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A NOVEL MATHEMATICAL MECHANISM
OF THE CRITICAL ENDPOINT GENERATION

K.A. Bugaev1, V. K. Petrov, G.M. Zinovjev
Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev

We develop a novel model of the QCD matter critical endpoint by matching the deconˇnement
phase transition curve with the nil line of the bag surface tension coefˇcient. As a result, this leads to
a new structure of the leading singularities of isobaric partition, and in contrast to all previous studies
of such models, the deconˇned phase in our approach is deˇned not by an essential singularity of the
isobaric partition function but its simple pole. As an unexpected result, we ˇnd out that the ˇrst order
phase transition in this model is the surface tension induced transition. The sufˇcient conditions of its
existence are analyzed and the possible physical consequences are discussed.
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INTRODUCTION

One of the most important recent discoveries of the quarkÄgluon plasma (QGP) phe-
nomenology is a realization of the fact that in and above the cross-over region the QGP is a
strongly interacting liquid [1]. Such behavior is observed in the lattice QCD simulations at the
temperatures as high as three values of the cross-over temperature Tco at vanishing baryonic
density [2, 3]. Also it is strongly supported by the enormous elliptic 	ow measured by the
recent LHC heavy-ion experiments [4, 5]. However, the model equations of state which are
used to describe the QGP in this region have nothing to do with the properties of liquid. The
only exception is the quarkÄgluon bag with surface tension model (QGBSTM) [6,7] which is
a successor of a famous Fisher droplet model (FDM) [8] and the statistical multifragmentation
model (SMM) [9Ä11] and, as its predecessors, it exploits the physical mechanism of the tri-
critical endpoint appearance which is typical for ordinary liquids. Besides that, the QGBSTM
includes two other popular statistical models: thus, its discrete mass spectrum corresponds
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to the hadron gas model [12] whereas its continuous mass spectrum not only generalizes the
gas of QGP bags model [13], but it also accounts for such typical properties of the liquids
as the surface tension and Fisher power law [8]. These properties make the QGBSTM rather
realistic and allow us to describe the lattice QCD thermodynamics at vanishing baryonic
densities rather well [7]. Moreover, very recently the QGBSTM critical exponents were cal-
culated and analyzed [14]. It was also demonstrated [14] that the critical exponents of the
3-dimensional O(4) spin model, which are believed to match the universality class of QCD,
can be easily reproduced by the QGBSTM.

However, this model has the tricritical endpoint only which is an intersection of the
deconˇnement phase transition (PT) and the surface induced PT (for more detail, see [6]). A
few recent attempts [15,16] to generate the critical endpoint within the gas of QGP bags model
framework were successful only in producing the line of endpoints along which the order of
PT gradually increases (for a detailed critique, see [6]). In contrast to these attempts, here we
suggest a solution of this long standing problem and formulate the quarkÄgluon bag model
with critical endpoint (QGBSTM2). This is achieved by matching the deconˇnement PT and
surface induced PT [6] critical lines of the QGBSTM. Below we demonstrate that although
in this case the surface tension vanishes in the critical endpoint like in the QGBSTM, in the
FDM, in the SMM and in ordinary liquids [17], the analytical structure of singularities that
describe the deconˇnement PT is absolutely new. Clearly, the novel mathematical mechanism
to generate the deconˇnement PT and its critical endpoint are important not only for the QGP
phenomenology, but also for the nuclear liquidÄgas PT described by the SMM and for the
liquidÄgas PTs in ordinary liquids.

The work is organized as follows. In the next section we present the basic elements of the
QGBSTM2. Section 2 is devoted to the analysis of the sufˇcient conditions for the critical
endpoint existence in the present model, while the last section contains our conclusions.

1. QUARKÄGLUON BAGS WITH SURFACE TENSION MODEL

The most convenient way to study the QGBSTM2 phase structure is to use the isobaric
partition [6] for analyzing its rightmost singularities. It allows one to solve exactly a number
of models in thermodynamic limit [7, 18] and for ˇnite volumes [19Ä21]. Therefore, we
assume that after the Laplace transform its grand canonical partition Z(V, T, μ) generates the
following isobaric one:

Ẑ(s, T, μ) ≡
∞∫
0

dV e−sV Z(V, T, μ) =
1

[s − F (s, T, μ)]
, (1)

where the function F (s, T, μ) includes [6] the discrete FH and continuous FQ volume spectra
of the bags

