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A NOVEL MATHEMATICAL MECHANISM
OF THE CRITICAL ENDPOINT GENERATION
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Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev

We develop a novel model of the QCD matter critical endpoint by matching the deconfinement
phase transition curve with the nil line of the bag surface tension coefficient. As a result, this leads to
a new structure of the leading singularities of isobaric partition, and in contrast to all previous studies
of such models, the deconfined phase in our approach is defined not by an essential singularity of the
isobaric partition function but its simple pole. As an unexpected result, we find out that the first order
phase transition in this model is the surface tension induced transition. The sufficient conditions of its
existence are analyzed and the possible physical consequences are discussed.

C 1OMOIIIBIO0 COBMEIIEHUsI KPUBOI () 30BOTrO Iepexox JeKOoH( WHMEHT C KPHBOH HYJEBBIX 3H YEHHI
KO3(hHINEHT MOBEPXHOCTHOIO H TAXKEHMS MEIIKOB IOTy4eH HOB s MOAENb KpuTHuecKoi Toukn KXJI-
M TepuH. B pe3ynpT Te 3TO BemeT K HOBOH CTPYKType JIMOMPYIOLIMX CHHIYISIPHOCTEH M300 pUYECKOi
CT TCYMMBI, H, B OTIMYHE OT BCEX MPEABIAYLINX HCCIENOB HUI T KHX Mojened, ¢ 3 OeKoH(] HHMEHT
B H IIeM IOJXOJe OIpefeeH He C IOMOLIBIO0 CYIECTBEHHO 0C000i TOYKH M300 PHYECKOW CT TCYMMEI,

C TOMOIIBI0 ee MpocToro momoc . Heoxwunm HHO H HaeHo, 4TO (b 30BBIN Mepexoi MepBOoro poig B
Il HHO MOJIeST MHAYLPOB H MOBEPXHOCTHBIM H TsXeHHeM. [Ipo H JIM3HPOB HBI JOCT TOYHBIE YCIOBHUS
CYILIECTBOB HHSI T KOTO () 30BOTO MEPexXof , U 0OCYXIEHBI €r0 BO3MOXHbIE (PH3MUECKUE CIIEACTBHU.

PACS: 12.38.Mh

INTRODUCTION

One of the most important recent discoveries of the quark—gluon plasma (QGP) phe-
nomenology is a realization of the fact that in and above the cross-over region the QGP is a
strongly interacting liquid [1]. Such behavior is observed in the lattice QCD simulations at the
temperatures as high as three values of the cross-over temperature 7, at vanishing baryonic
density [2,3]. Also it is strongly supported by the enormous elliptic flow measured by the
recent LHC heavy-ion experiments [4,5]. However, the model equations of state which are
used to describe the QGP in this region have nothing to do with the properties of liquid. The
only exception is the quark—gluon bag with surface tension model (QGBSTM) [6,7] which is
a successor of a famous Fisher droplet model (FDM) [8] and the statistical multifragmentation
model (SMM) [9-11] and, as its predecessors, it exploits the physical mechanism of the tri-
critical endpoint appearance which is typical for ordinary liquids. Besides that, the QGBSTM
includes two other popular statistical models: thus, its discrete mass spectrum corresponds
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to the hadron gas model [12] whereas its continuous mass spectrum not only generalizes the
gas of QGP bags model [13], but it also accounts for such typical properties of the liquids
as the surface tension and Fisher power law [8]. These properties make the QGBSTM rather
realistic and allow us to describe the lattice QCD thermodynamics at vanishing baryonic
densities rather well [7]. Moreover, very recently the QGBSTM critical exponents were cal-
culated and analyzed [14]. It was also demonstrated [14] that the critical exponents of the
3-dimensional O(4) spin model, which are believed to match the universality class of QCD,
can be easily reproduced by the QGBSTM.

