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We study the effect of momentum-dependent interactions and a broader Gaussian on multifragmen-
tation. We also look into the details of the fragment structure for a broader Gaussian and momentum-
dependent interactions. We ˇnd that nucleons forming the fragments belong to the same region of the
phase space.
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INTRODUCTION

The heavy-ion experiments at intermediate energies served as the only candidate to produce
hot and compressed nuclear matter in laboratory, one started to hope that these could serve to
determine the nuclear matter equation of state, i.e., the dependence of the energy per nucleon
on the density and temperature, which is the ultimate goal of heavy-ion collision studies.
The nuclear matter equation of state is not only of fundamental importance to the nuclear
physics community but it is also essential for astrophysics as it sheds light on the structure of
formation of neutron stars and supernova explosions. Since a heavy-ion reaction is a unique
way to produce the piece of hot and compressed nuclear matter in laboratory, the heavy-ion
experiments started to nourish the hope that they could serve to determine the equation of
state of nuclear matter. The breaking of colliding nuclei into fragments of different sizes has
been studied for quite a long time. The detailed experimental and theoretical studies revealed
that the fragmentation is a complex process that depends crucially on the reaction inputs like
the bombarding energy as well as impact parameter [1Ä4]. Various experimental studies offer
a unique opportunity to explore the mechanism behind breaking of nuclei into pieces. At the
same time, heavy-ion reaction can also be used to extract information about the nature of
the matter. Some processes like kaon production [5,6] give signal about the softer nature of
the matter, whereas others give indication that matter could be stiffer in nature. It is also
well accepted that the static equation of state (EOS) cannot describe the heavy-ion reaction
adequately. The fate of a reaction depends not only on the density, but also on the momentum
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space. Therefore, the momentum-dependent interactions play a crucial role in the dynamics
of a heavy-ion collision. The momentum-dependent interactions (MDI) are found to affect the
collective 	ow drastically [7Ä9]. Due to the reduction in the nucleonÄnucleon collisions with
MDI, the subthreshold particle production is also reduced [7] signiˇcantly. Some studies are
also reported in the literature that focuses on the effect of MDI on multifragmentation [10].
These studies predicted a signiˇcant effect of MDI on multifragmentation. These effects were
more pronounced at peripheral collisions. Unfortunately, no study has been carried out to
look into the details of the fragment structure using momentum-dependent interactions. One
is interested to understand whether fragments are produced due to coalescence or emerge from
the particular region of the phase space.

In addition, interaction range has also a major role to play in the dynamics of heavy-ion
collisions [11Ä15]. It has a pronounced effect on the collective 	ow and on its disappearance,
as well as on multifragmentation [11, 12]. For example, in [12] it has been shown that for
a broader Gaussian (larger interaction range), the energy of disappearance of 	ow increases.
Similarly, there is a signiˇcant effect of interaction range on the fragmentation as well. In [11]
it has been shown that a broader Gaussian leads to reduced fragments. But the details of
fragment structure for a broader Gaussian was never studied. We, therefore, aim to address

1. The effect of MDI on the fragment structure.
2. The effect of interaction range and to look if fragments then produced belong to certain

space or just produced in the reaction without pre-selection.
This study is carried out within the framework of Quantum Molecular Dynamics (QMD)

model.

1. THE MODEL

We describe the time evolution of a heavy-ion reaction within the framework of Quantum
Molecular Dynamics (QMD) model [7] which is based on a molecular dynamics picture. Here
each nucleon is represented by a coherent state of the form

ψi(r,pi(t), ri(t)) =
1

(2πL)3/4
exp

[
i

�
pi(t) · r −

(r − ri(t))2

4L

]
, (1)

where L deˇnes the interaction range of the particles. The total N-body function is assumed
to be a direct product of the coherent states (Eq. (1))

Φ =
∏

i

ψi(r, ri,pi, t). (2)

By doing this, one neglects the antisymmetrization. One should, however, keep in mind that
the Pauli principle, which is very important at low incident energies, has been taken into
account. The Wigner transformations of the coherent states are the Gaussians in coordinate
and momentum space. The Wigner density reads as
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Here ri(t) and pi(t) deˇne the classical orbit or the center of Gaussian wave packet in phase
space. The density of the ith particle is

ρi(r) =
∫

fi(r,p, ri(t),pi(t))d3p,

(5)

=
1

(2πL)3/2
exp

{
−[r − ri(t)]2

2L

}
.