F (s, T, μ) ≡ FH(s, T, μ) + FQ(s, T, μ) =
n∑

j=1

gj exp
( μ

T
bj − vjs

)
φ(T, mj)+ (2)

+ u(T )

∞∫
V0

dv

vτ
exp [(sQ(T, μ) − s)v − Σ(T, μ)vκ]; (3)
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u(T ) and sQ(T, μ) are continuous and, at least, double differentiable functions of their
arguments (see [6,7] for detail). The density of bags with mass mk, eigen volume vk, baryon
charge bk and degeneracy gk is given by φk(T ) ≡ gkφ(T, mk) where

φk(T ) ≡ gk

2π2

∞∫
0

p2dp exp

[
−

√
p2 + m2

k

T

]
= gk

m2
kT

2π2
K2

(mk

T

)
. (4)

The continuous part of the volume spectrum (3) generalizes the exponential mass spectrum
introduced by Hagedorn [22] and it can be derived in both the MIT bag model [13] and
ˇnite width model of QGP bags [7]. The presence of e−sv term accounts for the hard-core
repulsion of the Van der Waals type in (3). Σ(T, μ) denotes the ratio of the T - and μ-
dependent surface tension coefˇcient and T (the reduced surface tension coefˇcient hereafter)
which has the form

Σ(T, μ) =

⎧⎨
⎩

Σ− > 0, T → TΣ(μ) − 0,
0, T = TΣ(μ),
Σ+ < 0, T → TΣ(μ) + 0.

(5)

In choosing such a simple surface free energy parameterization, we follow the original Fisher
idea [8] which allows one to account for the surface free energy by considering a mean bag
of volume v and surface extent vκ. As discussed in [6] and shown in [14], the power κ < 1
in (3) is a constant which, in principle, may differ from the usual FDM and SMM value 2/3.

It has to be emphasized that we do not require the precise disappearance of Σ(T, μ) above
the critical endpoint as in FDM and SMM. It has already been noticed [6] and is argued
here again that this point is of crucial importance in formulating the statistical model with
deconˇning cross-over. We would like also to mention the negative value of the reduced
surface tension coefˇcient Σ(T, μ) above the TΣ(μ)-line in the (μ, T )-plane should not be
taken surprising. It is the well-known fact that the surface tension coefˇcient in the grand
canonical ensemble includes the energy and entropy contributions which have the opposite
signs [8, 20]. Therefore, Σ(T, μ) < 0 does not mean that the surface energy changes the
sign, but rather signals that the surface entropy contribution simply exceeds the surface
energy part and results in the negative values of surface free energy. In other words, the
number of nonspherical bags of ˇxed volumes becomes so big that the Boltzmann exponent
which accounts for the energy ®costs¯ of these bags does not provide their suppression any
more. Such a situation is standard for the statistical ensembles with the 	uctuating extensive
characteristics (the surface of ˇxed volume bag 	uctuates around its mean value) and can be
studied rigorously by considering the surface deformations [20, 21]. Moreover, the recently
established relation between the bag surface tension coefˇcient and the string tension of
conˇning color tube [23] indicates that the surface tension coefˇcient is inevitably negative
in the cross-over region.

By construction the isobaric partition (1) has two types of singularities: the simple pole
s∗ = sH(T, μ) determined by the equation

s∗ = F (s∗, T, μ), (6)

and in addition there appears an essential singularity s∗ = sQ(T, μ) which is deˇned by
the point s = sQ(T, μ) − 0 in which the continuous part of spectrum FQ(s, T, μ) in Eq. (3)
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Fig. 1. a) Singularities of the isobaric partition (1) and the corresponding graphical solution of Eq. (6)
which describes a PT in the models similar to QGBSTM. The solution of Eq. (6) is shown by a ˇlled

hexagon. F (s, ξ) is shown by a solid curve for a few values of the parameter sets ξ. F (s, ξ) diverges

for s < sQ(ξ) (shown by dashed lines), but is ˇnite at s = sQ(ξ) (shown by black circle). At low
values of the parameters ξ = ξA, which can be either ξ ≡ {T, μ = const} or ξ ≡ {T = const, μ}, the

simple pole sH is the rightmost singularity and it corresponds to hadronic phase. For ξ = ξB � ξA

the rightmost singularity is an essential singularity s = sQ(ξB), which describes QGP. At intermediate
value ξ = ξC both singularities coincide sH(ξC) = sQ(ξC) and this condition is a Gibbs criterion (7).

