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ON THE ORIGIN OF SUPERSELECTION RULES
AND DIFFERENT SOLUTIONS OF THIRRING MODEL

S. E. Korenblit 1, V. V. Semenov

Irkutsk State University, Irkutsk, Russia

The normal forms of different one- and two-parametric solutions of Thirring model are connected
with each other by making use of generalized conformal shift transformations. New alternative sources
of superselection rules are shown.
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INTRODUCTION

We have shown in the recent works [1] that Thirring model is exactly solvable [2Ä4] in fact
due to intrinsic hidden exact linearizability of its Heisenberg equation (HEq) 2∂ξΨξ(x) =
−igJ−ξ

(Ψ)(x)Ψξ(x), and that the bosonization rules [5] can acquire an operator sense only

for Z(χ)(a) = 1 among the free ˇelds operators with unambiguously deˇned normal ordering
procedure. For Heisenberg currents with current'sÄˇeld's renormalization constant Z(Ψ)(a) =

(−Λ2a2)−β
2
/4π these rules take place only in a weak sense:

Ĵμ
(Ψ)(x) w=

β

2
√

π
Ĵμ

(χ)(x) w= − β

2π
εμν∂νφ(x) =

β

2π
∂μϕ(x), for (1)

Ĵ0
(Ψ)(x) = lim

ε̃→0
Ĵ0

(Ψ)(x; ε̃), Ĵ1
(Ψ)(x) = lim

ε→0
Ĵ1

(Ψ)(x; ε), with (2)

Ĵν
(Ψ)(x; a) = Z−1

(Ψ)(a)
[
Ψ(x + a)γνΨ(x) − 〈0|Ψ(x + a)γνΨ(x)|0〉

]
, (3)
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and ε̃μ = −εμνεν , for the ˇrst ε̃0 = ε1 → 0, but ˇxed ε̃1 = ε0, ε2 = −ε̃2 > 0. The following
variant of Oksak solution [6,7] of this model was obtained [1]:

ΨOk
ξ (x) = Nϕ

{
exp
(
−i2

√
π

[

−ξ(x) +

ξ

4
W ξ

])}
vξ, with ξ = ±, (4)

2
√

π
−ξ(x) = αϕ−ξ
(
x−ξ
)

+ βϕξ
(
xξ
)
, 2

√
π W ξ = αQξ − βQ−ξ, (5)

vξ = v̂ξ exp
{
−a0

π

8
cosh 2η

}
, v̂ξ =

(
μ

2π

)1/2 (
μ

Λ

)β
2
/4π

ei	−iξΘ/4, (6)

α2 − β
2

= 4π, β =
βg

2π
, eη =

2
√

π

β
=
√

1 +
g

π
, α ± β = 2

√
πe±η, (7)

deˇned for xξ = x0 + ξx1 in the space of massless pseudoscalar ˇeld φ(x): Pc(k1)P−1 =
−c(−k1), [c(k1), c†(q1)] = 4πk0δ(k1 − q1), c(k1)|0〉 = 0, for O = φ(−∞, x0) − φ(∞, x0),
2ϕξ
(
xξ
)

= ϕ(x) − ξφ(x), 2Qξ = O − ξO5, with

k0 = |k1|, P
1
k1

=
ε
(
k1
)

|k1| ,
1
4

(
P

1
k1

− ξ

k0

)
=

−ξθ
(
−ξk1
)

2k0
and (8)

φ(x) =
1
2π

∞∫
−∞

dk1

2k0

[
c
(
k1
)
e−i(kx) + c†

(
k1
)
ei(kx)
]
≡ φ(+)(x) + φ(−)(x), (9)

ϕ(x) =
1
2π

∞∫
−∞

dk1 P
1
k1

[
c
(
k1
)
e−i(kx) + c†

(
k1
)
ei(kx)
]
, (10)

ϕξ(+)(s) = − ξ

2π

∞∫
−∞

dk1

2k0
θ
(
−ξk1
)
c(k1) e−ik0s, ϕξ(−)(s) =

[
ϕξ(+)(s)

]†
, (11)

