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Analytical formula for multiplicity distribution is derived in the QO approach, where chaotic and
coherent fields are contained. Observed charged multiplicity distributions in Au-+ Au collisions at
/s = 200A GeV and in pp collisions at /s = 900 GeV are analyzed by the formula. Chaoti-
city parameters in the inclusive events estimated from the analysis of multiplicity distributions are
compared with those estimated from the analysis of observed two-particle inclusive identical particle
correlations.

PACS: 25.75.-q

INTRODUCTION

In high-energy nucleus—nucleus (AA) collisions or hadron-hadron collisions, Bose-Ein-
stein correlations of identical particles are considered as one of the possible measures for the
space-time domain where identical particles are produced. As the colliding energy of AA
collisions increases, thousands of identical particles can be produced in an event. Then, the
production domain of those particles can be analyzed precisely event by event, or among
the events with fixed multiplicity. Up to the present, most of theoretical approaches to
identical particle correlations at fixed multiplicity are investigated in the case of purely chaotic
field [1-4].

One of the theoretical approaches to the Bose—Einstein correlations is made on the analogy
of the quantum optics [5], where two types of sources, chaotic and coherent, are introduced.
A diagrammatical method, based on the Glauber—Lachs formula [5], has been proposed [6] to
find higher order Bose—Einstein correlation (BEC) functions. In [7], the generating functional
(GF) for the momentum densities in the inclusive events is derived, and a diagrammatic
representation for cumulants is proposed. Identical particle correlations at fixed multiplicity
are formulated in [8].

In the present paper, analytical formula for multiplicity distribution, which is identified
to the Glauber—Lachs formula, is derived. A relation between the chaoticity parameter pgp,
in the semi-inclusive events and that p;, in the inclusive events is also obtained. Observed
multiplicity distributions are analyzed by the Glauber-Lachs formula. Estimated value of pj,
from the observed multiplicity distributions is compared with that from the observed inclusive
identical two-particle correlations.
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1. GENERATING FUNCTIONAL

In the QO approach, the n-particle momentum density in the semi-inclusive events is
defined by

pu(pL, ... Pn) = co<|f(pl)|2 | fPa))as M
Zm ) + fe(p), )

where ¢ is a normalization factor. In Eq. (2), ¢;(p) and f.(p) are amplitudes of the ith chaotic
source and a coherent source, respectively, and a; is a random complex number attached to
the ith chaotic source. The number M of independent chaotic sources is regarded to be
infinite.

In Eq. (1), parenthesis (F'), denotes an average of F' over the random number a; with a

Gaussian weight [5]:
1 lai*] »
. /exp[ Y d“a 3)

The single-particle and the two-particle momentum densities are respectively given as

gl

1=

p1(p1) = co{lf(P1)*)a = colr(pr,p1) + c(p1,p1)],
p2(p1,p2) = coll f(p1) f(p2)1?)a = co{p(p1)p(p2) + Ir(p1, p2)|* + 2Re [r(p1, p2)c(p2, p1)]},

where r(p1,p2) is a correlation caused by the chaotic sources and ¢(p1,p2) is a correlation
by the coherent source,

r(p1,p2) Z&fﬁz (p1) &7 (p2), c(p1,p2) = fe(p1) 12 (p2)- “)

The GF of the semi-inclusive events is defined by the following equation:

< o .

From Egs. (1) and (5), the GF is written as

Zunlhto)] = o (0 | [ 11 2] ) ©

where an additional constant Zgy[h(p) = 0] is added to the right-hand side of Egq.(6).
Inversely, the n-particle momentum density in the semi-inclusive events is given from
the GF as

0" Zsm[h(p)]

n s PUn =F En—
prprs-opn) = Ex o By S oy

h(p)=0
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The generating function for multiplicity distribution P(n) is given from Eq. (5) if function h(p)
is independent of momentum p:

Zuntt) = o (oo [ 110 EE]) - g

The multiplicity distribution (MD) is given from Eq. (7) as

P(0) = Zgu(0) = co, P(n)= % angsT“;(h)

h=0

2. CUMULANTS

The GF Ggm[h(p)] for cumulants in the semi-inclusive events is defined by the following
equation:

Gsm[h(p)] = In Zgw [1(p)]- @)
The nth order cumulant is given by

0" Gsm[h(p)]

By : 9
6h(p1) - -+ 6h(Pn) |1 (p)=0 ©

gn(ph' apn) =FE--

From Egs. (6), (8) and (9), we have an iteration relation for momentum densities,

p1(p1) = cog1(p1),
pn(D1, - 0n) = g1(P1)Pn—1(D2, ..., Pn) +

n—2
+ Z Z giJrl(plapjn e 7pji)pn77;71(pji+17 e )pjn—l) + Cogn(pla cee 7pn)' (10)
i=1

The second summation on the right-hand side of Eq.(10) indicates that all possible com-
binations of (j1,...,7;) and (ji41,...,Jn—1) are taken from (2,3,...,n). The n-particle
momentum density p,(p1,...,pn) (R = 1,2,...) is written by the cumulant g;(p1,...,p;)
(i=1,2,...,n) from Eq. (10).