At transition from the low energy density phase to the high density one the rightmost singularity changes
from the simple pole to the essential singularity. b) Singularities of the isobaric partition (1) and the

corresponding graphical solution of Eq. (6) which describes a PT in the QGBSTM2. The notations are

the same as for the panel a. In this case, however, the rightmost singularity for each phase is the simple
pole, whereas at the PT the essential singularity matches the simple pole due to the vanishing surface

tension coefˇcient

becomes divergent. This singularity is also deˇned by Eq. (6). Usually the statistical models
similar to QGBSTM [6,7,10,11,15,16,19,24Ä26] are dealing with the following structure of
singularities. The pressure of low energy density phase (conˇned) pH(T, μ) is described by
the simple pole s = sH(T, μ) = pH(T, μ)/T which is the rightmost singularity of the isobaric
partition (1), whereas the pressure of high energy density phase (deconˇned) pQ(T, μ) ˇxes
the system pressure, if the essential singularity s = sQ(T, μ) = pQ(T, μ)/T of this partition
becomes the rightmost one (see Fig. 1, a). In this model we consider pQ(T, μ) as a parameter
which can be taken either directly from the lattice QCD data or from the microscopic models
which study the pressure of quarkÄgluon phase in an inˇnite volume.

The deconˇning PT occurs at the equilibrium line Tc(μ) where both singularities match
each other

sH(T, μ) = sQ(T, μ) ⇒ T = Tc(μ). (7)

And in this equation one can easily recognize the Gibbs criterion for phase equilibrium.
Similar behavior of the rightmost singularities is just depicted in Fig. 1.

According to [6] the deconˇning PT occurs, if the phase equilibrium temperature (7) is
lower than the temperature of the null surface tension line (5) for the same value of baryonic
chemical potential, i.e., Tc(μ) < TΣ(μ), whereas at low values of μ the PT is transformed
into a cross-over because the line T = TΣ(μ) leaves the QGP phase smoothly to appear in the
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hadronic phase. The intersection point (μend; Tc(μend)) of these two lines Tc(μ) = TΣ(μ) is
just the tricritical endpoint since for μ � μend and T > Tc(μend) at the null surface tension
line T = TΣ(μ) there exists the surface induced PT [6].

The new element of principle importance which is responsible for the critical endpoint
generation in the QGBSTM2 is a matching of the surface induced PT with the deconˇning
one in order to get rid of the former and to ®hide¯ it inside the mixed phase. To demonstrate
the possible result, let us assume that the surface tension coefˇcient changes its sign exactly
at the deconˇning PT line, i.e., for max {μ(Tc)} � μ � μend and T � Tc(μend), one has
Tc(μ) = TΣ(μ) while keeping the cross-over transition for μ < μend. The idea to match these
two PT lines is almost evident, but a nontriviality is seen in the fact that an existence of both
the critical endpoint at (μend; Tc(μend)) and the 1st order deconˇning PT at Tc(μ) = TΣ(μ)
is deeply rooted in an entire change of the rightmost singularity pattern and, as we show in
the next section, in another mechanism of the deconˇning PT.

An important physical consequence of this new PT mechanism is that it leads to the
power law in the distribution of large bags with respect to their volumes in the entire mixed
phase. This can be seen from the volume spectrum of large bags (3), if one substitutes
s = sQ(T, μ) = pQ(T, μ)/T and Σ(T, μ) = 0 in it. As one can see from the exact solutions
of the FDM [8] and simpliˇed SMM [10, 11], the power law with respect to the droplet
volume exists at the critical or tricritical endpoint only. In the QGBSTM [6] the power law in
the volume attenuation of bags exists at the curve of the vanishing surface tension coefˇcient,
which is located above the phase diagram of the deconˇning PT in the μ − T plane except
for the tricritical endpoint. Therefore, there is a possibility that the lattice QCD simulations
can verify an existence of the power law and, thus, can help to distinguish the QGBSTM
and QGBSTM2. Also we stress that, if the presently assumed framework along with the
parameterization of surface tension of bags (5) are applied to the ˇnite width model of QGP
bags [7] or, alternatively, if one uses the pressure of model [7] as the parameter pQ(T, μ) in
QGBSTM2, then the corresponding power law should exist for the mass attenuation of heavy
QGP bags in its mixed phase.

