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The structure of the Bs1(5830) meson has not yet been exactly known in the quark model.
In this paper, the strong form factors and coupling constants of Bs1, as a conventional bs̄ meson,
are investigated. The coupling constants gBs1B∗K and gBs1B∗K∗

0
are calculated in the framework of the

three-point QCD sum rules. Our ˇndings are compared with the results of the light-cone sum rules
(LCSR) and heavy-chiral unitary approaches.
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INTRODUCTION

During the last decade, there have been made continuous efforts towards the understanding
of the strong form factors and coupling constant of meson vertices in the context of QCD. The
motivation comes from the fact that hadronic processes in strong interactions are explained
in terms of form factors and coupling constants rather than cross sections. In addition to that
there was facilitated the investigation of bottomed and charmed pseudoscalar and axial vector
mesons. More accurate determination of these coupling constants plays an important role in
understanding the ˇnal state interaction in the hadronic decays of B meson, gets knowledge
about the nature and structure of the new hadron states such as Bs0, Bs1, Ds0, and Ds1 and
in the production of the charmonium states like ψ/J, . . . , ψ(2s), which are useful sources of
information in heavy-ion collisions.

Moreover, the following some coupling constants have been investigated via different
approach in the literature: D∗Dπ [1], DDρ [2], DDJ/ψ [3], D∗DJ/ψ [4], D∗D∗π [5],
D∗D∗J/ψ [6], DsD

∗K , D∗
sDK [7], DDω [8], D∗D∗ρ [9], D∗Dρ [10], Bs0BK [11],

Ds0DK ,Ds1D
∗K [12], and Bs0BK ,Bs1B

∗K [13].
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Nonperturbative approaches are also required in order to calculatethe form factors corre-
sponding to such a transition. Among these approaches, QCD sum-rules method might be
the most popular one due to the fact that it is based upon QCD Lagrangian and has been
successfully applied to various problems [14Ä17].

The structure of the bottom-strange meson Bs1 with the spin-parity (JP = 1+) has not
been resolved, yet, and has been debated in the quark model. In the bottom sector, the recent
observations of the Jp = 1+ Bs1(5830) by the CDF Collaboration [18] and the Jp = 2+

Bs2(5840) by the CDF and D0 Collaborations [18, 19] enrich the spectrum of the bottom-
strange system and estimulate our interest in the possible interpretation of these states as
multiquark states. There are already some predictions for the Bs1 mass assuming it is a B∗K
bound state [20], as a bs̄ state [21], and as a mixture of a bs̄ and a bq(s̄q̄) states [22]. The
masses of the Bs1 meson have been estimated with the potential quark models, heavy-quark
effective theory and lattice QCD [23Ä28], the values differ from each other.

In this article, we take the bottom-strange meson Bs1 as the conventional bs states, and
calculate the values of the strong coupling constants gBs1B∗K and gBs1B∗K∗

0
with the three-

point QCD sum rules, as well as study the possibility of the hadronic dressing mechanism in
the bottomed channels. The strong coupling constant gBs1B∗K has been calculated with other
approaches such as light-cone QCD sum rules [13] and heavy-chiral unitary approach [20],
before.

Here by using operator product expansion (OPE), the corresponding correlation functions
are calculated for the perturbative and nonperturbative parts when either Bs1 and K(K∗

0 ) are
considered to be off-shell. Double dispersion relation is used for perturbative section and
double Borel transform is performed for the perturbative and nonperturbative parts.

This paper is organized as follows. In Sec. 1, we calculate the form factors and strong
coupling constants gBs1B∗K and gBs1B∗K∗

0
within 3PSR method. Finally, Sec. 2 is devoted

to the numerical results and discussions.

1. THE THREE-POINT QCD SUM-RULES METHOD

We start our discussion, considering the sufˇcient correlation functions responsible for
the Bs1B

∗K and Bs1B
∗K∗

0 vertices when both Bs1 and K(K∗
0 ) can be off-shell. We write

the three-point correlation function associated with Bs1B
∗K and Bs1B

∗K∗
0 vertices which is

given by:

ΠBs1
νμ (p, p′) = i2

∫
d4xd4y ei(p′x−py)〈0|T

{
jB∗

ν (x)jBs1
μ

†
(0)jK(K∗

0 )†(y)
}
|0〉, (1)

for off-shell Bs1 meson, and:

ΠK(K∗
0 )

