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The goal of the research is to devise a modiˇcation of the perturbative QCD (pQCD) that should
be regular in the low-energy region and could serve as a practical means for the analysis of data below
1 GeV down to the IR limit. Recent observation of the four-loop pQCD series ®blow-up¯ in the region
below 1 GeV for the Bjorken Sum Rule gave an impetus to this attempt.

The proposed ®massive¯ analytic pQCD has two sources. It can be treated as the common logarith-
mic pQCD with only one parameter added, the effective ®glueball mass¯ mgl � 1 GeV, serving as an
IR regulator. At the same time, it looks like a modiˇcation of Analytic Perturbation Theory (APT) com-
prising nonpower perturbative expansion that makes it compatible with linear integral transformations.

Figuratively (with minor reservations), the proposed MAPT differs from the minimal APT by simple
ansatz Q2 → Q2 + m2

gl.
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1. MOTIVATION AND OUTLINE

As is well known, the so-called perturbative QCD (pQCD) or the renormalization
group (RG)Äimproved QCD perturbation expansion taken in the UV limit is a ˇrmly estab-
lished part of particle interaction theory. This piece is not only respectable but worthy of
admiration as, starting with gauge-noninvariant quantization, it correlates several dozens of
experiments at quite different scales from a few up to hundreds of GeV.
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At the same time, the pQCD meets serious troubles in the low-energy (large-distance)
domain below a few GeV at the scales marked by the QCD parameter Λ ∼ 400 MeV. This
Achilles' heel is related to its UV origin.

To avoid the unwanted singularity in the LE region, several modiˇcations [1] of the pQCD
have been proposed. Recently, one of them, the Analytic Perturbation Theory [2] (APT), was
good enough [4] in describing the polarized Γp−n

1 (Q2) = Γ1(Q2) form factor of the Bjorken
Sum Rule (BjSR) amplitude down to a few hundred MeV.

The Bjorken moment was presented there as a sum of PT and higher-twist (HT) non-
perturbative contributions

Γ1(Q2) =
gA

6
[
1 − ΔPT

Bj (Q2)
]
+ ΓHT, ΓHT =

∞∑
i=2

μ2i

Q2i−2
, (1)

with ΔPT
Bj including the forth-order term ∼ (αs(Q2))4. However, an attempt to ˇt JLab data

by expression (1) with appropriate HT coefˇcients failed as the perturbative part exploded
in the region 0.5Ä1 GeV and the extracted (via comparison with ˇtted JLab data) μ2i values
turned out to be unstable with respect to higher-loop terms in ˇrst PT sum. This prevents the
description of data below 1 GeV.

Along with Eq. (1), in [4] the PT sum was changed to the APT one:

ΔPT
Bj =

∑
k�4

ck (αs(Q2))k ⇒ ΔAPT
Bj (Q2) =

∑
k�4

ck Ak(Q2), (2)

with Ak(Q2), the APT ghost-free expansion functions. The positive result consists in good
ˇtting of the precise JLab data down to a few hundred MeV with stable HT parameters.

This achievement rises hope for the possibility of a global ˇtting down to the IR limit.
Unhappily, none of the above-mentioned ghost-free modiˇcations is suitable for this goal.
The common drawback is the use of UV logs in the IR region.

To approach the global ˇtting of data (like ones for the BjSR form factor), one needs to
have a theoretical framework with two essential features:

• Correspondence with common pQCD in the UV (that is above a few GeV);

• Correlation with lattice simulation results for the effective coupling αs(Q) smooth
behavior in the low-energy domain.

As a primary launch pad for this construction, the above-mentioned APT seems good.
It satisˇes the ˇrst of the conditions and, qualitatively, the second one. To exempt the APT-
like scheme from its last drawback Å the singularity (with an inˇnite derivative) in the IR
limit, one has to disentangle it from the UV logs. To this end, a mass-dependent RG-invariant
modiˇcation inspired by our paper [5] will be used.

In Sec. 3, on the basis of the massive renormalization group (see Sec. 2), the nonsingular
version of pQCD with one additional (besides Λ) parameter, an effective ®gluonic¯ mass, mgl,
a massive pQCD, MPT for short, is formulated.
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2. MASSIVE PERTURBATION THEORY

In [5], a particular way of constructing the QCD invariant coupling αs(Q2) free of
unphysical singularities was proposed. In contrast to the APT, it does not involve explicit
nonperturbative contributions. Instead, the Q2 algebraic (non-log) dependence appeared there
due to threshold effects, and an essential technical ingredient was the assumption of the ˇnite
gluon mass formal presence.

