIONS
E. Ikonen

Metrology Research Institute, Aalto University
and Centre for Metrology and Accreditation, Aalto, Finland

Use of three-particle correlations provides a unique tool for studying partial coherence in relativistic
heavy-ion collisions. Here a theory is presented for multiple coherent source components of partially
coherent pion radiation. Results are given for the relative probabilities of emission of one, two, or three
pions. The calculations on the relation between two- and three-pion correlators give some evidence,
when compared with available experimental data, for the existence of partial coherence and multiple
coherent components in heavy-ion collisions.

PACS: 25.75.-q

INTRODUCTION

The possibility of observing partial coherence in nuclear collisions has been discussed for
over thirty years [1,2]. In principle, the effect could be demonstrated by the zero-momentum-
difference intercept of the two-pion correlation function, when observing normalized values
below two. However, such an experimental observation of partial coherence is demanded
because of problems due to long-lived resonances and particle misidentiˇcation, making
extrapolation of the data to the zero momentum difference a very challenging problem in
practice.

A proposed solution to the particle misidentiˇcation problem is measurement of genuine
correlations of three pions and normalization of the result by the genuine two-pion correlation
function to the power 3/2 [3]. Long-lived resonances and particle misidentiˇcation then
affect similarly both the numerator and denumerator and thus the normalized three-particle
correlator r3 obtained in this way offers an unbiased estimate of partial coherence: a mea-
sured value of r3/2 < 1 would provide the long-searched signature of partial coherence in the
pion radiation from heavy-ion collisions. In fact, there already exist experimental data from
which values r3/2 < 1 have been extrapolated to zero momentum difference [4Ä7]. However,
the extrapolation method used in these analyses has been questioned with a conclusion that
there is not yet evidence of partial coherence in heavy-ion collisions, but it might be ob-
tained by three-pion correlations and proper analysis of either existing or future experimental
data [8].

If the partial coherence in pion radiation is eventually demonstrated, the source properties
producing this radiation will become under study. This work contributes to the understanding
of properties of such particle radiation. The conventional analysis, which assumes one coher-
ent source current, is extended here to cover the case of multiple coherent source currents.
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There is no a priori reason why only one coherent component should exist. On the contrary,
results on photon radiation in the research ˇeld of free-electron lasers, analogous to pion radi-
ation in heavy-ion collisions, suggest the existence of multiple coherent components [9Ä12].
Although the extension of the theory to multiple coherent source components is straightfor-
ward in principle, the analysis should carefully account a number of contributions and provide
proper observables to reveal details of the searched coherence effects [13]. Finally, it should
be emphasized that tentative application of the developed theory, assuming that the extrapo-
lation biases of [8] are negligible, suggests existence of multiple coherent source components
in partially coherent pion radiation.

1. MULTIPLE COHERENT COMPONENTS

Emission of photons from a synchrotron radiation source provides an example of a collision
process with known interactions between the colliding constituents consisting of a bunch of
electrons and a spatially varying magnetic ˇeld. Transverse acceleration of the electrons
causes a source current producing an emitted radiation ˇeld which can be coupled back to the
motion of the electrons by self-ampliˇed spontaneous emission. The free-electron laser (FEL)
is operated according to that scheme, where it has been shown by theoretical calculations
that a deˇnite number N of independent processes takes place as given by the ratio of the
electron-bunch length to the electron-cooperation length [9]. As predicted, the measured
spectra of single FEL pulses contain approximately N peaks, although their positions and
intensities vary [11, 12]. Furthermore, it has been shown that the latter ˇnding is a general
property of pulsed radiation which is not depending on laser operation [14].

For the analysis of the radiation source with multiple coherent components, it is assumed
that the source current is described by [10]

J(x) =
N∑

j=1

njJ0(x − xj) +
N ′∑

j′=1

J ′
0(x − xj′ ), (1)

where the ˇrst term consists of N independent elementary processes of nj (j = 1, 2, . . . , N)
particles radiating coherently. The second term with primed symbols describes incoherent
radiation from N ′ elementary processes of single radiating particles. The elementary source
currents J0 [J ′

0] are localized around the space-time points xj [xj′ ] with a characteristic
probability distribution �(xj) [�′(xj′ )] for coherent [incoherent] processes.

In analogy with photon correlation experiments, probabilities P1(p1), P2(p1, p2), and
P3(p1, p2, p3) describe emission of one, two, and three pions or photons with momenta
pi (i = 1, 2, 3) [2, 10, 15]. Their explicit form is calculated by averaging products of the
four-dimensional Fourier transforms J̃0(p), J̃ ′

0(p) of the elementary source currents over the
distributions of the source coordinates xj , xj′ , the number of independent processes N, N ′,
and the intensities n2

j . For the sake of completeness, the results are reproduced here for the
lowest order probabilities [13]:

P1(p) =

〈
N∑

j=1

n2
j

〉
|J̃0(p)|2 + 〈N ′〉|J̃ ′

0(p)|2, (2)



198 Ikonen E.

where the averages over N, N ′, and n2
j are denoted by 〈. . .〉, and

P2(p1, p2) = P1(p1)P (p2) +

〈∑
j1

∑
j2 �=j1

n2
j1n

2
j2

〉
|J̃0(p1)|2|J̃0(p2)|2|�̃(q12)|2 +

+

⎧⎨
⎩

〈
N∑

j=1

n2
j

〉
〈N ′〉J̃0(p1)J̃0(p2)∗J̃ ′

0(p1)∗J̃ ′
0(p2)�̃(q12)�̃′(q12)∗ + c.c.