However, this model has the tricritical endpoint only which is an intersection of the
deconfinement phase transition (PT) and the surface induced PT (for more detail, see [6]). A
few recent attempts [15,16] to generate the critical endpoint within the gas of QGP bags model
framework were successful only in producing the line of endpoints along which the order of
PT gradually increases (for a detailed critique, see [6]). In contrast to these attempts, here we
suggest a solution of this long standing problem and formulate the quark—gluon bag model
with critical endpoint (QGBSTM?2). This is achieved by matching the deconfinement PT and
surface induced PT [6] critical lines of the QGBSTM. Below we demonstrate that although
in this case the surface tension vanishes in the critical endpoint like in the QGBSTM, in the
FDM, in the SMM and in ordinary liquids [17], the analytical structure of singularities that
describe the deconfinement PT is absolutely new. Clearly, the novel mathematical mechanism
to generate the deconfinement PT and its critical endpoint are important not only for the QGP
phenomenology, but also for the nuclear liquid—gas PT described by the SMM and for the
liquid—gas PTs in ordinary liquids.

The work is organized as follows. In the next section we present the basic elements of the
QGBSTM2. Section 2 is devoted to the analysis of the sufficient conditions for the critical
endpoint existence in the present model, while the last section contains our conclusions.

1. QUARK-GLUON BAGS WITH SURFACE TENSION MODEL

The most convenient way to study the QGBSTM?2 phase structure is to use the isobaric
partition [6] for analyzing its rightmost singularities. It allows one to solve exactly a number
of models in thermodynamic limit [7, 18] and for finite volumes [19-21]. Therefore, we
assume that after the Laplace transform its grand canonical partition Z(V, T, i) generates the
following isobaric one:

. 7 1
Z(5,T,p) = /dVe*W Z(\V,T,p) = ————, (1)
—F(s, T
) [s — F(s, T, p)]

where the function F'(s, T, ut) includes [6] the discrete Fiy and continuous F volume spectra
of the bags

n
F(s,T,p) = Fu(s,T, 1) + Fo(s, T, ) = > _ gj exp (%bg‘ - vj8)¢>(T, m;)+  (2)
j=1

() [ S epl(soTp) = sho - STt )
Vo
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u(T) and so(T,p) are continuous and, at least, double differentiable functions of their
arguments (see [6,7] for detail). The density of bags with mass my, eigen volume vy, baryon
charge by, and degeneracy gy, is given by ¢x (1) = grd(T, mi) where

Ok 9 VP +mi miT (mk)
= = d -_— = — . 4
oi(T) 2 /P p exp l T 952 Ko T “4)
0

The continuous part of the volume spectrum (3) generalizes the exponential mass spectrum
introduced by Hagedorn [22] and it can be derived in both the MIT bag model [13] and
finite width model of QGP bags [7]. The presence of e~V term accounts for the hard-core
repulsion of the Van der Waals type in (3). X(7,p) denotes the ratio of the T- and pu-
dependent surface tension coefficient and 7" (the reduced surface tension coefficient hereafter)
which has the form

X >07 T_)TZ(M)_Oa
(T, 1) = {0, T = Ty(u), 5)
St <0, T — Ts(y)+0.

In choosing such a simple surface free energy parameterization, we follow the original Fisher
idea [8] which allows one to account for the surface free energy by considering a mean bag
of volume v and surface extent v™. As discussed in [6] and shown in [14], the power k < 1
in (3) is a constant which, in principle, may differ from the usual FDM and SMM value 2/3.

It has to be emphasized that we do not require the precise disappearance of (7, ) above
the critical endpoint as in FDM and SMM. It has already been noticed [6] and is argued
here again that this point is of crucial importance in formulating the statistical model with
deconfining cross-over. We would like also to mention the negative value of the reduced
surface tension coefficient (T, ) above the T (u)-line in the (u,T')-plane should not be
taken surprising. It is the well-known fact that the surface tension coefficient in the grand
canonical ensemble includes the energy and entropy contributions which have the opposite
signs [8,20]. Therefore, X(T, ) < 0 does not mean that the surface energy changes the
sign, but rather signals that the surface entropy contribution simply exceeds the surface
energy part and results in the negative values of surface free energy. In other words, the
number of nonspherical bags of fixed volumes becomes so big that the Boltzmann exponent
which accounts for the energy «costs» of these bags does not provide their suppression any
more. Such a situation is standard for the statistical ensembles with the fluctuating extensive
characteristics (the surface of fixed volume bag fluctuates around its mean value) and can be
studied rigorously by considering the surface deformations [20,21]. Moreover, the recently
established relation between the bag surface tension coefficient and the string tension of
confining color tube [23] indicates that the surface tension coefficient is inevitably negative
in the cross-over region.