The equations of motion for many-body system are then calculated by means of a generalized

variational principle. For the coherent states and Hamiltonian of the form H =
∑
i

Ti+
1
2

∑
ij

Vij

(Ti = kinetic energy and Vij = potential energy), the Lagrangian and the variation can easily
be calculated, and we obtain

L =
∑

i

⎡
⎣−ṙipi − Ti −

1
2

∑
j �=i

〈Vij〉 −
3

2Lm

⎤
⎦ . (6)

The time evolution of the centroids pi and r̃i = ri + pit/m is given by the EulerÄLagrange
equations,

˙̃ri =
pi

m
+ ∇pi

∑
j

〈Vij〉 = ∇pi〈H〉, (7)

ṗi = −∇ri

∑
j �=i

〈Vij〉 = −∇ri〈H〉, (8)

and 〈Vij〉 =
∫

d3r1d
3p2〈ψ∗

i ψ∗
j |V (r1, r2)|ψiψj〉. These equations represent the time evolution

and can be solved numerically. Therefore, the variational principle reduces the time evolution
of n-body Schréodinger equation to the time evolution 6 × (AP + AT ) equation, where AP

and AT represent the mass of projectile and target nuclei. The equations of motion now have
a similar structure like the classical Hamiltonian equations

ṗi = −∂〈H〉
∂ri

, ṙi =
∂〈H〉
∂pi

. (9)

The expectation value of the total Hamiltonian reads

〈H〉 = 〈T 〉 + 〈V 〉 =
∑

i

p2
i

2mi
+ V Skyrme + V Yuk + V Coul + V MDI. (10)

Here V Skyrme, V Yuk, V Coul and V MDI are, respectively, the local (two- and three-body)
Skyrme, Yukawa, Coulomb and momentum-dependent potentials. The local Skyrme interac-
tion is written as

V Skyrme =
1
2!

∑
j;i�=j

V
(2)
ij +

1
3!

∑
j,k;i�=j �=k

V
(3)
ijk . (11)

Here V
(2)
ij and V

(3)
ijk represent, respectively, the two- and three-body interactions. The two-

body interactions V
(2)
ij are obtained by folding the two-body potential with the densities of
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both the nucleons,

∑
j;i�=j

V
(2)
ij =

∑
j;i�=j

∫
fi(ri,pi, t)fj(rj ,pj , t)V (ri, rj) d3ri d3rj d3pi d3pj . (12)

The three-body interactions can be calculated as follows:

∑
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V
(3)
ijk =

∑
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∫
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× d3ri d3rj d3rk d3pi d3pj d3pk. (14)

The ˇnite-range Yukawa (V Yuk) and effective Coulomb potentials (V Coul) read as

V Yuk =
∑
j;i�=j

t3
exp (−|ri − rj |/μ)

|ri − rj |/μ
, (15)

V Coul =
∑
j;i�=j

Z2
effe2

|ri − rj |
. (16)

The Yukawa term (with t3 = −6.66 MeV and μ = 1.5 fm) has been added to improve
the surface properties of the interaction which plays an important role in fusion and cluster
radioactivity [16]. In nuclear matter where the density is constant, the interaction density
coincides with the single-particle density, and the two-body Skyrme as well as Yukawa
interactions are directly proportional to (ρ/ρ0). The three-body part of the Skyrme interaction
is proportional to (ρ/ρ0)2. In nuclear matter, the local potential energy has the form

V Skyrme =
α

2

(
ρ

ρ 0

)
+

β

γ + 1

(
ρ

ρ 0

)2

. (17)

The above potential has two free (α and β) parameters, which can be ˇxed by the requirement
that at normal nuclear matter density, the average binding energy should be −15.75 MeV
and total energy should have a minimum at ρ0. In order to investigate the in	uence of

different compressibilities K

[
= 9ρ2 ∂2

∂ρ2

(
E

A

)]
, the above potential energy (Eq. (17)) can

be generalized to
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α

2

(
ρ

ρ 0

)
+

β

γ + 1

(
ρ

ρ0

)γ

. (18)

This equation leads to the nuclear matter equation of state which connects the pressure and
energy. By varying the parameter γ, one can study different equations of state. Naturally,
larger value of γ leads to hard equation of state, whereas smaller value of γ results in soft
equation of state. The relativistic effect does not play role in low incident energy of present
interest [17].

The phase space of the nucleons is stored at several time steps, and this is clustered using
minimum snapping tree method that binds the nucleons if they are closer than 4 fm.
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2. RESULTS AND DISCUSSION

We simulated the reactions 58Ni+ 58Ni and 197Au+ 197Au for 100 MeV/nucleon at central
(b̂ = 0.2) and peripheral (b̂ = 0.8) colliding geometry. For the present study, we used stiff
(Hard), soft (Soft), soft with momentum-dependent interactions (SMD) equations of state. The
standard energy-dependent Cugnon cross section is used along with two different Gaussian
widths, i.e., L = 1.08 fm2 (Lnorm) and 2.16 fm2 (Lbroad).

