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BKT PHASE TRANSITION IN A 2D SYSTEM
WITH LONG-RANGE DIPOLEÄDIPOLE INTERACTION
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We consider phase transitions in 2D XY -like systems with long-range dipoleÄdipole interactions and
demonstrate that BKT-type phase transition always occurs separating the ordered (ferroelectric) and the
disordered (paraelectric) phases. The low-temperature phase corresponds to a thermal state with bound
vortexÄantivortex pairs characterized by linear attraction at large distances. Using the MaierÄSchwabl
topological charge model, we show that bound vortex pairs polarize and screen the vortexÄantivortex
interaction, leaving only the logarithmic attraction at sufˇciently large separations between the vortices.
At higher temperatures the pairs dissociate and the phase transition similar to BKT occurs, though at a
larger temperature than in a system without the dipoleÄdipole interaction.

� ¸¸³μÉ·¥´ Ë §μ¢Ò° ¶¥·¥Ìμ¤ ¢ ¤¢Ê³¥·´μ° XY -³μ¤¥²¨ ¸ ¤ ²Ó´μ¤¥°¸É¢ÊÕÐ¨³ ¤¨¶μ²Ó-
¤¨¶μ²Ó´Ò³ ¢§ ¨³μ¤¥°¸É¢¨¥³. �μ± § ´μ, ÎÉμ ¶·¨ μ¶·¥¤¥²¥´´μ° É¥³¶¥· ÉÊ·¥ ¶·μ¨¸Ìμ¤¨É Ë §μ¢Ò°
¶¥·¥Ìμ¤ 	¥·¥§¨´¸±μ£μÄŠμ¸É¥·²¨Í Ä’ Ê²¥¸¸  (	Š’) ¨§ Ê¶μ·Ö¤μÎ¥´´μ£μ ¸¥£´¥ÉμÔ²¥±É·¨Î¥¸±μ£μ ¸μ-
¸ÉμÖ´¨Ö ¢ ´¥Ê¶μ·Ö¤μÎ¥´´μ¥ ¶ · Ô²¥±É·¨Î¥¸±μ¥. ‚ ´¨§±μÉ¥³¶¥· ÉÊ·´μ° Ë §¥ ´  Ëμ´¥ μ¤´μ·μ¤´μ°
¶μ²Ö·¨§ Í¨¨ ¤¨¶μ²Ó´ÒÌ ³μ³¥´Éμ¢ ¨³¥ÕÉ¸Ö ¸¢Ö§ ´´Ò¥ ¶ ·Ò ®¢¨Ì·ÓÄ ´É¨¢¨Ì·Ó¯, Ô´¥·£¨Ö ±μÉμ·ÒÌ
²¨´¥°´μ ¢μ§· ¸É ¥É ¸ Ê¢¥²¨Î¥´¨¥³ · ¸¸ÉμÖ´¨Ö ³¥¦¤Ê ¢¨Ì·Ö³¨ ¢ ¶ ·¥. �  μ¸´μ¢¥ ³μ¤¥²¨ Éμ¶μ²μ-
£¨Î¥¸±¨Ì § ·Ö¤μ¢ Œ °¥· Ä˜¢ ¡²Ö ¶μ± § ´μ, ÎÉμ £ § ¸¢Ö§ ´´ÒÌ ¶ · ³ ²ÒÌ · §³¥·μ¢ ¶μ²Ö·¨§Ê¥É ¨
Ô±· ´¨·Ê¥É ¢§ ¨³μ¤¥°¸É¢¨¥ ³¥¦¤Ê ¢¨Ì·¥³ ¨  ´É¨¢¨Ì·¥³ ¢ ¶ · Ì ¡μ²ÓÏμ£μ · §³¥· . ‚ ·¥§Ê²ÓÉ É¥
²¨´¥°´Ò° § ±μ´ ¢§ ¨³μ¤¥°¸É¢¨Ö ¢ ¶ · Ì ¸³¥´Ö¥É¸Ö ²μ£ ·¨Ë³¨Î¥¸±¨³. ‚¸²¥¤¸É¢¨¥ ÔÉμ£μ ¶·¨ ¶μ¢Ò-
Ï¥´¨¨ É¥³¶¥· ÉÊ·Ò ¶ ·Ò ¤¨¸¸μÍ¨¨·ÊÕÉ, É. ¥. ¶·μ¨¸Ìμ¤¨É Ë §μ¢Ò° ¶¥·¥Ìμ¤,  ´ ²μ£¨Î´Ò° ¶¥·¥Ìμ¤Ê
	Š’. ’¥³¶¥· ÉÊ·  ¶¥·¥Ìμ¤  ¶·¨ ÔÉμ³ ¢ÒÏ¥, Î¥³ ¢ μÉ¸ÊÉ¸É¢¨¥ ¤¨¶μ²Ó-¤¨¶μ²Ó´μ£μ ¢§ ¨³μ¤¥°¸É¢¨Ö.
“± § ´´Ò° Ë §μ¢Ò° ¶¥·¥Ìμ¤ ¶·¨¢μ¤¨É ± μ¤´μ¢·¥³¥´´μ³Ê ¨¸Î¥§´μ¢¥´¨Õ ± ± ¡²¨¦´¥£μ, É ± ¨ ¤ ²Ó-
´¥£μ ¶μ·Ö¤±  ¢ ¸¨¸É¥³¥ ¤¨¶μ²¥°.