By construction the isobaric partition (1) has two types of singularities: the simple pole
s* = sy (T, p) determined by the equation

s* = F(s*,T, ), ©)

and in addition there appears an essential singularity s* = sqo(7, ) which is defined by
the point s = s (T, ) — 0 in which the continuous part of spectrum Fg(s,T, 1) in Eq.(3)



400 Bugaev K. A., Petrov V. K., Zinovjev G. M.

&p

Ec L &c

Fig. 1. a) Singularities of the isobaric partition (1) and the corresponding graphical solution of Eq. (6)
which describes a PT in the models similar to QGBSTM. The solution of Eq.(6) is shown by a filled
hexagon. F'(s,&) is shown by a solid curve for a few values of the parameter sets £. F'(s,&) diverges
for s < sg(€) (shown by dashed lines), but is finite at s = sg(§) (shown by black circle). At low
values of the parameters £ = £4, which can be either £ = {T, u = const} or £ = {T = const, u}, the
simple pole sy is the rightmost singularity and it corresponds to hadronic phase. For £ = &g > €a
the rightmost singularity is an essential singularity s = sq(£g), which describes QGP. At intermediate
value & = &¢ both singularities coincide sy (§c) = sg(€c) and this condition is a Gibbs criterion (7).
At transition from the low energy density phase to the high density one the rightmost singularity changes
from the simple pole to the essential singularity. b) Singularities of the isobaric partition (1) and the
corresponding graphical solution of Eq. (6) which describes a PT in the QGBSTM2. The notations are
the same as for the panel a. In this case, however, the rightmost singularity for each phase is the simple
pole, whereas at the PT the essential singularity matches the simple pole due to the vanishing surface
tension coefficient

becomes divergent. This singularity is also defined by Eq. (6). Usually the statistical models
similar to QGBSTM [6,7,10,11,15,16,19,24-26] are dealing with the following structure of
singularities. The pressure of low energy density phase (confined) py (T, 1) is described by
the simple pole s = sy (T, 1) = pu (T, 1) /T which is the rightmost singularity of the isobaric
partition (1), whereas the pressure of high energy density phase (deconfined) pq (7, 1) fixes
the system pressure, if the essential singularity s = s (T, 1) = po(T, 1)/T of this partition
becomes the rightmost one (see Fig. 1,a). In this model we consider pg (T, 1) as a parameter
which can be taken either directly from the lattice QCD data or from the microscopic models
which study the pressure of quark—gluon phase in an infinite volume.
The deconfining PT occurs at the equilibrium line T,.(x) where both singularities match
each other
su(T, p) = sqo(T,p) =T =Te(p). @)

And in this equation one can easily recognize the Gibbs criterion for phase equilibrium.
Similar behavior of the rightmost singularities is just depicted in Fig. 1.

According to [6] the deconfining PT occurs, if the phase equilibrium temperature (7) is
lower than the temperature of the null surface tension line (5) for the same value of baryonic
chemical potential, i.e., Te(u) < Tx(p), whereas at low values of y the PT is transformed
into a cross-over because the line 7' = T () leaves the QGP phase smoothly to appear in the
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hadronic phase. The intersection point (tena; Te(ftend)) Of these two lines To.(p) = Tx(u) is
just the tricritical endpoint since for p > piend and T > Te(ptena) at the null surface tension
line T' = Tx(u) there exists the surface induced PT [6].

The new element of principle importance which is responsible for the critical endpoint
generation in the QGBSTM2 is a matching of the surface induced PT with the deconfining
one in order to get rid of the former and to «hide» it inside the mixed phase. To demonstrate
the possible result, let us assume that the surface tension coefficient changes its sign exactly
at the deconfining PT line, i.e., for max {u(T.)} = 1 = piend and T < Te(ptend), one has
T.(p) = T (p) while keeping the cross-over transition for & < fienq. The idea to match these
two PT lines is almost evident, but a nontriviality is seen in the fact that an existence of both
the critical endpoint at (fend; ZTe(ttena)) and the 1st order deconfining PT at Ti.(u) = Tx(u)
is deeply rooted in an entire change of the rightmost singularity pattern and, as we show in
the next section, in another mechanism of the deconfining PT.