The model expression for αs(Q2) was obtained there by the RG summation of the mass-
dependent diagram contribution Å see below Eqs. (4) and (6). It depends upon the gluon mgl

and light-quark mlq (lq = u, d, s) masses; in the IR region Q2 > 0 has no singularities with a
ˇnite limiting value αs(0) and, as Q2/m2 → ∞, smoothly transits into the usual asymptotic
freedom formula.

2.1. Mass-Dependent 1-Loop Diagram. At the one-loop level, the starting element is the
massive (mass-dependent) 1-loop contribution. For example, to the virtual dissociation of a
vector particle (photon, gluon) into a massive fermionÄantifermion pair (e+ + e−, q + q̄ ) in
the s-wave state there corresponds a function Is(Q2/m2) representable via spectral integral1

Is(z) = z

∞∫
1

ks (σ) dσ

σ(σ + z)
, ks(σ) =

√
σ − 1

σ
, Is(0) = 0.492, I

′

s(0) = 2/3, (3)

which in the space-like region z > 0 is a positive, monotonically growing function with the
log asymptotic behavior IUV

s (z = Q2/m2) � ln z − Cs + O(1/z); Cs = 2(1 − ln 2) and the
regular IR limit with a ˇnite derivative.

2.2. Massive Renormalization Group Summation. For the QCD coupling modiˇcation
at small space-like Q2 � Λ2, we involve the mass-dependent Bogoliubov renormalization
group (mRG) formulated in the pioneer RG papers [8] in the mid-ˇfties. As has been known
since that time [9], the mRG, like the common massless RG, sums iterations of a one-loop

contribution2 αs(z)[1]pt = αs − α2
sA1(z, y) + . . ., into the geometric progression

αs(Q2)[1]rg =
αs

1 + αsA1(z, y)
, z =

Q2

m2
, y =

μ2

m2
. (4)

For the 2-loop case, with A2, the genuine second-loop contribution

αs(z, y)[2]pt = αs − α2
sA1(z, y) + α3

s(A
2
1 − A2(z, y)) + . . . , (5)

an analogous (approximate) RG-invariant ®massive¯ sum

αs(z, y)[2]rg =
αs

1 + αsA1(z, y) + αs
A2(. . .)
A1(. . .)

(1 + αsA1(. . .))
(6)

was also devised later (Eq. (8) of paper [10]). There,

A[�=1,2](z, y) = I�

(
Q2

m2

)
− I�

(
μ2

m2

)∣∣∣∣
UV

→ β�−1 ln
(

Q2

μ2

)
, (7)

1For an explicit expression, see Sec. 24.1 in the textbook [6] and Sec. 35.1 in the monograph [7].
2Here and below, the superscript in square brackets A[�] denotes the order of loop approximation.
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with transition to the QCD scale

αs(Q2)[1]rg =
1

β0 ln (Q2/Λ2)
(8)

performed via the relation

1
β0αs

+ ln
(

Q2

μ2

)
= ln

(
Q2

Λ2

)
. (9)

3. THE MPT CONSTRUCTION

3.1. One-Parameter Massive Model. A simple idea is also to change the usual UV
logarithm ln x (x = Q2/Λ2) that is also singular in the IR for the ®long logarithm¯ Lξ(x) =
ln (ξ + x) which reproduces qualitatively the smooth LE behavior of function (3), being
regular at Q2 = 0. It is worthy of note that the new parameter is expressed via the coupling
constant (at Q2 = 0) by the relation ξ = e1/β0αs nonanalytic at αs = 0. It corresponds to the
®effective gluonic mass¯ mgl =

√
ξΛ, an old notion (see a recent survey by Simonov [11]

and references therein) used as an IR regulator. In short, our ansatz is

Q2 → Q2 + m2
gl. (A)

One-loop case. The ®1-loop structure¯ in the denominator of Eq. (8) is changed now to
the ®long logarithm¯ with ξ, an adjustable parameter:

ln x → Lξ(x) = ln(ξ + x), x =
Q2

Λ2
. (10)

At moderate LE scales the form

Lξ(x) = ln ξ + ln (1 + φx) =
1

β0αs
+ ln (1 + φx), φ = 1/ξ (11)

is more adequate. In terms of this LE form, one has

A[1]
1MPT(x; ξ) =

1
β0 ln (ξ + x)

=
αs

1 + αsβ0 ln (1 + xφ)
, φ = e−1/β0αs , (12)

with αs = αs(x = 0); αs|ξ=10±2 = 0.61 ∓ 0.05. The ˇnite derivative at Q = 0 is also of

interest, A[1]′

1,MPT(0, ξ) = −β0α
2
s .