2. THE SUFFICIENT CONDITIONS
FOR THE CRITICAL ENDPOINT EXISTENCE

Under adopted assumption the rightmost singularity in the QGBSTM2 is always the simple
pole since in the right-hand side vicinity of s → sQ(T, μ) + 0 the value of FQ(s, T, μ) → ∞
for Σ = Σ+ < 0. Then the motion of singularities corresponds to the example shown
in Fig. 1, b. The question, however, appears whether such behavior corresponds to PT indeed,
since this is not the case for other known models. To clarify the point, it is convenient to
introduce the variable Δ± ≡ Δ(TΣ ± 0, μ) = s± − sQ(TΣ ± 0, μ) and to compare the T
derivative of the rightmost singularity s− ≡ s∗(TΣ − 0, μ) below and s+ ≡ s∗(TΣ + 0, μ)
above the PT line Tc(μ) = TΣ(μ) for the same magnitudes of μ. Due to the relation between
the system pressure p(T, μ) and the rightmost singularity s∗(T, μ) = p(T, μ)/T , the difference
of T derivatives, ∂(Δ+ − Δ−)/∂T , if revealed on both sides of the PT line, is deˇned by
the difference of the corresponding entropy densities. Therefore, according to the standard
classiˇcation of the PT order, the nonzero values of ∂(Δ+ − Δ−)/∂T �= 0 signal about
the 1st order PT.
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Now using the auxiliary functions

Ka(x) ≡
∞∫

V0Δ

dz
exp [−z + xzκ]

za
, (8)

gτ (Δ±, Σ±) ≡ exp [−Δ±V0 − Σ±V κ
0 ]

(τ − 1)V τ−1
0

, (9)

and calculating the following integral

Iτ (Δ±, Σ±) ≡
∞∫

V0

dv
exp [−Δ±v − Σ±vκ]

vτ
=

[
gτ (Δ±, Σ±) − Δ±

τ − 1
gτ−1(Δ±, Σ±) −

− κΣ±

τ − 1
gτ−κ(Δ±, Σ±) +

(Δ±)τ−1

τ − 1
Φ

(
− Σ±

(Δ±)κ

)]
, (10)

Φ(x) ≡ Kτ−2(x) − κ(2τ − 3 − κ)x
(τ − 2)(τ − 1 − κ)

Kτ−1−κ(x) +
κ2x2

τ − 1 − κ
Kτ−2κ(x) (11)

by parts, it is possible to rewrite the continuous part of volume spectrum (3) as FQ(s±, T, μ) =
u(T )Iτ (Δ±, Σ±). From Eqs. (10) and (11) one can show the necessary condition of decon-
ˇning PT existence at Σ± → 0 becomes sQ(TΣ, μ) = FH(sQ(TΣ, μ), TΣ, μ) + u(TΣ)gτ (0, 0)
and it provides Δ± → +0, indeed. For τ < 1 + 2κ such a statement follows directly from
the present form of (11), whereas for larger values of τ exponent one needs to integrate
Ka(x) functions in (11) while they converge at the lower integration limit for Δ± → +0.

Analyzing Eqs. (8)Ä(11) one can easily ˇnd

∂Δ±

∂T
=

∂FH

∂T
+

∂sQ

∂T

[
∂FH

∂s
− 1

]
+

∂u

∂T
Iτ (Δ±, Σ±) − uIτ−κ(Δ±, Σ±)

∂Σ±

∂T

1 + uIτ−1(Δ±, Σ±) − ∂FH

∂s

, (12)

which in the limit Δ±, Σ± → 0 gives

∂Δ+

∂T
− ∂Δ−

∂T
→ −

uIτ−κ(0, 0)
[
∂Σ+

∂T
− ∂Σ−

∂T

]

1 + uIτ−1(0, 0) − ∂FH

∂s

. (13)

This is quite a remarkable result because it clearly shows that the 1st order deconˇning
PT does exist in the present model only, if the T derivative of reduced surface tension
coefˇcient has a discontinuity at the phase equilibrium line. Thus, a discontinuity of the
ˇrst derivative of system pressure is generated by a discontinuity of the derivative of surface
tension coefˇcient. In other words, within the QGBSTM2 the deconˇning 1st order PT is
just a surface induced one. The necessary condition for its existence is the ˇniteness of
integrals Iτ−κ(0, 0) and Iτ−1(0, 0) in (13), i.e., τ > 2.
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Moreover, in order to realize a PT from hadronic matter to QGP it is necessary to have

at the PT line
∂Δ+

∂T
− ∂Δ−

∂T
=

1
T

∂

∂T
[pQ(T, μ) − pH(T, μ)] > 0 and, hence, at this line

∂Σ+

∂T
− ∂Σ−

∂T
< 0. (14)