νμ (p, p′) = i2
∫

d4xd4y ei(p′x−py)〈0|T
{
jB∗

ν (x)jK(K∗
0 )†(0)jBs1

μ

†
(y)

}
|0〉, (2)

for off-shell K(K∗
0 ) meson. Here jK = s̄γ5d, jK∗

0 = d̄s, jB∗

ν = d̄γνb, and jBs1
μ = s̄γμγ5b are

interpolating currents of K , K∗
0 , B∗, Bs1 mesons, respectively, and have the same quantum

numbers of the associative mesons. Also T is the time ordering product, p and p′ are the
four-momenta of the initial and ˇnal mesons, respectively (see Fig. 1).
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Fig. 1. Perturbative diagrams for off-shell Bs1 (a) and off-shell K(K∗
0 ) (b)

Equations (1) and (2) can be calculated in two different ways: In physical or phenomeno-
logical part, the representation is in terms of hadronic degrees of freedom which is responsible
for the introduction of the form factors, decay constants and masses. In QCD or theoretical
representation, we evaluate the correlation function in quarkÄgluon language and in terms of
QCD degrees of freedom like quark condensate, gluon condensate, etc., with the help of the
Wilson operator product expansion (OPE).

1.1. The OPE Side. With the help of the operator product expansion (OPE) in Euclidean
region, where p2, p′2 → −∞, we calculate the QCD side of the correlation function (Eqs. (1)
and (2)) containing perturbative and nonperturbative parts.

Let us calculate the perturbative part as shown in Fig. 1. Using the double dispersion rela-
tion for each coefˇcient of the Lorentz structures appearing in correlation functions (Eqs. (1)
and (2)), we get:

Π(per)M(p2, p′2, q2) = − 1
4π2

∫
ds

∫
ds′

ρM (s, s′, q2)
(s − p2)(s′ − p′2)

+ subtraction terms, (3)

where ρM (s, s′, q2) is spectral density, and M stands for Bs1, K(K∗
0 ) off-shell meson.

We calculate spectral densities in terms of the usual Feynman integrals with the help of the
Cutkosky rules.

The integration region in Eq. (3) is obtained by requiring that the argument of three-delta
function vanishes simultaneously. The physical region in the s and s′ plane is described by
the following inequalities:

−1 � 2ss′ + (s + s′ − q2)(m2
1 − s − m2

3) + (m2
3 − m2

2)2s

λ1/2(m2
1, s, m

2
3)λ1/2(s, s′, q2)

� +1, (4)

where λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc. From this inequality, the lower limit of
the integration over s in Eq. (3) is obtaining by expressing s in terms of s′ as follows:

sL =
(m2

3 + q2 − m2
1 − s′)(m2

1s
′ − q2m2

3)
(m2

1 − q2)(m2
3 − s′)

. (5)

The general expression for the Bs1B
∗K vertex has ˇve independent Lorentz structures.

In principle, we can work with any structure. But we must choose those which have less
ambiguities in the QCD sum-rules approach, which means less in	uence of the condensates
of higher dimension and a better stability as a function of the Borel mass.

In this paper, we use the structure pμp′ν , which presents a better behavior; the spectral
density when Bs1 meson is off-shell appears as:

ρBs1(s, s′, q2) = 4iNcI0[A(2md − 2ms) + B1(md − ms) + B2(mb + md) + md], (6)
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and when K meson is off-shell:

ρK(s, s′, q2) = 4iNcI0[A(2md − 2ms) + B1(mb − ms) + B2(mb + md) + mb]. (7)

In the Bs1B
∗K∗

0 vertex, we have only structure εαβμνpαp′β; the spectral density when Bs1

meson is off-shell turns out to be:

ρBs1(s, s′, q2) = 4iNcI0[B1(ms + md) + B2(md − mb) + md], (8)

when K∗
0 meson is off-shell:

ρK∗
0 (s, s′, q2) = 4iNcI0[B1(ms + mb) + B2(mb − md) + mb], (9)

where

A =
1

λ2(s, s′, q2)
[
4ss′um2

3 + 4ss′ΔΔ′ − 3suΔ′2 − 3uΔ2s′ − u3m2
3 + 2u2ΔΔ′] ,

(10)

B1 =
1

λ(s, s′, q2)
[2s′Δ − Δ′u], B2 =

1
λ(s, s′, q2)

[2sΔ′ − Δu],

and

I0(s, s′, q2) =
1

4λ1/2(s, s′, q2)
,

Δ = (s + m2
3 − m2

1), Δ′ = (s′ + m2
3 − m2

2), u = s + s′ − q2, (11)

λ(s, s′, q2) = s2 + s′2 + q4 − 2sq2 − 2s′q2 − 2ss′,

Fig. 2. Contribution of the quarkÄ

quark condensate for the Bs1 off-
shell

for off-shell Bs1(K[K∗
0 ]) case, m1, m2, and m3 stand for

the masses of the s, b(d) and d(b) quarks, respectively.
Nc = 3 represents the color factor.