PACS: 75.30.Kz; 64.70.D; 75.10.Jm; 61.72.Hh; 75.40.-s

Phase transitions and long-range order in 2D systems are intimately related with dynamics
of topological excitations (vortices) with logarithmic interactions: the transition occurs when
vortexÄantivortex pairs dissociate at a certain ˇnite temperature [1Ä3]. The ground state of
the system is not truly ordered (there can be no true long-range order) but super
uid at
temperatures below the phase transition point. The transition has been observed in numerous
experimental systems, such as weakly interacting ultracold gases [4].
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There are situations though when the microscopic interactions are long-range, as in a
case of a system with appreciable dipoleÄdipole forces. The nature of the phase transition
under the circumstances has a long history [5Ä11]. It should be noted that there is no clear
understanding of related phenomena so far [12]. DipoleÄdipole interactions are shown to lead
to formation of a true long-range order at small temperatures, so that the ground state of a 2D
system of magnetic dipoles is a ferromagnet [5]. The spontaneous polarization of the ground
state has also been pointed out in [6]. Both works do not clear out the nature of the phase
transition, which has been studied ˇrst in [13], where the correction to BKT temperature was
obtained in the limit when the dipoleÄdipole interaction is much smaller than the exchange
term, and hence the correction to the transition temperature is small. The author made an
important observation though: the interaction between the vortices was found to be linear
at sufˇciently large distances (see [10] for a recent discussion). Ferromagnetic ordering was
studied in various model dipole systems theoretically in [7Ä9] and experimentally in [11].
It was shown in [14, 15] that the ground state of the two-dimensional dipole systems has a
striped structure. It should be noted here that the the long-range structure of the ground state
crucially depends on the short-range form of the dipole lattice [7Ä9]. The long-range order
can be destroyed by the short-range disorder [16,17] relevant for the liquid state considered in
our paper. Arguably, dipoleÄdipole forces between water molecules on hydrophobic surfaces
can lead to macroscopic ordering of the molecular dipoles such as creation of macroscopic
hydrogen-bond networks in biological systems [18Ä20].

In spite of vast volume of the research, the nature of the disordering phase transition
appears to be somewhat controversial. There are claims that the long-range dipoleÄdipole
forces change the physics of the phase transition, entirely transforming BKT vortex pairs
dissociation transition in a nonpolar system to a deconˇnement transition similar to that in
quarkÄgluon plasma [10]. Note that transition temperature is predicted to be four times
higher than BKT temperature. Below we perform a systematic study of dipoleÄdipole in-
teraction in
uence in 2D systems at ˇnite temperatures. We show that the interaction leads
to ferromagnetic ordering at low temperatures without contradiction to the MerminÄPeierls
theorem [21] and in a full accordance to the earlier statements. The phase transition itself
turns out, as in BKT case, to be associated with dissociation of vortices. We calculate the
transition temperature, TC , as a function of the interactions parameters. We show that the
linear interaction between the vortices does change the transition temperature, though the
vortex gas polarization screens the long-range linear potential and transforms it to a logarith-
mic interaction. Therefore, in a system with dipoleÄdipole interaction the phase transition is
essentially BKT, though the transition temperature itself has a complicated dependence on the
model parameters.

At last we apply the developed model to water-solute boundaries using the phenom-
enological vector model of polar liquids [18, 20]. We show that spontaneous polarization
of molecular dipoles next to hydrophobic boundaries may occur and a ferroelectric liquid
ˇlm may form. The vector model naturally describes topological excitations on the solute
boundaries. The dissociation of the vortex pairs can be associated with disappearance of
hydrogen bond networks in the course of orderÄdisorder phase transition in the hydration
water layer [22Ä24].