An important physical consequence of this new PT mechanism is that it leads to the
power law in the distribution of large bags with respect to their volumes in the entire mixed
phase. This can be seen from the volume spectrum of large bags (3), if one substitutes
s=s5q(T,p) =po(T,p)/T and X(T, u) = 0 in it. As one can see from the exact solutions
of the FDM [8] and simplified SMM [10, 11], the power law with respect to the droplet
volume exists at the critical or tricritical endpoint only. In the QGBSTM [6] the power law in
the volume attenuation of bags exists at the curve of the vanishing surface tension coefficient,
which is located above the phase diagram of the deconfining PT in the p — T plane except
for the tricritical endpoint. Therefore, there is a possibility that the lattice QCD simulations
can verify an existence of the power law and, thus, can help to distinguish the QGBSTM
and QGBSTM2. Also we stress that, if the presently assumed framework along with the
parameterization of surface tension of bags (5) are applied to the finite width model of QGP
bags [7] or, alternatively, if one uses the pressure of model [7] as the parameter pg (7T, i) in
QGBSTM?2, then the corresponding power law should exist for the mass attenuation of heavy
QGP bags in its mixed phase.

2. THE SUFFICIENT CONDITIONS
FOR THE CRITICAL ENDPOINT EXISTENCE

Under adopted assumption the rightmost singularity in the QGBSTM?2 is always the simple
pole since in the right-hand side vicinity of s — so(T, 1) + 0 the value of Fg(s, T, u) — oo
for ¥ = YT < 0. Then the motion of singularities corresponds to the example shown
in Fig. 1, b. The question, however, appears whether such behavior corresponds to PT indeed,
since this is not the case for other known models. To clarify the point, it is convenient to
introduce the variable A* = A(Tx 4 0,u) = st — sg(Ts £ 0, ) and to compare the T
derivative of the rightmost singularity s~ = s*(Tx — 0, ) below and st = s*(Tx + 0, p1)
above the PT line T,.(p) = Tx(p) for the same magnitudes of p. Due to the relation between
the system pressure p(T, 1) and the rightmost singularity s*(7T', u) = p(T, )/ T, the difference
of T derivatives, 9(A*T — A™) /0T, if revealed on both sides of the PT line, is defined by
the difference of the corresponding entropy densities. Therefore, according to the standard
classification of the PT order, the nonzero values of (AT — A~)/OT # 0 signal about
the 1st order PT.
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Now using the auxiliary functions

[o0]

Ku(z) = / o Al ®)
VoA
g (Ai Zi) — eXp [_Ai‘/b B ZiVOH] (9)
N A

and calculating the following integral

i CAE, _yEk +
IT(Ai;Ei)E/dvexp[ ATv X ] = gT(AiaEi)_A—ngl(Aﬂizi)_

vT T—1
Vo
Py 4 oes (A:i:)rfl »+
_T_lgT_H(A 2T+ p— (I)(_(Ai)”)]’ (10)
2r -3 — 2.2
B(0) = Kroale) — g o) 4 K ae) (D

by parts, it is possible to rewrite the continuous part of volume spectrum (3) as Fg (s*, T, 1) =

uw(T)I.(A*,%%). From Egs.(10) and (11) one can show the necessary condition of decon-

fining PT existence at ©* — 0 becomes sq (T, 1) = Fr(sq(Ts, 1), Ts, 1) + u(Tx)g-(0,0)

and it provides AT — 40, indeed. For 7 < 1 + 2k such a statement follows directly from

the present form of (11), whereas for larger values of 7 exponent one needs to integrate

Ka(x) functions in (11) while they converge at the lower integration limit for A* — 4-0.
Analyzing Egs. (8)—(11) one can easily find

OF | 9sq |0FH Ou + gt TN
OAT 9T  OT {35 1} +8TIT(A XF) —ul,_ (AFS )8T
oT ~ OFy .2
1 +UI-,—,1(A:‘:,EZ‘:) _
0s
which in the limit Ai, Yt L0 gives
1) VauG) S
oar_pa- M0 [a—T T } (13)
oT oT oFy

