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THE THERMODYNAMIC PROPERTIES OF WEAKLY
INTERACTING QUARK-GLUON PLASMA VIA THE
ONE-GLUON EXCHANGE INTERACTION

M. Modarres', A. Mohamadnejad?
Physics Department, University of Tehran, North-Kargar Ave., 1439955961 Tehran, Iran

The thermodynamic properties of the quark—gluon plasma (QGP), as well as its phase diagram, are
calculated as a function of baryon density (chemical potential) and temperature. The QGP is assumed
to be composed of the light quarks only, i.e., the up and down quarks, which interact weakly, and the
gluons which are treated as they are free. The interaction between quarks is considered in the framework
of the one gluon exchange model which is obtained from the Fermi liquid picture. The bag model is
used, with fixed bag pressure () for the nonperturbative part, and the quantum chromodynamics (QCD)
coupling is assumed to be constant, i.e., with no dependence on the temperature or the baryon density.
The effect of weakly interacting quarks on the QGP phase diagram are shown and discussed. It is
demonstrated that the one-gluon exchange interaction for the massless quarks has considerable effect on
the QGP phase diagram and it causes the system to reach to the confined phase at the smaller baryon
densities and temperatures. The pressure of excluded volume hadron gas model is also used to find
the transition phase diagram. Our results depend on the values of bag pressure and the QCD coupling
constant. The latter does not have a dramatic effect on our calculations. Finally, we compare our results
with the thermodynamic properties of strange quark matter and the lattice QCD prediction for the QGP
transition critical temperature.
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K pTHHBI (hepMH-XHUAKOCTH. Hcronp3yercs MojieIb MELIKOB ¢ (DMKCHPOB HHBIM 1 BIeHHeM BB juisl Herep-
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INTRODUCTION

The quark—gluon plasma (QGP) usually is defined as the phase of Quantum Chromody-
namics (QCD) in which the quarks and gluons degrees of freedom, that is normally confined
within the hadrons, are mostly liberated. The possible phases of the QCD and the precise
locations of critical boundaries or points are currently being actively studied. In fact, reveal-
ing the QCD phase transition structure is one of the central aims of the ongoing and future
theoretical and experimental research in the field of the hot and/or dense QCD [1-4]. It is
about thirty years since the study of the hot and dense nuclear matter in the form of the
QGP has been started. The experiments at the CERN’s Super Proton Synchrotron (SPS) first
tried to create the QGP in the 1980s and 1990s: The first hints of the formation of a new
state of matter was obtained from the SPS data in terms of the global observable, the event-
by-event fluctuations, the direct photons and the di-leptons. The current experiments at the
Brookhaven National Laboratory’s Relativistic Heavy Ion Collider (RHIC) are still continuing
these efforts. In April 2005, the formation of the quark matter was tentatively confirmed by
the results obtained at the RHIC. The consensus of the four RHIC research groups was in
favor of the creation of the quark—gluon liquid at the very low viscosity [5-8].

Since, in this new phase of matter, the quarks and gluons are in the asymptotic freedom
region, one expects that they interact weakly. So, the perturbative methods can be used for
such a system. The asymptotic freedom suggests two procedures for the creation of the QGP:
(i) The recipe for the QGP at high temperature. If one treats the quarks and gluons as the
massless noninteracting gas of molecules, such that the baryon density vanishes, the critical
temperature above which the hadronic system dissolves into a system of quarks and gluons
(QGP) is 7. = 140 MeV [9]. However, the modern lattice QCD calculation estimates the
critical temperature, 7., to be about 170 MeV [10]. (ii) The recipe for the QGP at high
baryon density. At zero temperature, the critical baryon density required the transition to take
place in ng ~ 0.7 fm—3 [9], i.e., four times the empirical nuclear matter density. On these
grounds, one should expect to find the QGP in two places in the nature: Firstly, in the early
universe, about 1075 s after the cosmic Big Bang, or secondly, at the core of super-dense
stars such as the neutron and quark stars. This new phase of matter can also be created in
the initial stage of the little Big Bang by means of the relativistic nucleus—nucleus collisions
in the heavy-ion accelerators [5-8].