The 2-loop 1-parameter model. Starting with the 2-loop massive RG-summed result,
Eq. (6) corresponding to the mass-dependent PT expansion, Eq. (5), we generalize Eq. (12) by
using the same ®long logarithm¯ model for the second-loop contribution

A2(xφ) = β1 ln (1 + φx), (13)

which results in

A[2]
1,MPT(x, ξ) =

αs

1 + αsβ0 ln (1 + φx) + αs
β1

β0
ln [1 + αs β0 ln (1 + φx)]

, (14)

written down in the denominator representation [12].
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Now, the condition αs(M2
τ ) = 0.34 can be used for a rough evaluation of an ®effective

MPT-QCD scale¯ value. In the NLO case, the Λ[2](ξ) dependence on ξ turns out to be rather
weak1:

Λ[2](10 ± 2) ∼ (315 ∓ 10) MeV. (15)

The related mgl =
√

ξΛ[2] value could be close to the nucleon mass at ξ ∼ 10.

3.2. Higher MPT Expansion Functions. In the construction under devising, we intend
to preserve an essential APT feature, namely, the nonpolynomiality of the modiˇed ®pertur-
bative¯ MPT expansion, expansion over a set2 of functions {Ak(Q2, ξ)} connected by the
same differential relations as in the APT (with the dotted notation for logarithmic derivative
Ḟ (x) = xF ′(x))

−x

k

∂

∂x
Ak(x, ξ):= − 1

k
Ȧk(x, ξ) = β0Ak+1(x, ξ) + β1Ak+2(x, ξ) + . . . (16)

To the arguments ascending to the 80s [13] and related to the π2-terms summation procedure
in the s-channel (see also [2]), one can add a fresher reasoning [14].

The second MPT function. This recurrence property ensures compatibility [15] with linear
transformations involved in transition to the distance picture (Fourier-conjugated with the
momentum-transfer one) and to the annihilation s-channel.

In a particular case k = 1, with (12), and neglecting the second r.h.s. term, i.e., using the
one-loop relation

Ak+1(x, ξ) = − 1
kβ0

Ȧk(x, ξ) (17)

as a deˇnition for higher functions, one gets the second expansion function3

A2(x, ξ) = (A1(x, ξ))2R(x, ξ), R(x) = L̇ξ(x) =
φx

1 + φx
, φ = 1/ξ, (18)

that turns to zero in the IR limit. Besides, A′
2(0, ξ) = α2

sφ.

The third MPT expansion function obtained by Eqs. (17) and (18) can be represented in
the form

−2β0 A[1]
3,MPT (x, ξ) = Ȧ2,MPT (x, ξ) = 2A1,MPT Ȧ1,MPT R(x) + (A1,MPT)2Ṙ(x), (19)

which is sufˇcient for perceiving IR properties A[1]
3 (0, ξ) = 0; A[1]′

3 (0, ξ) = −α2
sφ.

1With values less than the pQCD one Λnf =3 = (420 ± 10) MeV.
2The same symbol A, as in the minimal APT with limiting relation Ak(x, ξ = 0) = Ak(x) is used.
3For discussion of a more accurate deˇnition of the two-loop second function, see Appendix.
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4. GENERAL FEATURES OF THE MPT SCHEME

Here, we shortly discuss some important features of the proposed MPT construction.
4.1. Annihilation Channel. For the transition to the s-channel, f(Q2) → F (s), one uses

the spectral representation and the Adler-type relation

f(Q2) =
1
π

∞∫
0

ρ(σ) dσ

Q2 + σ
, f(Q2) = Q2

∞∫
0

F (s) ds

(s + Q2)2
,

which, in turn, results in

F (s) =
1
π

∞∫
s

dσ

σ
ρ(σ), ρ(σ) = 	f(−σ − iε). (20)

In the simplest one-loop case (12),

β0 A[1]
1MPT(x; ξ) =

1
ln (ξ + x)

=
1
π

∞∫
0

ρ1(σ) dσ

x + σ
, ρ1(σ) =

πθ(σ − ξ)
ln2 (σ − ξ) + π2

, (21)

β0 A
[1]
1MPT(s; ξ) =

1
π

∞∫
s

dσ

σ
ρ1(σ) =

1
π

arctan
1

L−(s)
, L−(s) = ln

(
s − m2

gl

Λ2

)
. (22)

This expression remains regular around s ∼ m2
gl + Λ2 and constant below s = m2

gl.
To obtain the higher AkMPT functions, one should use a differential recurrent relation,

just as in APT. For the two-loop case, one can combine it with the two-loop effective log L∗,
a trick proposed in [3] and further developed in [16].