1+ ’U,L—_l(o, O) — GP
This is quite a remarkable result because it clearly shows that the Ist order deconfining
PT does exist in the present model only, if the 7" derivative of reduced surface tension
coefficient has a discontinuity at the phase equilibrium line. Thus, a discontinuity of the
first derivative of system pressure is generated by a discontinuity of the derivative of surface
tension coefficient. In other words, within the QGBSTM2 the deconfining 1st order PT is
just a surface induced one. The necessary condition for its existence is the finiteness of
integrals I-_,(0,0) and I;_1(0,0) in (13), i.e., 7 > 2.
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Moreover, in order to realize a PT from hadronic matter to QGP it is necessary to have
OAT  OA~ 1 0

t the PT i -2
atthe B e o T T T Tor

[po(T, 1) — pua (T, )] > 0 and, hence, at this line

oxt  9x~
_9xT . 14
o~ or =" (14)
Now it is clear that at the critical endpoint (fend; Te(ftend)) the entropy density gap vanishes
1S) RNG) Y
due to the disappearing difference T or - 0. With the general parameterization of

reduced surface tension coefficient which is consistent with (5), we have

[T =TT
gl = RO

(T, 1) = (15)

NI~

¢
:| ) T_)TZ(M)JFOa

and it allows us to conclude about the values of (¥ and the values of coefficients & > 0. It
is obvious from (12) that ¢(* > 1, otherwise the corresponding entropy density is divergent
at the PT line. If, for instance, (™ = 1, as predicted by the Hills and Dales model [20], then
¢~ =1, and according to (14) one has o > o~. If, however, (~ > 1, then from (14) it
follows that ot ¢+ (T — T (p))S" ~% > 0 for T — Ts(u) + 0. The latter is consistent with
the equality ¢ = 1.

It is not difficult to show that in accordance with (7) the inequalities

8FH 8SQ 8FH ou 8Z+
o T ar { s 1] * 5797000 > ugr (0,057 (16
8FH aSQ 8FH ou oxX—
o T ar { s 1} * 9700 <ugr-(0.00 77 (a7

are the sufficient conditions of the 1st order PT existence that provide (14) and guarantee the
uniqueness of solutions A* — 40 on both sides of the PT line.

The critical endpoint (pend; Te(ttend)) exists, if in its vicinity the difference ot — o~
vanishes as dSnd with

oTs,
d=T —Tc(phend) — —— — Men (18)
(Hend) o (K — Hena)

Hend

and (eng = 1. By construction in the p — T plane d as defined by (18) vanishes at the
tangent line to the PT curve at (tiend; Tc(ftend)). As one can easily see from either 7" or p
derivative of (12), any second derivative of the difference A™ — A~ = 0 at the critical
endpoint (end; Te(ptend)), if ¢t = ¢~ = (ena = 1 only, which provides the 2nd order PT
available at this point. The higher order PT at the critical endpoint may exist for (.ng = 2.
Thus, the QGBSTM2 is able to describe three phases, which are the hadronic phase, the
mixed phase of hadrons and QGP, and the QGP cross-over phase [6], and two ways for phase
transformation: either the deconfining PT for p > pienq or the cross-over at p < fiend-
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CONCLUSIONS

Here we present a novel solvable model, QGBSTM2, which develops critical endpoint at
(ttend; Te(ttena)). This model naturally explains the transformation of the Ist order decon-
fining PT into a weaker PT at the endpoint and into a cross-over at low baryonic densities
as driven by negative surface tension coefficient of the QGP bags at high energy densities.
This conclusion is also supported by the recently derived relation between the string tension
of confining color tube and the surface tension coefficient of QGP bags [23].

An important finding of QGBSTM2 is that a solvable model of the QCD critical endpoint
can be formulated for 7 > 2. This is obtained by matching the deconfining PT line 7. (1)
with the line of vanishing surface tension coefficient 7% (p) for g > ptena and T' < Te(ftend)-
Such a step unexpectedly leads to a new strong claim that the 1st order PT in QGBSTM2
should not be accompanied by change of the leading singularity type as was argued earlier
in [6,7,10,11,15,16,19,24-26]. Then, in contrast to all previous findings, the high density
QGP phase is defined by a simple pole of the isobaric partition (1) and not by its essential
singularity (compare the panels a and b of Fig.1). As a consequence, for the first time
we discover that the critical endpoint in this model with the constituents of nonzero proper
volume exists not for 7 < 1 as in the SMM [10,11] and not for 1 < 7 < 2 as the tricritical
endpoints in the SMM and in the QGBSTM [6], but for 7 > 2, i.e., as in the FDM [8]
in which the eigen volume of constituents is zero. We believe that this new mechanism of
the first order PT is important not only for the formulation of the phenomenological exactly
solvable model for the QCD critical endpoint, but is also significant for the critical endpoint
in usual liquids.
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