The critical temperature (critical baryon density) at the zero baryon density (zero tem-
perature) has been obtained simply for the noninteracting, massless up and down quarks and
gluons in [9]. Some primary works in the zero baryon density and in the framework of
the bag model have also been presented in [11] (and the references therein). For the more
complicated field theoretical approaches, see [12,13] and the references therein. So, it would
be interesting to perform a similar calculation to [9], but with the nonzero interaction, for the
region in which both 7 # 0 and np # 0. So, in this work we generalize the above calcula-
tions for the region with the finite temperature and baryon density by considering the weakly
interacting quarks in the framework of the one-gluon exchange scheme. Since we intend to
use the perturbative method in our calculation, we assume that a. < 1. The dependence of .
on the temperature and baryon density is ignored [14,15]. We perform calculations beyond
the zero hadronic pressure approximation of [9], and the pressure of the excluded volume
hadron [16-18] model is also taken into account to find the corresponding QGP transition
phase diagram.
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So, the paper is organized as follows. In Sec.1 we review the derivation of the one-
gluon exchange interaction formulas [20] based on the Landau Fermi-liquid picture [21,22].
Section 2 is devoted to the calculation of the thermodynamic properties of the QGP. The
result and its comparison with the strange quark matter [14] are given in Sec.3. Finally, a
conclusion and summary are presented in Sec. 4.

1. THE LANDAU FERMI-LIQUID MODEL
AND THE ONE-GLUON EXCHANGE INTERACTION

The Landau Fermi-liquid theory describes the relativistic systems such as the nuclear
matter under the extreme conditions, the quark matter, the quark—gluon plasma, and other
relativistic plasmas. The basic framework of the Landau theory of relativistic Fermi liquids
is given by Baym and Chin [21]. In this framework, one can evaluate the energy density of
a weakly interacting quarks in QGP by the following formulas:

&= gkin + gpot; (1)
with
gqd®p
Ein = / eomp Sk @)

3)

where g; = Gspin X goolor = 2 X 3 = 6 is the degeneracy of quarks; exin, €pot and n; are
the kinetic and the potential energies and the familiar Fermi—Dirac liquid distributions of our
quasiparticles, respectively. In equation (3), f, I,;IJOI is the Landau—Fermi interaction function,
which is a criterion for the interaction between the two quarks (the «unpol» superscript refers
to the unpolarized quark matter [14, 15]). It is related to the two-particle forward scattering
amplitude, i.e.,
npol Mg M

Toi® = oo Mo “)
M, i is the commonly defined Lorentz invariant matrix element. Now, using the Feynman
rules for the QCD, M, . can be calculated. Since the direct term is proportional to the
trace of the Gelman matrices, the color symmetric matrix element is only given by exchange
contribution:
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where G2 = 47a. (our choice is o, = 0.2). Since our system is unpolarized, it is possible to
sum over all the spin states and get the average of this quantity as
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Then for massless up and down quarks,

funpol — g_2 1 )
Ph 9 |pllk|

So, the total energy of interacting quarks can be evaluated by using Eqgs. (1), (2), (3) and

(7). In the next section, the various thermodynamic quantities of the interacting QGP like the
internal energy, the pressure, the entropy, etc. are calculated.