We proceed to calculate the nonperturbative contribu-
tions in the QCD side that contain the quarkÄquark conden-
sate. The quarkÄquark condensate is considered for light
quarks u, d, and s. The contribution of the quarkÄquark
condensate which survives after the double Borel transform
is represented in Fig. 2 for the Bs1 off-shell case, and is
given by:

ΠBs1
(nonper) = i〈d̄d〉 1

(p2 − m2
s)(p′2 − m2

b)
. (12)

For the K(K∗
0 ) off-shell there is no quarkÄquark condensate contribuition. Our calculations

show that for two cases Bs1 and K(K∗
0 ) off-shell, the gluon and quarkÄgluon condensate

contributions are very small and we can easily ignore their contributions in our calculations.
1.2. The Phenomenological Side. The phenomenological side of the correlation function

is obtained by considering the contribution of three complete sets of Bs1, B∗, and K(K∗
0 )
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mesons in Eqs. (1) and (2). In the following, we write down the deˇnition for the strong
coupling constants gBs1B∗K and gBs1B∗K∗

0
,

〈B∗(p′, ε′)|K(q)Bs1(p, ε)〉 = im2
Bs1

gBs1B∗K(q2)ε.ε′,
(13)

〈B∗(p′, ε′)|K∗
0 (p)Bs1(q, ε)〉 = igBs1B∗K∗

0
(q2)εαβγσεγ(q)ε′α(p′)p′βqσ.

The meson-decay constants, fK∗
0
, fK∗

0
, fB∗ , and fBs1 , are deˇned by the matrix elements

〈0|jK∗
0 |K(p′)〉 = mK∗

0
fK∗

0
,

〈0|jK |K(p′)〉 =
m2

KfK

ms + md
,

(14)
〈0|jBs1

μ |Bs1(p, ε)〉 = mBs1fBs1εμ(p),

〈0|jB∗

ν |D∗(p′, ε′)〉 = mB∗fB∗ε′ν(p′),

where q = p′−p, ε and ε′ are the polarization vectors of the Bs1 and B∗ mesons, respectively.
Saturating Eqs. (1) and (2) with the Bs1, B∗ and K(K∗

0 ) states and using Eqs. (13) and (14),
the phenomenological part for the pμp′ν structure related to the Bs1B

∗K vertex, when K(B∗
s1)

is the off-shell meson, is:

ΠK(B∗
s1) = −ig

K(Bs1)
Bs1B∗K(q2)×

×
mBs1m

2
KfBs1fB∗fK(m2

Bs1(K) + m2
B∗ − q2)

(q2 − m2
K(Bs1)

)(p2 − m2
Bs1(K))(p

′2 − m2
B∗)(ms + md)mD∗

+ h.r. (15)

The phenomenological part for the εαβμνpαp′β structure associated to Bs1B
∗K∗

0 vertex,
when K∗

0 (Bs1) is the off-shell meson, is as follows:

ΠK∗
0 (Bs1) = −ig

K∗
0 (Bs1)

Bs1B∗K∗
0
(q2)

mBs1mK∗
0
mB∗fBs1fB∗fK∗

0

(q2 − mK∗
0 (Bs1))(p2 − mBs1(K∗

0 ))(p′2 − m2
B∗)

+ h.r. (16)

In Eqs. (15) and (16), h.r. represents the contributions of the higher states and continuum.
1.3. The Sum Rule. After performing the Borel transformation [29] with respect to the

variables p2(Bp2(M2
1 )) and p′2(B2

p′ (M2
2 )) on the physical (phenomenological) and QCD

parts and equating these two representations of the correlations, we obtain the equation for
the strong form factors as follows.