Consider a plane layer of a thickness λ composed of interacting dipoles. The unit vector
S(r) is taken parallel to the dipole moment of a molecule residing at a point r and is
characterized by the orientation angle θ(r): S = (cos θ(r), sin θ(r)). The Hamiltonian of the
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interacting system consists of the two parts:

GS = GH + Gdd, (1)

where the short-ranged gradient term gives the energy of a nonpolar system

GH =
1
2
M

∫
Γ

df (∇θ)2 , (2)

and the long-range dipoleÄdipole interaction is represented by the following model term:

Gdd =
1
2
K

∫
Γ

dfdf ′ (∇ · S) (∇′ · S′)
|r − r′| , (3)

where df is the element of the surface Γ, whereas the constants M and K characterize the
strength of the interactions. The Hamiltonian has been studied in the limit M � λK in [5,13].

Consider the case of an arbitrary relation between parameters λK and M . At small
temperatures T the dipole system is ordered; i.e., all the dipoles point at the same direction,
for example, along the x axis (θ(r) = 0). To prove that, let us consider the correlation
function of the dipole orientation 
uctuations: K2 (r) = 〈θ (0) θ (r)〉, |θ| � 1. Keeping
quadratic terms in θ only and linearizing the Hamiltonian, we ˇnd that

GS ≈ 1
2
M

∫
Γ

df (∇θ)2 +
1
2
K

∫
Γ

dfdf ′ θy (r) θy (r′)
|r − r′| ,

so that the correlation function takes the form

K2 (r) = T

∫
d2k

exp (ikr)
Mk2 + 2πKk sin2 α

, (4)

where α is the angle between wave vector k and x axes. The integral in the r.h.s. converges
at small values of k; therefore, K2(0) is ˇnite and hence the ordered state is thermally stable.
In fact, the appearance of the last term in the integrand denominator resolves the contradiction
with the MerminÄPeierls theorem [21]. It may even seem that the correlation function integral
converges solely due to the ˇnite value of the dipoleÄdipole interaction strength (K �= 0). The
conclusion is in fact wrong: as is clear from Eq. (4), at M → 0 the integral diverges at α → 0.
It means that both terms in Eq. (1) denominator are equally important. Mathematically, this
analysis is in full agreement with a well-known feature of classic electrostatics, the Earnshaw
theorem: a system of classical charges interacting with electrostatic forces only can have no
stable state [25,26].

To elucidate the nature of the ordered state, let us consider the correlation function at large
distances r. The main contribution to the integral in Eq. (4) comes from the two separate
regions: |α| � 1 and |α − π| � 1, so that

K2 (r) ≈ 4T

M
√

π

∞∫
0

dτ cos
(
xτ2

)
exp

(
−|y| τ3

√
γ

)
(5)
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with γ = 2πK/M . The calculation in Eq. (5) is simpliˇed in the two following limiting cases:

K2 ≈
√

2T
M

√
|x|

, |y| � √
γ |x|3/2

,

K2 ≈ 4T

3M
√

π |y|1/3
Γ

(
1
3

)
, |y| � √

γ |x|3/2
.

The correlations at large temperatures are addressed in [10] and turn out to decay exponen-
tially. The crossover between the power laws found here for small T and the exponential
decay at large T suggests a phase transition at some intermediate temperature TC .

Polarization conˇguration S(x, y) corresponding to a vortexÄantivortex pair (VAP)

To establish the transition temperature, we apply a set of familiar arguments (see, e.g., [2]
for further explanations). Thermodynamics of a 2D system can be mapped to thermody-
namics of a gas of interacting vortexÄantivortex pairs (VAPs) [27]. Consider ˇrst the small
temperatures limit: T < TC , TC − T � TC . The thermal state in this case can be viewed
as a gas of bound VAPs. Since the considered temperature is still below the transition point,
VAPs approach the dissociation limit and the pairs with large distances r between the vortices
dominate. At such separations the vortexÄantivortex interaction is described by the linear
term and the energy of the system can be approximated as [10]

F ≈ 2NE0 +
1
2
K

∑
i, j

qiqj (−rij) =
1
2

∑
i

qiΦ (ri) , (6)

where N is the number of the VAPs and qj = ±1 are the topological charges associated with
the vortices [28]. The ®rest energy¯, E0, is the energy associated with a pair of a minimum
possible separation r ∼ λ, where λ is the size of the vortex core. The latter quantity is small,
model-dependent and depends on microscopic details of the underlying physical system (such
as thickness of the layer). The (quasi-electric) potential Φ (r) is introduced in analogy with
electrostatics and amounts to the energy associated with the interaction of a given vortex
(charge) with all other vortices in the system:

Φ (r) = −K
∑

j

qj |r− rj | = −K

∫
|r − r′| ρ (r′) d2r′, (7)

where ρ (r) =
∑
j

qjδ
(2) (r − rj) is the vortex charge density.
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The topological charge model (6) seems to be questionable if one takes into account the
paper [29] in which the existence of the strings in the vortexÄantivortex pair was reported
in the case when the pair axis is parallel to the overall polarization vector, ϕ = 0, where
ϕ is the angle formed by the polarization vector and the axis. At the ˇrst sight, it means
that the superposition principle behind the expression (6) fails. To study this question, we
found numerically the ground state of Hamiltonian (1) on numerous lattices. We found that
the conclusion of [29] is correct only in case ϕ = 0. We turned the vortexÄantivortex pair
axes and found that the string disintegrates at ϕ �= 0. The energy of pair is a function of ϕ
and the distance L between vortex cores behaves approximately as follows from Eq. (6). It
means that the expression (6) is capable of giving, at least, a qualitative answer on the nature
of the phase transition in 2D dipole system in accordance with [10]. It is shown below that
given (6) it is possible to achieve more deˇnite analytical results than those obtained in [10].
It seems to be important if we also take into account that it is difˇcult to obtain a clear and
robust picture knowing only the results of numerical experiments [12]. We hope that the
topological charge model (6) can shed a light on physics of the phase transition in 2D dipole
systems.

According to its deˇnition (7), the potential Φ (r) satisˇes the analogue of the Poisson
equation L̂rΦ (r) = Kρ (r), where the linear operator L̂r is deˇned so that

L̂r (− |r− r′|) = δ(2) (r − r′) . (8)

Let us follow the electrostatic analogy even further: since the energy of a charge (vortex)
q placed in the external potential Φ is U = qΦ, the force acting on the charge (vortex) is
F = qE, where the quasi-electric ˇeld vector E = −∇Φ is associated with the potential Φ in
a normal way.

To ˇnd out the energy of a VAP in a self-consistent ®electric¯ ˇeld of all other pairs, let
us deˇne the ®dipole moment¯ of a pair according to

d =
∑

j

qjrj = q+r+ + q−r− ≡ r, (9)

where r = r+−r−. Then, the energy of the pair is U = q+Φ (r+)+q−Φ (r−) ≈ −d ·E. Let
us pursue the analogy and calculate ˇrst the polarizability αP of a single VAP. The dipole
moment of a pair in a weak external ˇeld E is given by a standard relation

〈d〉 =

∫
dfr exp

(
r · E
T

− K

T
r

)

∫
df exp

(
r ·E
T

− K

T
r

) ≈ αPE, (10)

where αP = T/K2 is nothing else but the pair polarizability.
At the transition temperature, T = TC , VAPs begin to dissociate. It means that at

TC − T � TC only a small fraction of the pairs are very large and close to dissociation. For
this reason, it is possible to neglect the interactions between the largest VAPs and calculate
the energy of single large pair approaching its dissociation limit in a cloud of comparatively
small bound VAPs. As we have demonstrated above, the bound pairs are polarizable and
therefore the ˇeld of a charge is screened by the polarization of VAPs gas, thus in
uencing
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the potential energy of a large VAP. To ˇnd out how exactly, let us consider the effect of
shielding of a probe point charge Q or the charge density ρQ = Qδ(2) (r) placed at the origin.
The complete ®electrostatic¯ potential Φ (r) is produced both by the probe charge and the
polarization charges of VAPs. The density ρP of the polarization charges is given by usual
expressions following from Eq. (9): ρP = −∇ ·P, where P is polarization of the vortex gas:

P = nP 〈d〉 = χE = −χ∇Φ, (11)

with χ = αP nP and nP being the ®dielectric susceptibility¯ of the gas of VAPs and the
concentration of the pairs, correspondingly.