(N

2. THE THERMODYNAMIC PROPERTIES OF THE QGP

We begin with calculation of the free ultrarelativistic massless quarks partition function
density, which follows its noninteracting gluon contributions. Since we are interested in the
heavy-ion processes, it is assumed that the initial state should be the nuclear matter with the
equal neutron and proton densities, i.e., n, = n,. S0,

N, = N, (®)

and the contributions of u and d quarks are equal. Then the fermionic partition function for
each quark is written as (V is the volume)

ln Zq —B(k— —B(k+p 47qu 2
. :/[ln(1+e () I (10 LR ©)
This integral can be evaluated analytically, i.e.,
In Z, drgy o (T7t w5, 1,
= - —_—+ — - , 10
v 3ees” \ T2V t1Y (19)

where v = pf3 and 8 = 1/7 (in the Boltzmann factor units). Now we are in the position to
evaluate the various thermodynamic quantities, such as the energy density, the entropy and
the free energy from the above partition function, especially we have

_ |9 (nZw T\ _ 4Gy ope s

where G, = 2g, is the quark degeneracy for two, up and down quarks, flavors. All of the
thermodynamic quantities are obtained as a function of chemical potential () and tempera-
ture (7). The temperature is a suitable experimental quantity, but the chemical potential is
not. So, it is better to rewrite the thermodynamic quantities as a function of the temperature
and the baryon density, instead of the chemical potential. Since the baryon number of a quark
is 1/3, we have n = 1/3n, and

2 272 3
Then, the chemical potential can be found as a function of n and 7, from the above equa-
tion, i.e.,

1/3 1/3
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So, our thermodynamic quantities become a function of baryon density and temperature.
For the energy density of gluons we have

k 47rggk2 dk 2,
- — g T 14
&9 /ek/7—1 emnE 9307 (14

where again g, = 16 is the degeneracy of gluons.
Our system is ultrarelativistic, so there is a simple relation between the pressure and the

energy density:

P = %a. (15)

The bag pressure and the vacuum energy contributions should be included, in addition to the
quark and gluon contribution energies,

eqar(n, T) = &¢(n, T) +¢4(T) + B, (16)
Pacp(n,T) = Py(n, T) + Py(T) — B. (17)

Having the pressure, the entropy density of system is evaluated,

0
SQGP(TZ,T) = (ﬁPQGP(N77)> . (18)

©w

To study the phases of the QGP, one should concentrate on the QGP and the hadronic
pressures, Pqap and Phadron [16-18], respectively, i.e., for Poap < Phadron, the system is in
the confinement phase and the quarks and gluons are inside the bag, but for Pqgp > Phadron,
the quarks and gluons pressures can overcome to the bag and the hadronic pressures and the
system is in the de-confinement phase, i.e., the QGP phase is created. So, the phase diagram
can be extracted by solving the following equation:

PQGP (n, T) = Pq (’I’L, T) + Pg(T) —-B= Phadrons (’I’L(/.L), T)7 (19)

where in this work, both Ppadrons = 0 [9] and Phadrons # 0 [16—18] cases are considered.
For Phadrons 7 0, the excluded volume effect for the nuclear matter equation of state is
used [16—18] to calculate the hadronic pressure (Eq. (29) of [17]), i.e.,

fpideal , T
Phadrons (n(ﬂ)a T) = Phadrons (M; T) ~ %; (20)

where Pideal (4, T) is the pressure of free ideal nucleonic (Fermion) matter [18,19] (here,

degeneracy is 4, m ~ 939 MeV, v = 4(4/3)mr? and r ~ 1.2 fm, e.g., see Eq.(9) of [18]).
Now, the interaction energy between the quarks can be calculated by using the Landau

Fermi-liquid model and the results derived by us in the previous section. The potential energy

density of the interacting massless up or down quarks is found by using Eqgs. (3) and (7),

11 51 qu3p 9q d3k
epot(i, T) = 3 / 59 DR (95 (25 @
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where g, = 6 is the quark degeneracy of one flavor. By using the Fermi-Dirac distribution
and the value of each quark flavor potential energy, i.e., Eq.(21), an analytical formula for
the total potential energy density of the two quark flavors is written as follows:

w1 = (-5 (84 (1))

Note that the potential energy for massless quarks is always positive. So, the interaction
between quarks inside the bag is repulsive and it helps the interacting quarks and gluons
to penetrate from the bag more easily, rather than the noninteracting case, and furthermore,
the one-gluon exchange interaction, because of its repulsive properties, makes the conditions
easier for the system to make the transition to the QGP phase.