In Fig. 1, we display the time evolution of mass of heaviest fragment, labeled by Amax,
free nucleons, light charged particles, labeled by LCPs (2 � A � 4) and intermediate mass
fragments, labeled by IMFs (5 � A � Atot/6, where Atot = AP + AT ) for the reaction
58Ni + 58Ni at b̂ = 0.2 and incident energy of 100 MeV/nucleon. The purpose of showing
different mass windows is to identify the different phenomena that may appear in one window
but not in other mass range. The Amax will give a possibility to look for the fusion (if any),
whereas the emission of free nucleons will show the disassembly and hence vaporization of
the nuclear matter. For the central collision of b̂ = 0.2 (blue lines), we see from Fig. 1, a
that Amax ˇrst increases with time, reaches maximum (about 116 which is Aprojectile+Atarget)
at about 20Ä40 fm/c when the matter is highly compressed and then decreases during the later
stages at about 120 fm/c. The effect of EOS is negligible on Amax (solid and dashed lines)
as predicted in [2]. From Figs. 1, b, c, and d, we ˇnd that free nucleons, LCPs, and IMFs
increase with time. This is because the excited compound nucleus decays by the emission
of nucleons and fragments. As a result, free nucleons, LCPs, and IMFs display a constant
rise in their multiplicities. The constant emission of free nucleons with time suggests that

Fig. 1. (Color online) The time evolution of Amax, free nucleons, LCPs and IMFs for the reaction
58Ni + 58Ni at an incident energy of 100 MeV/nucleon at central (b̂ = 0.2) and peripheral (b̂ = 0.8)
colliding geometry for Soft and Hard EOS. Lines are explained in the text
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hot fragments are cooling down. The emission of free nucleons, LCPs, and IMFs starts at
around 50 fm/c. We also ˇnd a signiˇcant effect of EOS on the production of free nucleons,
LCPs, and IMFs. We ˇnd that the number of LCPs/IMFs is larger in the case of soft EOS
compared to hard EOS (see blue and red lines). This is because of the fact that soft matter
can be easily compressed. As a result, a greater density can be achieved, which in turn leads
to the large number of IMFs compared to that in hard case.

For the peripheral collision of b̂ = 0.8 (red lines), we ˇnd that Amax, free nucleons,
and LCPs show similar behavior as that for central collision except that the number of free
nucleons and LCPs are now signiˇcantly reduced. This is because of the fact that less density
is achieved in peripheral collisions and, therefore, the number of IMFs is also greatly reduced
in peripheral collisions (for both soft and hard EOS) as the static soft and hard EOS are not
able to break the initial correlations among the nucleons and hence no IMFs are emitted.

In Fig. 2, we display the effect of momentum-dependent interactions on the production
of Amax, free nucleons, LCPs, and IMFs at b̂ = 0.2 and 0.8. We ˇnd that Amax is nearly the
same for Soft and SMD (solid and dotted line) at central collisions, whereas the difference
increases at peripheral collisions. This is because in central collisions, the nucleonÄnucleon
collisions are more frequent, which results in complete destruction of the initial correlations.
Therefore, an additional repulsion (due to MDI) does not alter the results. We also see that the
number of free nucleons and LCPs increases with momentum-dependent interactions due to
additional destruction of the remaining correlations (at both central and peripheral collisions).
On the other hand, the role of MDI in peripheral collisions is dominant. This is because in
the production of IMFs, the additional MDI breaks the heavy fragments into larger number
of intermediate mass fragments leading to a lot of IMFs.

Fig. 2. Same as Fig. 1, but for Soft and SMD
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Fig. 3. Same as Fig. 1, but for Lnorm and Lbroad

In Fig. 3, we display the effect of interaction range on the production of Amax, free
nucleons, LCPs, and IMFs by using two different widths of Gaussian, that is, Lnorm (4.33 fm2)
and Lbroad (8.66 fm2). We ˇnd that the width of Gaussian has a considerable impact on
fragmentation. As we change the Gaussian width (L) from 4.33 to 8.66 fm2, the multiplicity

Fig. 4. Same as Fig. 2, but for the reaction 197Au + 197Au
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of IMFs is greatly reduced. Owing to its largest interaction range, an extended wave packet
(Lbroad) connects a large number of nucleons in a fragment and as a result it generates heavier
fragments compared to what is obtained with a smaller width. It is worth mentioning here
that the width of the Gaussian has a considerable effect on the collective 	ow as well as on
the pion production [12Ä15].