Combining Eqs. (8), (11) and (7), we obtain the complete equation for Φ (r):

L̂rΦ (r) = K (ρQ + ρP ) = KQδ(2) (r) + Kχ
Φ (r) . (12)

Since the Fourier component of the operator L̄r is Lk = k3/2π, we ˇnd that

Φ(r) = QK

∫
d2k

(2π)2
exp (ikr)

k3

2π
+ Kχk2

. (13)

At large distances, r � r0, where r0 = 1/2πKχ, most contribution to the integral comes
from small values of k, where k3 term in the denominator is negligible. Therefore, the
potential of the ®charge¯ at large distances is logarithmic: Φ(r) = − (Q/2πχ) log (r/C1),
r � r0, where C1 ∼ r0. In the opposite limit, r � r0, the potential is linear: Φ(r) ≈ −Kr,
r � r0. Below we propose a simple expression interpolating between the two results:
Φ(r) ≈ − (Q/2πχ) log (1 + r/r0), so that the energy of a large pair of a size R is given by

EVAP(R) ≈ 2E0 +
1

2πχ
log

(
1 +

R

r0

)
. (14)

We note that although the dipoleÄdipole interactions do change the interactions between the
vortices at small distances, the polarization of the VAPs destroys the linear attraction at large
separations between the vortices and hence the phase transition associated with the dissociation
of the pairs is qualitatively very similar to BKT transition in a nonpolar system.

Standard calculation of BKT temperature for a vortex gas with interaction (14) gives the
following implicit equation for the transition temperature TC :

T 2
C =

K2

12πnP (TC)
. (15)

The density nP at the transition temperature can be calculated from the following argument.
At T ≈ Tc the VAPs just start to dissociate and therefore the size of a typical pair is
small and the interaction between the vortices is still linear and unscreened and nP (T ) =
2π exp (−2E0/T )

(
T 2/λ4K2

)
. Therefore, Eq. (15) for the transition temperature takes the

form

2π
√

2
(

TC

λK

)2

= exp
(

E0

TC

)
. (16)

From this equation it is clear that its solution always exists and is unique.
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Let us assume ˇrst that the dipoleÄdipole interactions are small, i.e., λK � M . Since
the energy of a minimal vortexÄantivortex pair E0 ∼ M , the transition temperature Tc ∼ M ,
which coincides with the standard BKT result (TBKT = πM/2). This is precisely the limit
considered in [13]. In the opposite limit, M � λK , the exponent in the r.h.s. of Eq. (16) is
approximately 1 and hence TC ∼ λK � TBKT. The phase transition temperature is indeed
larger than BKT temperature, in agreement with [10], although our analysis suggests that TC

can be arbitrarily larger than TBKT.
Layers of water molecules on hydrophobic surfaces such as biological membranes or large

biomolecules are another interesting example of 2D systems with dipoleÄdipole interactions.
The orientations of molecules next to a macromolecular surface depend on interplay of long-
range interactions of the molecular dipoles and the short-range hydrogen bonds between the
adjacent molecules. Since an energy of uncompensated hydrogen bond is large compared
to the temperature, no water molecules can point their dipole moments in the direction of a
hydrophobic surface, and thus all the water molecules next to the surface have their dipole
moments parallel to the surface. Macroscopic polarization of the molecules s (r) = 〈S (r)〉
vanishes quickly in the direction of the liquid bulk. Therefore, a water layer next to a
hydrophobic boundary can be studied with the help of a model Hamiltonian (1) corresponding
to a 2D system of interacting dipoles (see [18, 20] and references therein). According to the
ˇndings of the current work, the layer of water molecules is completely polarized, s ≈
s‖, at very low temperatures. Microscopic parameters of water are such that M ∼ λK
and therefore the macroscopic polarization and molecules orientation ordering disappears at
temperature TC ∼ M ∼ EHs2

‖, where EH ≈ 2500 K is the characteristic energy of a hydrogen
bond. The expression suggests that the transition temperature corresponding to a completely
hydrophobic surface (s‖ ≈ 1) is always very large, the water molecules are ordered at all
realistic temperatures and thus there always exists a macroscopic hydrogen bonds network
on the surface of the body. If a surface is partly hydrophilic, i.e., hydrogen bonds donors
or acceptors, such as charges, s‖ < 1 and at s‖ = 0.3 the transition may occur even at
room temperatures. The evidence of such transitions is observed in molecular dynamics
calculations [22Ä24]. So, the presented here simpliˇed model seems to succeed in description
of hydration water properties.

It seems to be useful to elucidate the conclusion about the 2D character of phase transition
considered here. It immediately follows from expressions (1)Ä(3) that contain only the
surface integrations. As was stated above, at temperatures close to the phase transition point
TC the free energy part (1) that originates from polarization of polar liquid is dominated by
the contribution from VAPs with large distances between their vortices. In any case these
distances are large compared with the layer thickness λ. It is the physical reason for the
2D behavior. In this case the starting expression [18,20] for the free energy that is composed
of integrals over liquid bulk comes to the surface integrals (1)Ä(3).

The work was supported by Quantum Pharmaceuticals. Phenomenological water models
are used in Quantum everywhere to compute solvation energies and protein-drug interactions
in aqueous environment.
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