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Analytical formula for multiplicity distribution is derived in the QO approach, where chaotic and
coherent ˇelds are contained. Observed charged multiplicity distributions in Au+Au collisions at√

s = 200A GeV and in pp collisions at
√

s = 900 GeV are analyzed by the formula. Chaoti-
city parameters in the inclusive events estimated from the analysis of multiplicity distributions are
compared with those estimated from the analysis of observed two-particle inclusive identical particle
correlations.

PACS: 25.75.-q

INTRODUCTION

In high-energy nucleusÄnucleus (AA) collisions or hadronÄhadron collisions, BoseÄEin-
stein correlations of identical particles are considered as one of the possible measures for the
space-time domain where identical particles are produced. As the colliding energy of AA
collisions increases, thousands of identical particles can be produced in an event. Then, the
production domain of those particles can be analyzed precisely event by event, or among
the events with ˇxed multiplicity. Up to the present, most of theoretical approaches to
identical particle correlations at ˇxed multiplicity are investigated in the case of purely chaotic
ˇeld [1Ä4].

One of the theoretical approaches to the BoseÄEinstein correlations is made on the analogy
of the quantum optics [5], where two types of sources, chaotic and coherent, are introduced.
A diagrammatical method, based on the GlauberÄLachs formula [5], has been proposed [6] to
ˇnd higher order BoseÄEinstein correlation (BEC) functions. In [7], the generating functional
(GF) for the momentum densities in the inclusive events is derived, and a diagrammatic
representation for cumulants is proposed. Identical particle correlations at ˇxed multiplicity
are formulated in [8].

In the present paper, analytical formula for multiplicity distribution, which is identiˇed
to the GlauberÄLachs formula, is derived. A relation between the chaoticity parameter psm

in the semi-inclusive events and that pin in the inclusive events is also obtained. Observed
multiplicity distributions are analyzed by the GlauberÄLachs formula. Estimated value of pin

from the observed multiplicity distributions is compared with that from the observed inclusive
identical two-particle correlations.
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1. GENERATING FUNCTIONAL

In the QO approach, the n-particle momentum density in the semi-inclusive events is
deˇned by

ρn(p1, . . . , pn) = c0〈|f(p1)|2 · · · |f(pn)|2〉a, (1)

f(p) =
M∑
i=1

aiφi(p) + fc(p), (2)

where c0 is a normalization factor. In Eq. (2), φi(p) and fc(p) are amplitudes of the ith chaotic
source and a coherent source, respectively, and ai is a random complex number attached to
the ith chaotic source. The number M of independent chaotic sources is regarded to be
inˇnite.

In Eq. (1), parenthesis 〈F 〉a denotes an average of F over the random number ai with a
Gaussian weight [5]:

〈F 〉a =
M∏
i=1

(
1

πλi

∫
exp

[
−|ai|2

λi

]
d2ai

)
F. (3)

The single-particle and the two-particle momentum densities are respectively given as

ρ1(p1) = c0〈|f(p1)|2〉a = c0[r(p1, p1) + c(p1, p1)],

ρ2(p1, p2) = c0〈|f(p1)f(p2)|2〉a = c0{ρ(p1)ρ(p2) + |r(p1, p2)|2 + 2Re [r(p1, p2)c(p2, p1)]},

where r(p1, p2) is a correlation caused by the chaotic sources and c(p1, p2) is a correlation
by the coherent source,

r(p1, p2) =
M∑
i=1

λiφi(p1)φ∗
i (p2), c(p1, p2) = fc(p1) f∗

c (p2). (4)

The GF of the semi-inclusive events is deˇned by the following equation:

Zsm[h(p)] =
∞∑

n=1

1
n!

∫
· · ·

∫
ρn(p1, . . . , pn)h(p1) · · ·h(pn)

d3p1

E1
· · · d3pn

En
. (5)

From Eqs. (1) and (5), the GF is written as

Zsm[h(p)] = c0

〈
exp

[∫
|f(p)|2h(p)

d3p

E

]〉
a

, (6)

where an additional constant Zsm[h(p) = 0] is added to the right-hand side of Eq. (6).
Inversely, the n-particle momentum density in the semi-inclusive events is given from
the GF as

ρn(p1, . . . , pn) = E1 · · ·En
δnZsm[h(p)]

δh(p1) · · · δh(pn)

∣∣∣∣
h(p)=0

.
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The generating function for multiplicity distribution P (n) is given from Eq. (5) if function h(p)
is independent of momentum p:

Zsm(h) = c0

〈
exp

[∫
|f(p)|2 d3p

E
h

]〉
a

. (7)

The multiplicity distribution (MD) is given from Eq. (7) as

P (0) = Zsm(0) = c0, P (n) =
1
n!