5. COMPARISON WITH APT AND DISCUSSION

To compare the new construction with the APT one, in Fig. 1 we give the curves at a few

values of ξ = 10 ± 2 in the region below 2 GeV for the ˇrst MPT function A[2]
1,MPT (14)

together with the corresponding APT (dashed) curve.
It can be seen from the NLO curves that values ξ = 8−10 seem to be preferable.

Indeed, for these values, the ˇrst MPT function, A[2]
1 (x, ξ) is reasonably close to the ˇrst

APT one down to 1 GeV. At the same time, in the region around 500Ä700 MeV it deviates
from APT but is more similar to the results of lattice simulations, especially to the Orsay
group [17,19] ones.

Figure 2 exposes the second and third MPT functions as roughly estimated by the one-loop
Eqs. (18) and (19). It is seen that instead of singular IR slopes of all APT thick dashed (red)
curves, all the MPT functions are the IR regular ones. At the same time, just as in APT,
the second and third MPT functions A2,3;MPT are noticeably smaller than square (A1,MPT)2

and cube (A1,MPT)3 of the ˇrst one. For example, at Q = 0.5 GeV and Q = 1.0 GeV the
reduction factors for the A3;MPT are about 0.2 and between 0.1Ä0.2 correspondingly. Besides,
the A3,MPT is negative below 1 GeV.
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Fig. 1. The values of the ˇrst MPT function (for a few ξ values) in comparison with the APT one

Fig. 2. (Color online) The values of the second and third MPT functions vs. the APT ones

Now, the ®MPT-perturbative¯ expansion similar to Eq. (2), due to recurrent relation (17),
can be represented in a form of Taylor series expanded over the parameter Δ ln x = c1 π/β0 =
1.60 with the ˇnal effect

Δ∗
MPT � 1

π
A1,MPT(x∗), x∗ = x e−Δ lnx =

Q2

(Λ∗)2
, Λ∗ = 2.25Λ. (23)

One should keep in mind that both the logarithm shift Δ ln x and the ®one-term approxi-
mation¯ (23) error δΔMPT ∼ A3,MPT are scheme-dependent quantities. In the MS scheme
under consideration, δΔMPT Å due to the smallness of the reduction factor Å is negligible.

However, one can get another angle on Eq. (23) and return to the old idea of the effective
coupling constant [20], which is not so far from ®RESIPE¯ [21] and from the ®commensurate
scale relations¯ [22] concepts. Then, the new scale can be treated as a speciˇc one for the
given process; Λ∗ = ΛBj.
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The ®glueball mass¯ values given in Table 1 for the LO and NLO cases also look attractive.

They can be confronted with the glueball mass MQQ̄
2g ∼ 1−2 GeV of paper [11] and with

gluon mass M ∼ 500 MeV from the lattice estimate [17] as well as from solution of the
SchwingerÄDyson equations (see [23] and references therein).

Table 1. ®Glueball mass¯ andΛBj for a few values of ξ

ξ Λ1 m
[1]
gl Λ2 m

[2]
gl ΛBj

8 244 690 324 915 730

10 249 787 315 995 710

12 253 876 305 1160 686

Besides, as can be shown [24], the MPT perturbative sum ΔMPT, together with a duly
modiˇed HT sum, allows one to ˇt the JLab data down to the very IR limit Å see below Fig. 4
in Appendix B. There, the generic HT function was conjectured in the IR-regular form
μ4 (Q2 + m2

ht)
−1 with the only parameter. It is remarkable that its value mht ∼ 0.7−1 GeV

is close to the mgl one. This gives hope that ansatz (A) re
ects some general physical essence.