The internal energy density of the QGP is evaluated by performing the summation over the
interacting and noninteracting parts of the energy density of quarks, the vacuum energy and the
gluon energy density which were calculated before, and having that, the other thermodynamic
quantities of the QGP are found.

As was pointed out before, it is assumed that the bag (hadronic) pressure is the one
used in [9], i.e., B = 208 MeV - fm 3 (zero), in order to compare our phase diagram with
this reference, and since it is intended to compare our results with [14], the QCD coupling
constant was chosen to be a. = 0.2. On the other hand, for the nonzero hadronic pressure, the
baryonic chemical potential and the bag pressure are varied to reach the critical temperature
of the lattice QCD predictions [10], i.e., 7. = 170 MeV.

3. THE RESULTS OF THE QGP CALCULATION

We begin by presenting the calculated free energy per baryon for both the QGP and the
strange quark matter [14] in Figs.1 and 2, as a function of baryon density (temperature) at
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Fig. 1. The density dependence of the free en-
ergy per baryon at two different temperatures.
The solid and dashed curves are for the weakly
interacting QGP and the strange quark matter,
respectively

Temperature, MeV

Fig. 2. The temperature dependence of the free
energy per baryon at two different baryon den-
sities. The solid and dashed curves are for the
weakly interacting QGP and the strange quark
matter, respectively
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the two different temperatures (baryon densities). The free energy for the QGP is larger than
those of strange quark matter, since we know that the strange quark matter should be more
stable than the QGP and therefore the strange quark matter free energy should be smaller than
that of the QGP. As one should expect, the free energy increases (decreases) by increasing the
baryon density (temperature). While the QGP has less temperature dependence with respect
to the strange quark matter, they have similar density dependence at fixed temperature.

Similar comparisons are made for the entropies in Figs.3 and 4. The entropy per baryon
for the QGP is an increasing (decreasing) function of temperature (baryon density), and it is
smaller than that of the strange quark matter [14]. Again, their dependence on the density is
the same, but they behave especially differently at larger temperatures.
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Fig. 3. The density dependence of the entropy Fig. 4. The entropy per baryon as a function
per baryon at two different temperatures. The of temperature at two different baryon densi-
solid and dashed curves are for the weakly ties. The solid and dashed curves are for the
interacting QGP and the strange quark matter, weakly interacting QGP and the strange quark
respectively matter, respectively

The plots of the equation of states of both the QGP (without the effect of constant
bag pressure) and the strange quark matter as a function of baryon density at two different
temperatures are given in Fig.5. The QGP equation of state is much harder than that of
strange quark matter at the same baryon density and temperature.

The pressure of weakly interacting QGP for two different QCD coupling constants, and
the noninteracting QGP (without the effects of constant bag pressure) at zero temperature as a
function of baryon density is shown in Fig. 6. The increase in the interaction strength makes
the pressure to rise, and therefore at the smaller baryon densities, the pressure of quarks
becomes equal to the bag pressure. So, the interaction facilitates the quarks transition to the
deconfined phase at lower density. The QCD coupling constant also plays the same role; i.e.,
it will reduce the transition density.

Finally, the phase diagrams for both the interacting and the noninteracting QGP are shown
in Fig. 7 for Phadrons(n(i), 7) = 0. The one-gluon exchange interaction, which is repulsive,
causes to get the QGP at the smaller baryon densities and temperatures. As was pointed
out before, the reason is very simple, the repulsive interaction between quarks helps them to
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escape from the bags. So, the formation of the QGP happens much easier for the interacting
quarks than for the noninteracting one. But, the critical temperature is about 140 MeV, which
is much less than the lattice QCD suggestion of 170 MeV. In Fig. 8, the hadronic pressure has
also been taken into account (see Eq. (19) and [20]). The slashed area is the forbidden region;
i.e., for the bag pressure approximately larger than 200 MeV, there is no critical temperature
with the zero baryonic chemical potential (density). With the bag pressure about 441 MeV
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(note that the bag pressure estimated to be as large as 500 MeV [4]) and the low baryonic
chemical potential (density), it is possible to get results close to the lattice QCD prediction,
ie., 7. =170 MeV.