Diagrammatic representation of Eq. (10) is shown in [8]. For example, cumulants up to
the third order are written explicitly as

g12 = T12721 + C12721 + T12C21,

(1)

g123 = 712723731 + C127237'31 + T"12C23731 + T"12723C31 + C.C.,
where the following abbreviations are used:
Gir-jm = 9m(Djrs 5 Pjm )5 Tig = (DisPj),  Cij = C(DisPj)s

and complex conjugates to the terms explicitly shown are denoted by c.c.
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3. MULTIPLICITY DISTRIBUTION
From Egs. (10) and (11), we obtain a recurrence equation for MD,

1< ‘ ‘
Pn)=—>" [Agm +3A§§)1} Ptn—j), n=1,2,..., (12)
j=1

where, with Ro(kl, kg) = w153(k1 — kg),

d3k d?’]f
Ag-R) = /Rj(kak)77 Rj(p1,p2) :/T(Plak')ijl(kvp?)T’ (13)
d?’]f d?’]f
Ag-‘i)l = /Sjﬂ(k,k)ja Sj-1(p1,p2) = /C(Plak)ijl(k’pQ)T (19

In the followings, variables are changed from (p;r,pir) to (y;, pir), where y; is the
rapidity of particle i. Correlations r(p1,p2) and ¢(p1,p2) are both assumed to be real, and
parametrized as [8]

T(?Jl; P17 Y2, P2T) = Psm \/p(yl7 plT)P(y2, pQT) I(A% AI)1T),

c(y1, P17; Y2, P2r) = (1 — psim) vV p(y1, P17) (Y2, P2r),
ol/2

plyr, Prr) = (no) —57- exp[—ayi — Bpiz),

I(Ay, Apr) = exp [-7.(Ay)* — vr(Apr)?],

where Ay = yo — y1, Apr = p2r — P17, and pgy, is the chaoticity parameter in the semi-
inclusive events. It is assumed to be constant at present.
Then, R;(p1,p2) in Egs. (13) and (14) is given by the following form:

R;(y1, P17, Y2, Par) = Njexp [ A;(yf + v3) + 2C;y192] x
X exp [_Uj(P%T +p3r) + 2W;p1rP2r),

and
(R) (R) T 2 il
AP b ey AR Z N : 15
1= Pemno)y 4 ’ <2(Aj - Cj)) 2(U; — W) ()
32(1 = pam) (no)
AP = (1 - pan)(ng), AP =N, -2 Ak 16
0 ( Psm)(n0) j J\/m(Uj_’_Ul) (16)
where
a
A1:5+7L; Aja :A1—’Y%/(Aj+04/2+’YL)7
Ci =7, Cit1=7C/(A; +a/2+ 1), (17)
U1=§—|—’YT7 Ujpr = U1 —v3/(U; + B/2+ 1), (18)
Wi =~r, Wit =vW;/(U;+ B/2+ ),
al/?p Psm{no)al/?p

lepsm<n0>—; N; 1= N;.
w820 T A af2 + (U + B/2+ 1)
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Recurrence equations, (17) and (18) can be solved [3]. Let F}; be defined by

Fj:Aj+1+A17 j:O71527"'7 (19)
then Fj is given by a finite continued fraction [9]:
F;=P;/Q;, j=0,1,2,..., (20)
Pj:qOPj—l—"qle—Qa j:273a"'7 (21)
Qj :(IOijl +q1Qj72a ] :2a37"' (22)
where qo = o+ 2y, 1 = =% Po = qo. Qo = 1, Pr = qo®> + 1C and Q1 = qo.
Therefore, P; and @; are given respectively by
Pod T2 g 42 Pod Tl _ g it
P; = T U e—
2—T T2 —T1
where
. a+ 2y — a? + daryg . a+ 2y + a2 + daryg
1= 5 2 — :
2 2
Then A; and C; in Eqgs. (15) and (16) are written respectively as
ro — 11 1+ (r/ra)? (7”1/7“2)j/2
R ey ey e TRl (A ey oy (23)
Similarly, U; and W; are respectively given by
1 1+ (t1/t2)’ (t1/t2)7/?
Ui==(ty—t1)———L2 W, = (tg —t;)—L22 24
1= 5l 1)1—(751/1&2)1 5= (2 1)1—(751/752)1 @4
where
; B2y — /B2 + 4B ; B2y +/B2+ 408y
1= , o= .
2 2

From Eqgs. (12) and (24), the following expressions are obtained:

i/f2) 7! i/2) 72
NG {1 - <:—;> } {1 - <§—;> } : 25)
5y /2 iy L
AP, = Agg™! {1— <7"—1) } {1— (t—1> } ) (26)
T2 12

where
2
€= %22\/56 = (1 — :—;) (1 - %) psm<n0>7 27

Ay = V 1- Tl/TQ (1 - %) (1 _psm)<nO>- (28)