• For the gBs1B∗K(Q2) form factors:
when Bs1 meson is off-shell:

gBs1
Bs1B∗K(Q2) = −i

mB∗(Q2 + m2
Bs1

)(ms + md)
mBs1m

2
KfBs1fB∗fK(m2

K + m2
B∗ + Q2)

exp
(

m2
K

M2
1

)
exp

(
m2

B∗

M2
2

)
×

×

⎧⎪⎨
⎪⎩− 1

4π2

s′
0∫

(md+mb)2

ds′
s0∫

sL

dsρBs1(s, s′, Q2) exp
(
− s

M2
1

)
exp

(
− s′

M2
2

)
+

+ Bp2(M2
1 )B2

p′(M2
2 )ΠBs1

(nonper)(p
2, p′2, Q2)

}
, (17)
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when K meson is off-shell:

gK
Bs1B∗K(Q2) = −i

mB∗(Q2 + m2
K)(ms + md)

mBs1m
2
KfBs1fB∗fK(m2

Bs1
+ m2

B∗ + Q2)
exp

(
m2

Bs1

M2
1

)
×

× exp
(

m2
B∗

M2
2

) ⎧⎪⎨
⎪⎩− 1

4π2

s′
0∫

(mb+md)2

ds′
s0∫

sL

dsρK(s, s′, Q2) exp
(
− s

M2
1

)
exp

(
− s′

M2
2

)⎫⎪⎬
⎪⎭ .

(18)

• For the gBs1B∗K∗
0
(Q2) form factors:

when Bs1 meson is off-shell:

gBs1
Bs1B∗K∗

0
(Q2) = i

(Q2 + m2
Bs1

)
mBs1mB∗mK∗

0
fBs1fB∗fK∗

0

exp

(
m2

K∗
0

M2
1

)
exp

(
m2

B∗

M2
2

)
×

×

⎧⎪⎨
⎪⎩− 1

4π2

s′
0∫

(md+mb)2

ds′
s0∫

sL

dsρBs1(s, s′, Q2) exp
(
− s

M2
1

)
exp

(
− s′

M2
2

)
+

+ Bp2(M2
1 )B2

p′(M2
2 ) ΠBs1

(nonper)(p
2, p′2, Q2)

}
, (19)

when K∗
0 meson is off-shell:

g
K∗

0
Bs1B∗K∗

0
(Q2) = i

(Q2 + m2
K∗

0
)

mBs1mB∗mK∗
0
fBs1fB∗fK∗

0

exp
(

m2
Bs1

M2
1

)
exp

(
m2

B∗

M2
2

)
×

×

⎧⎪⎨
⎪⎩− 1

4π2

s′
0∫

(mb+md)2

ds′
s0∫

sL

dsρK∗
0 (s, s′, Q2) exp

(
− s

M2
1

)
exp

(
− s′

M2
2

)
}

⎫⎪⎬
⎪⎭ , (20)

where Q2 = −q2, s0 and s′0 are the continuum thresholds, and sL is the lower limit of the
integral over s presented in Eq. (5).

2. NUMERICAL ANALYSIS

In the present section, we numerically analyze the expressions of QCD sum rules obtained
for the considered strong coupling constants. Some input parameters used in the calculations
are: md = (5.6 ± 1.6) MeV, ms = (0.14 ± 0.01) GeV, mb = (4.7 ± 0.1) GeV, mK =
0.493 GeV, mK∗

0 (1430) = (1.425 ± 0.05) GeV, mB∗ = 5.325 GeV [30], mBs1 = (5.72 ±
0.09) GeV [31], fK = 0.16 GeV [32], fB∗ = (0.17 ± 0.02) GeV [33], fBs1 = (0.24 ±
0.02) GeV [34], fK∗

0 (1430) = (0.445±0.05) GeV [35], and 〈d̄d〉 = −(0.24±0.01)3 GeV3 [36].
The expressions for the strong form factors and coupling constants contain also four aux-

iliary parameters: Borel mass parameters M1 and M2 and continuum thresholds s0 and s′0.
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Fig. 3. The gBs1B∗K(Q2 = 1 GeV2) as a func-

tion of the Borel mass M2 for two cases Bs1

and K off-shell mesons

Fig. 4. The gBs1B∗K∗
0
(Q2 = 1 GeV2) as a func-

tion of the Borel mass M2 for two cases Bs1

and K∗
0 off-shell mesons

These are mathematical objects, so the physical quantities, i.e., strong form factors and cou-
pling constants should be independent of them. The parameters of s0 and s′0 are the continuum
thresholds. The values of the continuum thresholds s0 = (mi + r1)2 and s′0 = (m0 + r2)2,
where mi and mo are the masses of the incoming and outgoing meson, respectively [1Ä11].