∂nZsm(h)
∂hn

∣∣∣∣
h=0

.

2. CUMULANTS

The GF Gsm[h(p)] for cumulants in the semi-inclusive events is deˇned by the following
equation:

Gsm[h(p)] ≡ ln Zsm[h(p)]. (8)

The nth order cumulant is given by

gn(p1, . . . , pn) = E1 · · ·En
δnGsm[h(p)]

δh(p1) · · · δh(pn)

∣∣∣∣
h(p)=0

. (9)

From Eqs. (6), (8) and (9), we have an iteration relation for momentum densities,

ρ1(p1) = c0g1(p1),

ρn(p1, . . . , pn) = g1(p1)ρn−1(p2, . . . , pn)+

+
n−2∑
i=1

∑
gi+1(p1, pj1 , . . . , pji)ρn−i−1(pji+1 , . . . , pjn−1) + c0gn(p1, . . . , pn). (10)

The second summation on the right-hand side of Eq. (10) indicates that all possible com-
binations of (j1, . . . , ji) and (ji+1, . . . , jn−1) are taken from (2, 3, . . . , n). The n-particle
momentum density ρn(p1, . . . , pn) (n = 1, 2, . . .) is written by the cumulant gi(p1, . . . , pi)
(i = 1, 2, . . . , n) from Eq. (10).

Diagrammatic representation of Eq. (10) is shown in [8]. For example, cumulants up to
the third order are written explicitly as

g12 = r12r21 + c12r21 + r12c21,
(11)

g123 = r12r23r31 + c12r23r31 + r12c23r31 + r12r23c31 + c.c.,

where the following abbreviations are used:

gj1···jm = gm(pj1 , . . . , pjm), rij = r(pi, pj), cij = c(pi, pj),

and complex conjugates to the terms explicitly shown are denoted by c.c.
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3. MULTIPLICITY DISTRIBUTION

From Eqs. (10) and (11), we obtain a recurrence equation for MD,

P (n) =
1
n

n∑
j=1

[
Δ(R)

j + jΔ(S)
j−1

]
P (n − j), n = 1, 2, . . . , (12)

where, with R0(k1, k2) = ω1δ
3(k1 − k2),

Δ(R)
j =

∫
Rj(k, k)

d3k

ω
, Rj(p1, p2) =

∫
r(p1, k)Rj−1(k, p2)

d3k

ω
, (13)

Δ(S)
j−1 =

∫
Sj−1(k, k)

d3k

ω
, Sj−1(p1, p2) =

∫
c(p1, k)Rj−1(k, p2)

d3k

ω
. (14)

In the followings, variables are changed from (piL,piT ) to (yi,piT ), where yi is the
rapidity of particle i. Correlations r(p1, p2) and c(p1, p2) are both assumed to be real, and
parametrized as [8]

r(y1,p1T ; y2,p2T ) = psm

√
ρ(y1,p1T )ρ(y2,p2T ) I(Δy, Δp1T ),

c(y1,p1T ; y2,p2T ) = (1 − psm)
√

ρ(y1,p1T )ρ(y2,p2T ),

ρ(y1,p1T ) = 〈n0〉
α1/2β

π3/2
exp [−α y2

1 − β p2
1T ],

I(Δy, ΔpT ) = exp [−γL(Δy)2 − γT (ΔpT )2],

where Δy = y2 − y1, ΔpT = p2T − p1T , and psm is the chaoticity parameter in the semi-
inclusive events. It is assumed to be constant at present.