The generating function for multiplicity distribution P(n) is given by

(2) = Zsm(z) = Y _ P(n)2".
=0
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Then the differential equation for II(z) is obtained from Eq. (12) as
d > R A (S i
T OEDY (A; ) +3A§_>1) ZMI(2). (29)
j=1

For j > 1, Egs.(25) and (26) can be approximated as A;R) ~ &7 and Agfi)l ~ Ag&i~t
Therefore, with the boundary condition II(1) = 1, we obtain

I(z) = {1 — pin(n)(z — 1)}_1 exp {(1 — Pin)(n) 1 —pf:@;ii =ik (30)

where the average multiplicity (n) and the chaoticity parameter p;, in the inclusive events are
given by the following equations:

§ Ao §
n)=-——7+%t=——753 Pnll)=—"7. (€29)
A L
The multiplicity distribution P(n) is given from Eq. (30) as
1o
P(n)= ——1I1 = 2
()= )| (32

_ (pin(n))" exp | — (1 = pin)(n) (1 — pin)
T (Ut pm(m)rtt P [ 1+ pin(n) ] Ln <1 +pin<”>>(’33)

where L, (z) denotes the Laguerre polynomial. Equation (33) is called the Glauber—Lachs
formula [5,10]. The KNO scaling function of the Glauber—Lachs formula is given by

b(2) = — exp [—u} Iy (3 = pin)Z) | (34)

Pin Pin in

where Iy(z) is the modified Bessel function.

4. ANALYSIS OF EXPERIMENTAL DATA
At first, observed multiplicity distributions in Au+ Au collisions at /s = 2004 GeV [12]

are analyzed by the scaling form

P(n) = o) _ (35)

AR
Results for Au+ Au collisions and the estimated parameters from the analysis are shown
in Fig. 1 and Table 1, respectively.
The second-order BEC function in the QO approach for the Gaussian source function
is given by
N2-

~NBe = L+ 2pin(1 = pin) B2 + pin*E2p”,  Eap = exp [~ qiny”].

At ¢iny = 0, N27/NBG — 1 = p;,(2 — pin). It corresponds to correlation strength \.
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Fig. 1.  Analysis of charged multiplic- Fig. 2. Analysis of charged multiplicity

distributions observed in pp collisions [14]

ity distributions observed in Au+ Au colli-
by Eq. (35)

sions [12] by Eq. (35)

Table 1. Estimated parameters in the analysis of charged multiplicity distributions observed in
Au + Au collisions at /s = 2004 GeV [14]

Centrality, % | (n) £ d(n) Din T OPin XZin/n.d.f. Pin(2 — Pin)
0—05 62.3+0.04 | (9.81+£0.07)-10° | 879.3/(58—2) | 0.0195
20—25 34.0+0.03 | (2.19+0.01) - 1072 475.9/(48-2) 0.0433
50—55 9.31+0.03 | (7.52 £+ 0.09) - 1072 914.7/(24-2) 0.145

Table 2. Estimated parameters in the analysis of charged multiplicity distributions observed in
pp collisions at /s = 900 GeV [14]

7) range (n) £ 0(n) Pin £ OPin Xin/n.df. | pin(2 — pin)
Inl <05 | 3.824£0.05 | 0.579+0.03 | 45.2/(24—2) 0.823
In| < 1.0 | 7.59+0.06 | 0.479 +£0.01 | 48.5/(42—2) 0.729
In| < 1.3 | 9.92+0.08 | 0.434 £0.01 | 71.8/(48—2) 0.680

The correlation strength A, estimated from the experimental data with full Coulomb cor-
rections for 0.2 < pr < 2.0 GeV/c for 0-30% centrality, is about 0.39 [13], which is much
larger than pi, (2 — pin) in Table 1 estimated from the multiplicity distributions.

Then observed multiplicity distributions in pp collisions at /s = 900 GeV [14] are
analyzed by Eq.(35). Results and estimated parameters are shown in Fig.2 and Table 2,
respectively.

The correlation strength )\, estimated from the experimental data for 0.1 < ppr <
0.25 GeV/c for || < 0.8, is 0.628+0.133 [15]. It is not inconsistent with p;, (2—pin) = 0.729
in Table 2 estimated from the multiplicity distributions for pseudorapidity range |n| < 1.0.

5. SUMMARY AND DISCUSSIONS

The analytical formula for multiplicity distribution in the QO approach is derived. It be-
comes the Glauber-Lachs formula. A relation between the chaoticity parameter p;, in the
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inclusive events and that pg, in the semi-inclusive events is obtained. Multiplicity distri-
butions observed in the Au+ Au collisions at /s = 2004 GeV and in pp collisions at
v/s =900 GeV are analyzed by the scaling form of Glauber-Lachs formula. The correlation
strength calculated with py, is compared with that measured from the second-order BEC data.

In Au+ Au collisions, the former calculated with p;, is much smaller than the latter

measured from the BEC data. It would be caused by the fact that the centrality region for
the data sample of MD is different from that for the second-order BEC. It would be very
interesting whether both values are consistent or not, if the MD and the second-order BEC
are taken from the same centrality region.

In pp collisions, the former is not inconsistent with the latter.
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