In this work we use the following relations between the Borel masses M2
1 and M2

2 :
M2

1/M2
2 = (m2

K∗
0
/m2

B∗ − m2
b) for a Bs1 off-shell and M2

1 /M2
2 = (m2

Bs1
/m2

B∗) for a K(K∗
0 )

off-shell.
Using r1 = 0.5 GeV and r2 = 0.5 GeV for the continuum and ˇxing Q2 = 1 GeV2, we

found a good stability of the sum rule in the interval 10 � M1 � 20 GeV2 for two cases Bs1

and K(K∗
0 ) off-shell. The dependence of the strong form factors gBs1B∗K and gBs1B∗K∗

0

on Borel mass parameters for off-shell Bs1 and K(K∗
0 ) mesons are shown in Figs. 3 and 4,

respectively.

Fig. 5. The strong form factors gBs1
Bs1B∗K(Q2) and

gK
Bs1B∗K(Q2) as a function of Q2

Fig. 6. The strong form factors gBs1
Bs1B∗K∗

0
(Q2)

and g
K∗

0
Bs1D∗K∗

0
(Q2) as a function of Q2
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We have chosen the Borel mass to be M2
1 = 13 GeV2. Having determined M2

1 , we
calculated the Q2 dependence of the form factors. We present the results in Figs. 5 and 6 for
the Bs1B

∗K and the Bs1B
∗K∗

0 vertices, respectively. In this ˇgures, the small circles and
boxes correspond to the form factors in the interval where the sum rule is valid. As is seen,
the form factors and their ˇt functions coincide together, well.

For off-shell Bs1 meson, our numerical calculations show that the sufˇcient parameteri-
zation of the form factors with respect to Q2 is:

g(Q2) =
A

Q2 + B
, (21)

and for off-shell K(K∗
0 ) meson the strong form factors can be ˇtted by the exponential ˇt

function as given:

g(Q2) = A e−Q2/B. (22)

Table 1. Parameters appearing in
the ˇt functions

Form factor A B

gK
Bs1B∗K 0.84 4.69

gBs1
Bs1B∗K 1614.19 1668.98

g
K∗

0
Bs1B∗K∗

0
1.80 3.51

gBs1
Bs1B∗K∗

0
135.23 76.02

The values of the parameters A and B are given in
Table 1.

As in our previous works [1Ä11], we deˇne the cou-
pling constant as the value of the strong coupling form
factor at Q2 = −m2

m in Eqs. (21) and (22), where mm is
the mass of the off-shell meson.

The errors corresponding to the values of the coupling
constants are estimated by considering: a) variation of the
continuum threshold, here we vary r1,2 between 0.35 �
r1,2 � 0.65 GeV for two cases Bs1 and K(K∗

0 ) off-
shell; b) the uncertainties in the values of the leptonic

decay costants fDs1 , fD∗ , fK , and fK∗
0
; c) the uncertainties in the values of other input

parameters. We obtain the values of the strong coupling constants and their corresponding
errors shown in Table 2. We can see that the two cases considered here, off shell Bs1 and
K(K∗

0 ) mesons, give compatible results for the coupling constant.

Table 2. The strong coupling constants gBs1B∗K and gBs1B∗K∗
0

in different approaches: 3PSR (our),
light-cone sum rules (LCSR) [13], heavy chiral unitary [20], in GeV−1

Strong
coupling constant

K(K∗
0 ) (off-shell) Bs1 (off-shell) Average (our) [13] [20]

gBs1B∗K 0.89 ± 0.13 0.99 ± 0.15 0.94 ± 0.14 0.57 ± 0.19 0.74
gBs1B∗K∗

0
3.21 ± 0.25 3.12 ± 0.34 3.26 ± 0.31 Å

In conclusion, the strong form factors and the coupling constants for Bs1B
∗K and

Bs1B
∗K∗

0 vertices are determined within QCD sum rules. Comparison is made for gBs1B∗K

between our founding and the results of light-cone QCD sum rules and heavy chiral unitary.
Experimental data for these strong form factors and the coupling constants and their compar-
ison with the phenomenological models like QCD sum rules could give useful information
about the structure of the Bs1(5830) axial vector meson.
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