Then, Rj(p1, p2) in Eqs. (13) and (14) is given by the following form:

Rj(y1,p1T , y2,p2T ) = Nj exp [−Aj(y2
1 + y2

2) + 2Cjy1y2]×
× exp [−Uj(p2

1T + p2
2T ) + 2Wjp1Tp2T ],

and

Δ(R)
1 = psm〈n0〉, Δ(R)

j = Nj

(
π

2(Aj − Cj)

)1/2
π

2(Uj − Wj)
, (15)

Δ(S)
0 = (1 − psm)〈n0〉, Δ(S)

j = Nj
π3/2(1 − psm)〈n0〉√
Aj + A1 (Uj + U1)

, (16)

where

A1 =
α

2
+ γL, Aj+1 = A1 − γ2

L/(Aj + α/2 + γL),

C1 = γL, Cj+1 = γLCj/(Aj + α/2 + γL), (17)

U1 =
β

2
+ γT , Uj+1 = U1 − γ2

T /(Uj + β/2 + γT ), (18)

W1 = γT , Wj+1 = γT Wj/(Uj + β/2 + γT ),

N1 = psm〈n0〉
α1/2β

π3/2
, Nj+1 =

psm〈n0〉α1/2β√
Aj + α/2 + γL(Uj + β/2 + γT )

Nj .
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Recurrence equations, (17) and (18) can be solved [3]. Let Fj be deˇned by

Fj = Aj+1 + A1, j = 0, 1, 2, . . . , (19)

then Fj is given by a ˇnite continued fraction [9]:

Fj = Pj/Qj, j = 0, 1, 2, . . . , (20)

Pj = q0Pj−1 + q1Pj−2, j = 2, 3, . . . , (21)

Qj = q0Qj−1 + q1Qj−2, j = 2, 3, . . . (22)

where q0 = α + 2γL, q1 = −γL
2, P0 = q0, Q0 = 1, P1 = q0

2 + q1C and Q1 = q0.
Therefore, Pj and Qj are given respectively by

Pj =
r2

j+2 − r1
j+2

r2 − r1
, Qj =

r2
j+1 − r1

j+1

r2 − r1
,

where

r1 =
α + 2γL −

√
α2 + 4αγL

2
, r2 =

α + 2γL +
√

α2 + 4αγL

2
.

Then Aj and Cj in Eqs. (15) and (16) are written respectively as

Aj =
r2 − r1

2
1 + (r1/r2)j

1 − (r1/r2)j
, Cj = (r2 − r1)

(r1/r2)j/2

1 − (r1/r2)j
. (23)

Similarly, Uj and Wj are respectively given by

Uj =
1
2
(t2 − t1)

1 + (t1/t2)j

1 − (t1/t2)j
, Wj = (t2 − t1)

(t1/t2)j/2

1 − (t1/t2)j
, (24)

where

t1 =
β + 2γT −

√
β2 + 4βγT

2
, t2 =

β + 2γT +
√

β2 + 4βγT

2
.

From Eqs. (12) and (24), the following expressions are obtained:

Δ(R)
j = ξj

{
1 −

(
r1

r2

)j/2
}−1 {

1 −
(

t1
t2

)j/2
}−2

, (25)

Δ(S)
j−1 = A0ξ

j−1

{
1 −

(
r1

r2

)j
}−1/2 {

1 −
(

t1
t2

)j
}−1

, (26)

where

ξ =
psm〈n0〉

√
αβ√

r2 t2
=

(
1 −

√
r1

r2

) (
1 −

√
t1
t2

)2

psm〈n0〉, (27)

A0 =
√

1 − r1/r2

(
1 − t1

t2

)
(1 − psm)〈n0〉. (28)

The generating function for multiplicity distribution P (n) is given by

Π(z) = Zsm(z) =
∞∑

j=0

P (n)zn.
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Then the differential equation for Π(z) is obtained from Eq. (12) as

d

dz
Π(z) =

∞∑
j=1

(
Δ(R)

j + jΔ(S)
j−1

)
zj−1Π(z). (29)

For j � 1, Eqs. (25) and (26) can be approximated as Δ(R)
j � ξj and Δ(S)

j−1 � A0ξ
j−1.

Therefore, with the boundary condition Π(1) = 1, we obtain

Π(z) = {1 − pin〈n〉(z − 1)}−1 exp
[
(1 − pin)〈n〉

(z − 1)
1 − pin〈n〉(z − 1)

]
, (30)

where the average multiplicity 〈n〉 and the chaoticity parameter pin in the inclusive events are
given by the following equations:

〈n〉 =
ξ

1 − ξ
+

A0

(1 − ξ)2
, pin〈n〉 =

ξ

1 − ξ
. (31)

The multiplicity distribution P (n) is given from Eq. (30) as

P (n) =
1
n!