Acknowledgements. It is a pleasure to thank Oleg Teryaev for stimulating discourses,
Michael Ilgenfritz and Andrej Kataev for discussion, as well as Vjacheslav Khandramai for
useful advice and technical help. This research has been partially supported by the Presidential
grants for support of Scientiˇc School 3810.2010.2, 3802.2012.2 and by RFBR grant 11-01-
00182.

Appendix A
2-LOOP MPT HIGHER FUNCTIONS

For a more accurate deˇnition of the 2-loop higher expansion functions, one could use
recurrent relation (16) at k = 1 and truncated Eq. (17) for the k = 2 case.

With the technical notation ϕ(t = lnx) = −(1/β0) Ȧ1,MPT(x), A[2]
2,MPT(x) = y(t), one

gets two relations of Eq. (16). Neglecting A4,MPT, we come to a boundary value problem

y(t) − θ ẏ(t) = ϕ(t), y(∞) = 0, θ =
β1

2β2
0

(24)

and auxiliary relations

A[1]
3,MPT(x, ξ) = − 1

2 β0
ϕ̇(t), A4,MPT(x, ξ) =

1
6β2

0

ϕ̈(t). (25)

Solution of (24) y(t) =
∞∫
0

e−s ϕ(t + sθ) ds being expanded in powers of θ yields the form

A[2]
2,MPT(x, ξ) = − 1

β0
Ȧ[2]

1,MPT(x, ξ) − β1

β0
A3,MPT + O(A4,MPT), (26)

completely correlating with Eq. (16).
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On the other hand, one can use an approximate, ®two-loop effective log trick¯ of
papers [16]:

� = ln x → L2[�]:=� + b ln
√

�2 + 2π2, b =
β1

β0
. (27)

Combining this with Eqs. (8) and (10), one gets (with Lξ(x) = ln (ξ + x))

A[2]
1,�2

(x, ξ) =
1

β0 L2[Lξ(x, ξ)]
, A[2]

2,�2
(x, ξ) =

R(x)
β2

0 (L2[Lξ(x)])2
, . . .

R(x) = L′

2[Lξ(x)] R(x) =

(
1 + b

Lξ(x)
L2

ξ(x) + 2π2

)
R(x), R(x) =

x

ξ + x
.

(28)

With due account for the numerical values β0(nf = 3) = 0.716, b = 0.566, one has

β0 αs =
1

ln ξ + b ln
√

(ln ξ)2 + 2π2
, Λ2,�2 =

1.777√
23.33 − ξ

,

with1 αs|ξ=10±2 = 0.435 ∓ 0.03, Λ2,�2(ξ = 10 ± 2) = (490 ± 35) MeV ∼ 1.95Λ1; for more
detail, see Table 2.

Table 2

ξ Λ1 m
[1]
gl Λ2 m

[2]
gl αs Λ2,�2

8 244 690 324 915 0.438 455

10 249 787 315 995 0.435 490

12 253 876 305 1160 0.432 525

These expressions can be confronted with the previous ones (Eqs. (14) and (18)). For

example, at Q ∼ 500 MeV, x ∼ 1 and A[2]
1,�2

(1, ξ = 8) � 0.45, A[2]
1,�2

(1, ξ = 12) � 0.40.
In the context of relation (23), the second term in the r.h.s. of the last expansion (26)

reduces further the error δΔ∗ of expression (23) for Δ∗
MPT.

Appendix B
THE ANSATZ (A) EFFECT ON THE BJORKEN SUM RULE ANALYSIS

The net effect of the Ansatz (A) used literally (but roughly) can be described as a transition
to the new momentum-transfer scale in both perturbative (PT) and higher-twist (HT) items.
Explicitly, in Eq. (1), this means

ΔPT
Bj (Q2) → ΔMPT ∼ ΔPT

Bj (Q2 + m2
gl), ΓHT =

μ4

Q2
→ GHT =

μ4

Q2 + m2
ht

. (29)

Meanwhile, as was shown above, under a more detailed analysis (that includes differential
recurrent relations) the correspondence is more intricate Å see, e.g., Figs. 1 and 2.

1For the practical use of the last simple relation, see [25].
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Fig. 3. Figure 5 from paper [4]

Fig. 4. The MPT ˇtting of the JLab data with change (29) used, according to [24]

Nevertheless, it is evident by observation that for mgl ∼ 500 MeV the solid (green) curve
from Fig. 3 (taken from paper [4]) visually corresponds to Fig. 4 curve (according to [24])
with ®shifted¯ scale Q2

ξ = Q2 − m2
gl.
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