In Fig. 4 we display the effect of MDI on the reactions 197Au + 197Au at b̂ = 0.2 and 0.8
for 100 MeV/nucleon. A similar behavior of all the quantities is obtained as that for the
reaction 58Ni + 58Ni. From Fig. 4, we see that now Amax reaches a maximum value (394)
which is the total mass of the system at the highly dense phase of the reaction. Moreover, the
number of free nucleons, LCPs, and IMFs are also increased as that in case of 58Ni + 58Ni
reaction due to increase in the system mass. From Fig. 4 we also see that the number of IMFs

Fig. 5. (Color online) The phase space of the nucleons forming the fragments (IMFs) in the reaction
197Au + 197Au with Soft and SMD EOS at 0 (top panels), 50 (middle) and 200 (bottom) fm/c. Symbols
are explained in the text
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is larger in case of SMD than that in case of Soft (static) EOS because of the destruction
of initial correlations due to the repulsive momentum-dependent interactions as discussed
previously. We further investigate the details of the fragments formed in static and MDI
interactions.

In Fig. 5, we display the phase space of those nucleons which form IMFs in case of
Soft and SMD EOS at initial time, i.e., 0 fm/c (top panels), at intermediate stage at 50 fm/c
(middle panels) and at the end of reaction at 200 fm/c (bottom panels). Left (right) panels
display the coordinate (momentum) space. Solid (open) circles represent SMD (Soft) EOS.
From the ˇgure, we see that nucleons forming an IMF in case of Soft EOS belong to the
same region of coordinate space (see open circles). In case of MDI also, most of the nucleons
which form the IMFs are coming from the same region (closed circles).

Fig. 6. Same as Fig. 5, but for the Amax formed with Soft and SMD EOS at 0 (a, b) and 200 (c, d) fm/c

In Fig. 6, we display the phase space of the nucleons forming the Amax in case of Soft
and SMD EOS. We see that for the formation of Amax, the participating nucleons belong to
the same region of phase space. We also see that Amax in case of SMD is small as compared
to that in case of static one.

In Fig. 7, we display the effect of interaction range on the production of Amax, free
nucleons, LCPs, and IMFs by using two different widths of Gaussian, that is, Lnorm (4.33 fm2)
and Lbroad (8.66 fm2) for the reaction 197Au+ 197Au. We ˇnd the similar effect of interaction
range of the fragment production as for the reaction 58Ni + 58Ni, i.e., with broader Gaussian,
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Fig. 7. Same as Fig. 3, but for the reaction 197Au + 197Au

Fig. 8. The phase space of the nucleons forming the fragments (IMFs) in the reaction 197Au + 197Au

with Lnorm and Lbroad at 0 (a, b) and 200 (d, c) fm/c. Solid (open) symbols are for Lbroad (Lnorm)
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Fig. 9. The mean IMF multiplicity 〈NIMF〉 vs. the impact parameter for the reaction 197Au + 197Au at

an incident energy of 600 MeV/nucleon. Various symbols are explained in text

the IMFs production is reduced. To have a further insight into the fragment structure, that is,
whether the nucleons forming a fragment when we increase the interaction range belong to
the same region of phase space or not, in Fig. 8, we display the phase space of the nucleons
which are forming the IMFs with both Lnorm and Lbroad at 0 and 200 fm/c. We ˇnd that
the nucleons which are forming the fragment belong to the same region of phase space.

As a ˇnal step, we compare the model calculations with the experimental data [18] for
the reaction 197Au + 197Au at 600 MeV/nucleon (Fig. 9). Stars represent the data. Circles and
half shaded circles represent the calculations for normal Gaussian width (Lnorm) with Soft
and SMD EOS, respectively. Squares represent the calculations for Lbroad with SMD EOS.
From the ˇgure, we see that normal Gaussian width along with the SMD EOS best agrees
with the experimental data. With Soft EOS, IMF multiplicity increases for nearly central
collisions and decreases for peripheral collisions as explained earlier in Fig. 4. Also, with
broader Gaussian IMF multiplicity decreases as in Fig. 7.

3. SUMMARY

We studied the effect of momentum-dependent interactions and a broader Gaussian on
multifragmentation as well as the fragment structure. We ˇnd that nucleons forming the
fragments belonged to the same region of phase space. A comparison with experimental data
also shows the adequacy of the model to the physics of heavy-ion collisions.
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