∂n

∂zn
Π(z)

∣∣∣∣
z=0

= (32)

=
(pin〈n〉)n

(1 + pin〈n〉)n+1
exp

[
− (1 − pin)〈n〉

1 + pin〈n〉

]
Ln

(
(1 − pin)
1 + pin〈n〉

)
,

(33)

where Ln(x) denotes the Laguerre polynomial. Equation (33) is called the GlauberÄLachs
formula [5, 10]. The KNO scaling function of the GlauberÄLachs formula is given by

φ(z) =
1

pin
exp

[
−z + 1 − pin

pin

]
I0

(
2

pin

√
(1 − pin)z

)
, (34)

where I0(z) is the modiˇed Bessel function.

4. ANALYSIS OF EXPERIMENTAL DATA

At ˇrst, observed multiplicity distributions in Au+Au collisions at
√

s = 200A GeV [12]
are analyzed by the scaling form

P (n) =
φ(z)
〈n〉 , z =

n

〈n〉 . (35)

Results for Au +Au collisions and the estimated parameters from the analysis are shown
in Fig. 1 and Table 1, respectively.

The second-order BEC function in the QO approach for the Gaussian source function
is given by

N2−

NBG
= 1 + 2pin(1 − pin)E2B + pin

2E2B
2, E2B = exp [−r2qinv

2].

At qinv = 0, N2−/NBG − 1 = pin(2 − pin). It corresponds to correlation strength λ.
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Fig. 1. Analysis of charged multiplic-
ity distributions observed in Au+ Au colli-

sions [12] by Eq. (35)

Fig. 2. Analysis of charged multiplicity
distributions observed in pp collisions [14]

by Eq. (35)

Table 1. Estimated parameters in the analysis of charged multiplicity distributions observed in
Au + Au collisions at

√
s = 200A GeV [14]

Centrality, % 〈n〉 ± δ〈n〉 pin ± δpin χ2
min/n.d.f. pin(2 − pin)

0−05 62.3 ± 0.04 (9.81 ± 0.07) · 10−3 879.3/(58−2) 0.0195

20−25 34.0 ± 0.03 (2.19 ± 0.01) · 10−2 475.9/(48−2) 0.0433

50−55 9.31 ± 0.03 (7.52 ± 0.09) · 10−2 914.7/(24−2) 0.145

Table 2. Estimated parameters in the analysis of charged multiplicity distributions observed in
pp collisions at

√
s = 900 GeV [14]

η range 〈n〉 ± δ〈n〉 pin ± δpin χ2
min/n.d.f. pin(2 − pin)

|η| < 0.5 3.82 ± 0.05 0.579 ± 0.03 45.2/(24−2) 0.823

|η| < 1.0 7.59 ± 0.06 0.479 ± 0.01 48.5/(42−2) 0.729

|η| < 1.3 9.92 ± 0.08 0.434 ± 0.01 71.8/(48−2) 0.680

The correlation strength λ, estimated from the experimental data with full Coulomb cor-
rections for 0.2 < pT < 2.0 GeV/c for 0Ä30% centrality, is about 0.39 [13], which is much
larger than pin(2 − pin) in Table 1 estimated from the multiplicity distributions.

Then observed multiplicity distributions in pp collisions at
√

s = 900 GeV [14] are
analyzed by Eq. (35). Results and estimated parameters are shown in Fig. 2 and Table 2,
respectively.

The correlation strength λ, estimated from the experimental data for 0.1 < pT <
0.25 GeV/c for |η| < 0.8, is 0.628±0.133 [15]. It is not inconsistent with pin(2−pin) = 0.729
in Table 2 estimated from the multiplicity distributions for pseudorapidity range |η| < 1.0.

5. SUMMARY AND DISCUSSIONS

The analytical formula for multiplicity distribution in the QO approach is derived. It be-
comes the GlauberÄLachs formula. A relation between the chaoticity parameter pin in the
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inclusive events and that psm in the semi-inclusive events is obtained. Multiplicity distri-
butions observed in the Au+ Au collisions at

√
s = 200A GeV and in pp collisions at√

s = 900 GeV are analyzed by the scaling form of GlauberÄLachs formula. The correlation
strength calculated with pin is compared with that measured from the second-order BEC data.

In Au +Au collisions, the former calculated with pin is much smaller than the latter
measured from the BEC data. It would be caused by the fact that the centrality region for
the data sample of MD is different from that for the second-order BEC. It would be very
interesting whether both values are consistent or not, if the MD and the second-order BEC
are taken from the same centrality region.

In pp collisions, the former is not inconsistent with the latter.
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