Now it is clear that at the critical endpoint (μend; Tc(μend)) the entropy density gap vanishes

due to the disappearing difference
∂Σ+

∂T
− ∂Σ−

∂T
= 0. With the general parameterization of

reduced surface tension coefˇcient which is consistent with (5), we have

Σ(T, μ) =
1
T

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ−
[
TΣ(μ) − T

TΣ(μ)

]ζ−

, T → TΣ(μ) − 0,

−σ+

[
T − TΣ(μ)

TΣ(μ)

]ζ+

, T → TΣ(μ) + 0,

(15)

and it allows us to conclude about the values of ζ± and the values of coefˇcients σ± � 0. It
is obvious from (12) that ζ± � 1, otherwise the corresponding entropy density is divergent
at the PT line. If, for instance, ζ+ = 1, as predicted by the Hills and Dales model [20], then
ζ− = 1, and according to (14) one has σ+ > σ−. If, however, ζ− > 1, then from (14) it
follows that σ+ζ+(T − TΣ(μ))ζ+−1 > 0 for T → TΣ(μ) + 0. The latter is consistent with
the equality ζ+ = 1.

It is not difˇcult to show that in accordance with (7) the inequalities

∂FH

∂T
+

∂sQ

∂T

[
∂FH

∂s
− 1

]
+

∂u

∂T
gτ (0, 0) > ugτ−κ(0, 0)

∂Σ+

∂T
, (16)

∂FH

∂T
+

∂sQ

∂T

[
∂FH

∂s
− 1

]
+

∂u

∂T
gτ (0, 0) < ugτ−κ(0, 0)

∂Σ−

∂T
(17)

are the sufˇcient conditions of the 1st order PT existence that provide (14) and guarantee the
uniqueness of solutions Δ± → +0 on both sides of the PT line.

The critical endpoint (μend; Tc(μend)) exists, if in its vicinity the difference σ+ − σ−

vanishes as dζend with

d ≡ T − Tc(μend) −
∂TΣ

∂μ

∣∣∣∣
μend

(μ − μend) (18)

and ζend � 1. By construction in the μ − T plane d as deˇned by (18) vanishes at the
tangent line to the PT curve at (μend; Tc(μend)). As one can easily see from either T or μ
derivative of (12), any second derivative of the difference Δ+ − Δ− = 0 at the critical
endpoint (μend; Tc(μend)), if ζ+ = ζ− = ζend = 1 only, which provides the 2nd order PT
available at this point. The higher order PT at the critical endpoint may exist for ζend = 2.

Thus, the QGBSTM2 is able to describe three phases, which are the hadronic phase, the
mixed phase of hadrons and QGP, and the QGP cross-over phase [6], and two ways for phase
transformation: either the deconˇning PT for μ � μend or the cross-over at μ < μend.
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CONCLUSIONS

Here we present a novel solvable model, QGBSTM2, which develops critical endpoint at
(μend; Tc(μend)). This model naturally explains the transformation of the 1st order decon-
ˇning PT into a weaker PT at the endpoint and into a cross-over at low baryonic densities
as driven by negative surface tension coefˇcient of the QGP bags at high energy densities.
This conclusion is also supported by the recently derived relation between the string tension
of conˇning color tube and the surface tension coefˇcient of QGP bags [23].

An important ˇnding of QGBSTM2 is that a solvable model of the QCD critical endpoint
can be formulated for τ > 2. This is obtained by matching the deconˇning PT line Tc(μ)
with the line of vanishing surface tension coefˇcient TΣ(μ) for μ � μend and T � Tc(μend).
Such a step unexpectedly leads to a new strong claim that the 1st order PT in QGBSTM2
should not be accompanied by change of the leading singularity type as was argued earlier
in [6, 7, 10, 11, 15, 16, 19, 24Ä26]. Then, in contrast to all previous ˇndings, the high density
QGP phase is deˇned by a simple pole of the isobaric partition (1) and not by its essential
singularity (compare the panels a and b of Fig. 1). As a consequence, for the ˇrst time
we discover that the critical endpoint in this model with the constituents of nonzero proper
volume exists not for τ � 1 as in the SMM [10, 11] and not for 1 < τ � 2 as the tricritical
endpoints in the SMM and in the QGBSTM [6], but for τ > 2, i.e., as in the FDM [8]
in which the eigen volume of constituents is zero. We believe that this new mechanism of
the ˇrst order PT is important not only for the formulation of the phenomenological exactly
solvable model for the QCD critical endpoint, but is also signiˇcant for the critical endpoint
in usual liquids.
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