Qξ(+)(x̂0) = lim
L→∞

iξ

2

∞∫
−∞

dk1θ
(
−ξk1
)
c(k1) e−ik0x̂0

δL(k1), (12)

[ϕ(x), O] = [φ(x), O5] = i, 2iO5 = c(0) − c†(0), (13)

[ϕξ(s), ϕξ′
(τ)] = − i

4
ε(s − τ)δξ,ξ′ , [ϕξ(s), Qξ′

] =
i

2
δξ,ξ′ , (14)

[ϕξ(±)(s), ϕξ′(∓)(τ)] = ∓δξ,ξ′

4π
ln (iμ {±(s − τ) − i0}), (15)

[ϕξ(±)(s), Qξ′(∓)] =
i

4
δξ,ξ′ , [Qξ(±), Qξ′(∓)] = ±a0δξ,ξ′ , (16)

a0 = a0(L) = π

∞∫
0

dk1 k0
(
δL(k1)

)2
, L → ∞, lim

L→∞
δL(k1) = δ(k1). (17)
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For Eq. (4), that was constructed in [1] as dynamical mapping (DM), Nϕ means the normal
ordering with respect to c(k1), and the ultraviolet cut-off Λ [4] is introduced for the ˇeld
regularization (6). The volume cut-off function δL(k1) was invented for the charge regulariza-
tion (12), leading to nonnegative constant a0 (17) for the commutator (16), connected with the
structure of vacuum state of chosen ˇeld representation [1,3,4,6Ä8]. The observed weak lin-
earization of HEq together with the nonlinearity of DM (4) and the initial conditions at x0 = 0,
generalized in a weak sense, have allowed us [1] to overcome the restrictions of Haag theo-
rem, by removing the problems again into the representation construction of physical ˇelds:
at ˇrst as reducible massless free Dirac ˇelds χ(x) (corresponding to g = 0 in the above
formulas), and then as irreducible massless (pseudo)scalar ˇelds (φ(x)), ϕ(x), taken here
mutually dual and coupled by the relations (ε(x1) = sign (x1)):

φ(x)
ϕ(x)

}
= −1

2

∞∫
−∞

dy1 ε
(
x1 − y1

)
∂0

{
ϕ
(
y1, x0
)
,

φ
(
y1, x0
)
.

(18)

These free ˇelds arisen in [1] as Schréodinger physical ˇelds, in fact play a role of the
asymptotic ones [6]. Due to automatic elimination of zero mode's contributions for (10) and
for generating functional [4], the chosen here representation space [1] relaxes the problem of
nonpositivity of its inner product induced by Wightman function (15) [6Ä8].

1. OTHER SOLUTIONS AND SUPERSELECTION RULES

Now we wish to connect the Oksak solution (4)Ä(6) with another known solutions of
Thirring model [5, 8]. To this end, we use the properly unitary transformation of conformal
shift [7] for the ˇelds ϕξ, generalized in the following way. By making use of the rela-
tions (13)Ä(16), we consider the family of solutions Ψ(x, σ) = K−1

σ ΨOk(x)Kσ , marked by
arbitrary real parameter σ:

Kσ = exp Xσ, Xσ = iσ
ξ

4

(
Q−ξQ−ξ − QξQξ

)
= i

σ

4
OO5, ξ, ξ = ±, (19)

Ψξ(x, σ) = K−1
σ ΨOk

ξ (x)Kσ = Nϕ

{
eRξ(x,σ)

}
vξ(σ), (20)

Rξ(x, σ) = −i

[
2
√

π 
−ξ(x) +
ξ

4
(α + σβ)Qξ − ξ

4
(β + σα)Q−ξ

]
, (21)

vξ(σ) = vξ exp
{
−a0

π

8
[
σ2 cosh 2η + 2σ sinh 2η

]}
. (22)

For arbitrary σ this solution obeys the same canonical anticommutation relations (CAR)
and the same bosonization rule (1)Ä(3) with the same renormalization constant Z(Ψ)(a). The
parameter a0 may be adsorbed into the regularization parameter μ by the rescaling substitution,
which unlike the Oksak (6) and free cases, now depends on Thirring coupling constant g (7):