4. CONCLUSION AND SUMMARY

In conclusion, the one-gluon exchange interaction was used to evaluate the strength of
potential energy of the QGP in the Fermi-liquid model. By calculating the QGP partition
function, the different thermodynamic properties of the QGP as a function of baryon density
and temperature for the both interacting and noninteracting cases were discussed. It was found
that the QGP internal and free energies are much larger than those of strange quark matter.
On the other hand, if we consider the massive quarks like the strange quarks in the QGP,
the potential energy becomes a negative quantity, but for the massless quarks it is always
a positive quantity; therefore, the internal and free energy densities of strange quark matter
become smaller than the QGP ones. We have seen how the one-gluon exchange interaction
for the massless quarks affects the phase diagram of the QGP and causes the system to reach
the deconfined phase at the smaller baryon densities and temperatures. Our results depend
on the values of bag pressure and the QCD coupling constant. The latter does not have a
dramatic effect on our results. The increase of the hadronic and bag pressure can improve our
results toward the lattice QCD calculations. In the future works, we could adjust our phase
diagram to get the relation between the bag constant and the QCD coupling constant. On the
other hand, it is possible to generalize our method for the nonconstant QCD coupling and
the bag pressure. Finally, we can also add the interaction between the gluons to our present
calculations.

Acknowledgements. We would like to acknowledge the Research Council of Univer-
sity of Tehran and Institute for Research and Planning in Higher Education for the grants
provided for us.

REFERENCES

. Stephanov M. /| Acta Phys. Polon. B. 2004. V.35. P.2939.

. Zakout L., Greiner C., Schaffner-Bielich J. // Nucl. Phys. A. 2007. V. 781. P. 150.

. Kapusta J. I., Bowman E.S. // Nucl. Phys. A. 2009. V. 830. P.721.

Yagi K., Hatsuda T., Miake Y. Quark—Gluon Plasma. Cambridge Univ. Press, 2005.

Arsene I et al. // Nucl. Phys. A. 2005. V.757. P. 1.

Back B. B. et al. // Tbid. P.28.

Adams J. et al. // Tbid. P.102.

. Adcox K. et al. // Ibid. P. 184.

. Wong S. M. Introductory Nuclear Physics. Wiley-VCH Verlag GmbH and Co. KGaA, 2004.
. Aoki Y. et al. // JHEP. 2009. V.0906. P.088.

. Dey J., Dey M., Ghose P. [/ Phys. Lett. B. 1989. V.221. P. 161.

. Ipp A. et al. /] Phys. Rev. D. 2006. V. 74. P.045016.

. Kapusta J., Gale C. Finite-Temperature Field Theory. Cambridge: Cambridge Univ. Press, 2006.

v N e W

—_— =
W N = O



166 Modarres M., Mohamadnejad A.

14. Modarres M., Gholizade H. // Intern. J. Mod. Phys. E. 2008. V.17. P. 1335.

15. Modarres M., Gholizade H. // Physica A. 2008. V.387. P.2761.

16. Andronic A., Braun-Munzinger P., Stachel J. // Nucl. Phys. A. 2006. V.772. P.167.

17. Yen G.D. et al. // Phys. Rev. C. 1997. V.56. P.2210.

18. Rischke D.H. et al. // Z. Phys. C. 1991. V.51. P.485.

19. Reid F. Fundamentals of Statistical and Thermal Physics. MacGraw-Hill Co., 1965.

20. Tatsumi T. // Phys. Lett. B. 2000. V.489. P.280.

21. Baym G., Chin S. A. // Nucl. Phys. A. 1976. V.262. P.527.

22. Baym G., Pethick C. Landau Fermi-Liquid Theory. Wiley-VCH Verlag GmbH and Co.
KGaA, 2004.

Received on April 21, 2012.