⎫⎬
⎭ +

+ 〈N ′〉2|J̃ ′
0(p1)|2|J̃ ′

0(p2)|2|�̃′(q12)|2, (3)

where �̃(q12) =
∫

d4xj exp (iq12xj)�(xj), q12 = p1 − p2 and +c.c. stands for complex
conjugate of the term inside the braces. The corresponding equation for the three-particle
probability is

P3(p1, p2, p3) = P1(p1)P1(p2)P1(p3)+{P2(p1, p2)P1(p3)−P1(p1)P1(p2)P1(p3)+c.p.}+

+

⎧⎨
⎩

〈∑
j1

∑
j2 �=j1

∑
j3 �=j1,j2

n2
j1n

2
j2n

2
j3

〉
|J̃0(p1)|2|J̃0(p2)|2|J̃0(p3)|2�̃(q12)�̃(q23)�̃(q31) + c.c.

⎫⎬
⎭ +

+

⎧⎨
⎩

〈∑
j1

∑
j2 �=j1

n2
j1n

2
j2

〉
〈N ′〉J̃0(p1)|J̃0(p2)|2 ×

× J̃0(p3)∗J̃ ′
0(p1)∗J̃ ′

0(p3)�̃(q12)�̃(q23)�̃′(q31) + c.p. + c.c.

}
+

+

⎧⎨
⎩

〈∑
j

n2
j

〉
〈N ′〉2J̃0(p1)J̃0(p2)∗J̃ ′

0(p1)∗J̃ ′
0(p2)|J̃ ′

0(p3)|2 ×

× �̃(q12)�̃′(q23)�̃′(q31) + c.p. + c.c.

}
+

+ {〈N ′〉3|J̃ ′
0(p1)|2|J̃ ′

0(p2)|2|J̃ ′
0(p3)|2�̃′(q12)�̃′(q23)�̃′(q31) + c.c.}, (4)

where +c.p. stands for two cyclically permuted terms (p1 → p2, p2 → p3, p3 → p1) +
(p1 → p3, p2 → p1, p3 → p2) inside the braces. Equation (4) has been simpliˇed as
in deriving Eq. (3) where all contributions related to the coherent part were kept and the
incoherent part was approximated by 〈N ′2〉 = 〈N ′(N ′ − 1)〉 = 〈N ′〉2.

2. NORMALIZED TWO- AND THREE-PION CORRELATORS

The zero-momentum-difference intercept of the two-pion correlation function is ob-
tained as the two-pion correlator R2(p, p) = [P2(p, p) − P1(p)2]/P1(p)2, where the con-
tribution of random single-pion events P1(p)2 is removed from R2(p, p) to include only
the genuine two-pion effects. Similarly the normalized three-pion correlator is given by
r3(p) = R3(p, p, p)/[R2(p, p)]3/2, where the contributions by single- and two-pion events are
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removed in R3(p, p, p) [3]. The latter contributions consist of the two ˇrst terms of Eq. (4). If
the distribution of the number of coherent processes is sufˇciently narrow, it can be assumed
that N � 〈N〉 is a ˇxed integer. Then [13]

r3(p)
2

=
3R2(p, p) − 2 + 2[1 − R2(p, p)]3/2

√
N

[R2(p, p)]3/2
(5)

gives the quantitative relation between the normalized three-pion correlator and the two-pion
correlator.

The two-pion correlator R2(p, p) cannot be obtained directly from two-pion correlation
measurements, since biasing by long-lived resonances, particle misidentiˇcation, experimental
binning effects, and ˇnal-state interactions reduces the experimentally observed two-pion cor-
relation. Nevertheless, the experimental two-pion correlations provide important information
on the available parameter space by giving a lower limit for the value of R2(p, p) as shown
in the ˇgure. The upper part of the vertical uncertainty bars of the data points extends up to
the value R2(p, p) = 1 due to the uncertainty related to the above-mentioned biasing effects.
In the normalized three-pion correlator r3(p)/2, the effects of long-lived resonances, particle
misidentiˇcation, and experimental binning are cancelled [3]. Final-state interactions are the
most problematic effect in reliable experimental determination of r3(p)/2. Here theoretical
calculations have to be used to estimate the correction. The correction adds some uncertainty
to the experimental results, but meaningful data can still be obtained from three-pion cor-

Relation between r3(p)/2 and R2(p, p) for different numbers N of coherent source components (solid
lines) and data from S+Pb [4] and Au+Au [7] collisions. Parameter R2(p, p) is the zero-momentum-

difference intercept of the two-pion correlation function. In the normalized three-pion correlator

r3(p)/2, the effects of long-lived resonances, particle misidentiˇcation, and experimental binning are
cancelled [3]. The result with a single coherent component, used in the analysis by Adams et al. [7],

is shown by the curve labeled N = 1. Experimental data from S+Pb collisions are in agreement with
the curve N = 2 [13]
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relation measurements [7]. If the normalized three-pion correlator r3(p)/2 and the number
of coherent processes are known, Eq. (5) can be used to determine the value of R2(p, p), as
shown in the ˇgure.

3. CONCLUDING REMARKS

Existence of partial coherence in pion radiation produced by relativistic heavy-ion col-
lisions is an interesting research question, which can be tackled using the principles of the
analysis presented in this paper. By the analogy of the FEL operation, it can be expected that
the partial coherence, if eventually observed, is related to multiple coherent source currents
in the heavy-ion collision. Furthermore, a tentative analysis of the presently available experi-
mental data supports the existence of multiple coherent components in S +Pb collisions. For
more quantitative results of such a situation, a careful extrapolation method of the experi-
mental data to zero momentum difference should be developed and the theoretical analysis
might be improved in such a way that a suitable average of the ˇxed N curves of the ˇgure
is taken.

This study was supported by the Academy of Finland under grant No. 129971.
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