μ 	−→ μ exp
{
a0

π

4
(
σ2 + 1 + 2σ tanh 2η

)}
. (23)

By using (18) and topological deˇnitions both of O, O5, it is a simple matter to check that
σ = ±1 gives the two types of Mandelstam solution [5], while σ = − coth 2η corresponds



On the Origin of Superselection Rules and Different Solutions of Thirring Model 207

to normal form of solution of Morchio et al. [8]. This again demonstrates the advantages of
normal ordered form of DM:

Ψξ(x, 1) = Nϕ

{
eRξ(x,1)

}
v̂ξ exp

{
−a0

π

4
e2η
}

, σ = 1, (24)

Rξ(x, 1) = −i

⎡⎢⎣ξ β

2
φ(x1, x0) − 2π

β

x1∫
−∞

dy1 ∂0φ(y1, x0)

⎤⎥⎦ ; (25)

Ψξ(x,−1) = Nϕ

{
eRξ(x,−1)

}
v̂ξ exp

{
−a0

π

4
e−2η
}

, σ = −1, (26)

Rξ(x,−1) = −i

⎡⎣2π

β
ϕ(x1, x0) + ξ

β

2

∞∫
x1

dy1 ∂0ϕ(y1, x0)

⎤⎦ ; (27)

Ψξ(x,− coth 2η) = Nϕ {exp [Rξ(x,− coth 2η)]} vξ(σ = − coth 2η), (28)

Rξ(x,− coth 2η) = −i

[
2
√

π 
−ξ(x) + ξ
π

2

(
Qξ

α
+

Q−ξ

β

)]
, (29)

vξ(σ = − coth 2η) = v̂ξ exp
{
−a0

π

8
cosh 2η

sinh2 2η

}
. (30)

We would like to point out that σ = 1 corresponds to DM (24), (25) ®onto¯ the pseudoscalar
ˇeld φ(x), while σ = −1 gives another form (26), (27) of Mandelstam solution with bosoniza-
tion ®onto¯ the scalar ˇeld ϕ(x), and that unlike (28), (29), the original solution of Morchio
et al. [8] has a0 = 0, as well as the original Oksak solution [6,7], but contains all Klein factors
outside the normal form, so its renormalization constant remains to be unknown. We have
used here that 2
−ξ(x) = eηϕ(x) + ξ e−ηφ(x) and have utilized for brevity both deˇnitions
of last identity (7) read also as α + β = 4π/β, α − β = β.

There is another important maybe improper unitary transformation of the solutions (20),
which introduces the two-parametric extension of Oksak solution (4) and for arbitrary σ, ρ
obeys again the same CAR and the bosonization rule (1) with the same renormalization
constant Z(Ψ)(a):

Ψ(x, σ, ρ) = L−1
ρ Ψ(x, σ)Lρ = K−1

σ Ψ(x, 0, ρ)Kσ, and for ξ, ξ = ± : (31)

Lρ = exp Y, Y = − i

2
ρ QξQ−ξ = − i

8
ρ
(
O2 − O2

5

)
, (32)

Ψξ(x, σ, ρ) = L−1
ρ Ψξ(x, σ)Lρ = Nϕ

{
eRξ(x,σ,ρ)

}
vξ(σ, ρ), (33)

Rξ(x, σ, ρ) = −i2
√

π

[

−ξ(x) +

Σξ
+

8
Qξ +

Σξ
−
8

Q−ξ

]
, (34)

vξ(σ, ρ) = v̂ξ exp
{
−a0

π

32

[(
Σξ

−

)2
+
(
Σξ

+

)2]}
, with (35)

Σξ
± = e−η [ξ(1 − σ) + ρ] ± eη [ξ(1 + σ) + ρ] . (36)
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For divergent value of a0 at L → ∞, e.g., for usual box [1], the ξ Å dependence of the last
exponential of c Å number spinor (35) leads to nonphysical in general nonrenormalizable
infrared divergences of every component of the ˇeld (33). For arbitrary ρ this ξ-dependence
eliminates only for the solution (28) with σ = − coth 2η, that transcribes (33)Ä(36) as

Rξ(x,− coth 2η, ρ) = −i

[
2
√

π 
−ξ(x) + ξ
π

2

(
Qξ

α
+

Q−ξ

β

)
+ ρ

√
π

2
W ξ

]
, (37)

vξ(− coth 2η, ρ) = v̂ξ exp
{
−a0

π

8
cosh 2η

[
1

sinh2 2η
+ ρ2

]}
. (38)

Let us turn to the vacuum expectation value (VEV) of the strings of these ˇelds (33).
Following [6] it is enough to consider only the product〈

0

∣∣∣∣∣
p∏

i=1

Ψ(li)
ξi

(xi, σ · ρ)

∣∣∣∣∣ 0
〉

, with li = +1, for Ψi, li = −1, for Ψ†
i . (39)

By virtue of the known relations for any numbers γi, i = 1÷p, and for any linearly dependent

on c, c† operators liRξi(xi, σ, ρ) 	→ Ri = R(+)
i + R(−)

i :

p∑
i<k

γiγk =
1
2

p∑
i�=k

γiγk =
1
2

(
p∑

i=1

γi

)2

− 1
2

p∑
i=1

γ2
i , (40)

p∏
i=1

N {exp [Ri]} = exp

{
p∑

i<k

[R(+)
i ,R(−)

k ]

}
N

⎧⎨⎩exp

⎛⎝ p∑
j=1

Rj

⎞⎠⎫⎬⎭ , (41)

the corresponding VEV of the string of the ˇelds (33)Ä(36) reads 1

(
Λβ

2
/4π

√
2π
)p 〈

0
∣∣∣∣ p∏

i=1

Ψ(li)
ξi

(xi, σ, ρ)
∣∣∣∣0〉 = 〈0|Nϕ

⎧⎨⎩exp

⎛⎝ p∑
j=1

Rj

⎞⎠⎫⎬⎭ |0〉×

× exp
{

i�Sp − i
Θ
4
Sp5

}
exp
{

1
4
[
e2ηS2

p + e−2ηS2
p5

]
ln μ

}
×

× exp

{
−a0

π

16

(
e2η

[
(1 + σ)Sp + ρSp5

]2
+ e−2η

[
(1 − σ)Sp5 + ρSp

]2)}
×

×
p∏

i<k

{
eiπ(ξi−ξk)

[
i(x−

i − x−
k ) + 0

i(x+
i − x+

k ) + 0

]ξi+ξk

×

×
[
i0 ε(x0

i − x0
k) − (xi − xk)2

]e2η+ξiξk e−2η

}lilk/4

. (42)

1Here for ξi ± ξk, we use ξi, ξk = +1,−1, and δξi,ξk
= (1 + ξiξk)/2, δξi,±1 = (1 ± ξi)/2.
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This expression provides at least ˇve independent sources of superselection rules [2, 6] that
usually are associated only with conservation of scalar ˇeld's (vector current's) charge O
and pseudoscalar ˇeld's (pseudovector current's) charge O5, respectively. For the p-point
Wightman function (42) there are

Sp ≡
p∑

i=1

li ⇒ 0, Sp5 ≡
p∑

i=1

liξi ⇒ 0. (43)

The ˇrst one deˇned by Oksak and Morchio et al., due to the above-mentioned conservation
of both charges, originates from the VEV of normal exponential in the r.h.s., taken, instead
of |0〉, for the vacuum state |υ̂〉 averaged with respect to the ˇeld-translation gauge group
like (45) below, leading to [6Ä8]:

〈υ̂|Nϕ

⎧⎨⎩exp

⎛⎝ p∑
j=1

Rj

⎞⎠⎫⎬⎭ |υ̂〉 =⇒ δSp,0 δSp5,0. (44)

For the usual nondegenerate vacuum state |0〉 this VEV is equal to 1 identically [5]. Never-
theless, these rules arise from the second lines at the limit μ → 0 as the natural conditions
of nonzero result [4]. We can suggest now three additional sources of these rules. The third
one is the �- and Θ-independence condition for the VEV (39), (42), the fourth one follows
from its independence of the regularization parameter a0, and the ˇfth one follows from
its independence of σ and ρ, whenever the corresponding transformations (19), (32) leave
the vacuum invariant. Obviously, the a0-independence of (42) automatically means its σ-,
ρ-independence, and vice versa.

The independence on the initial values of overall and relative phases has purely fermionic
nature and does not reduce to the (pseudo)scalar ˇeld-translation gauge symmetry (45), which
can only shift their random initial values. It is worth noting that both superselection rules (43)
leave necessary for VEV (39) only the ultraviolet renormalization. Whence, only the last
product of (42) over i < k survives, which does not depend on the parameters μ, σ, ρ, a0,
�, Θ, and gives the well-known expression for the p-point functions [2, 5, 6] with correct
dynamical dimensions.

2. DISCUSSION AND CONCLUSIONS

Since a0 (17) itself makes sense of regularization parameter, it should disappear in physical
quantities. But for any real υ it deˇnes the VEV of the operator of the ˇeld-translation gauge
transformation [6,9], e.g.:

exp {iυO5}φ(x) exp {−iυO5} = φ(x) + υ, (45)

〈0| exp {iυO5} |0〉 ≡ 〈0|υ〉 = exp
{
−a0υ

2
}

, (46)

which is well known in quantum theory of free massless (pseudo)scalar ˇeld [9]. The state |υ〉
is a coherent state of harmonic oscillator, which like (13) corresponds to zero mode k1 = 0,
for L → ∞, and whenever a0 → +∞ simultaneously, then 〈0|υ〉 ⇒ 0 and the state |υ〉 deˇnes
another orthogonal vacuum state of the degenerate family [4, 9], e.g., for the usual box of
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the length 2L [1]. The ˇnite a0 for any continuous piecewise-smooth function of volume
cut-off regularization means the charge deˇnition, which has nothing to do with previous
thermodynamic limit and corresponds to another vacuum structure of the representation space
of (pseudo)scalar ˇeld [1]. A randomization of function k0δL(k1) and corresponding value
of a0 may be used for infrared ®stabilization¯ of Wightman function (15), which replaces the
regularization parameter μ to some ˇnite scale M [4].

We see that, unlike Schwinger model [6, 10], as long as we deal with the solutions (33)Ä
(36) of the above ®phase-decoupled¯ HEqs for ξ = ±, that preserve the �- and Θ-arbitra-
riness, both of superselection rules (43) and the conservation of both of currents should be
fulˇlled independently of chosen phase of the theory, including the phase with spontaneously
broken chiral symmetry [4]. Formally, from this viewpoint, the breaking of the second
rule (43) can be achieved either by introducing the mass term into HEq ®by hand¯ [4], or
otherwise, by excluding a0 via taking Mandelstam solution with σ = 1, ρ = 0, supplemented
with ˇxing of the values μ 	→ M and Θ [4]. However, since one of the gauge symmetries
remains unbroken: O|0〉 ⇒ 0, all the solutions (24)Ä(30) being connected by transformation
(19) refer to the same vacuum state |0〉 regardless of the value σ.

For ρ �= 0 it is impossible to remove the a0-dependence for any σ. It can be only
adsorbed into the parameter μ, whenever the ˇrst role (43) is fulˇlled, by the rescaling:
μ 	→ M exp

{
a0(π/4)[e4ηρ2 + (1 − σ)2]

}
.

Only when both rules (43) are fulˇlled, the VEV (42) does not depend on the regularization
and transformation parameters: μ, a0, and σ, ρ, �, Θ, and on the choice of volume cut-off
regularization. Whereas the discarding of second superselection rule (43) inevitably spoils the
σ-, ρ-, and Θ-invariance of this p-point fermionic Wightman function and its independence
of the parameters μ and a0. So, they should be ˇxed by some additional conditions [4], what
seems impossible for the regularization-dependent value a0. The DM onto the free massive
ˇelds [4, 11] will be free from those parameters.
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