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The goal of the research is to devise a modification of the perturbative QCD (pQCD) that should
be regular in the low-energy region and could serve as a practical means for the analysis of data below
1 GeV down to the IR limit. Recent observation of the four-loop pQCD series «blow-up» in the region
below 1 GeV for the Bjorken Sum Rule gave an impetus to this attempt.

The proposed «massive» analytic pQCD has two sources. It can be treated as the common logarith-
mic pQCD with only one parameter added, the effective «glueball mass» mg < 1 GeV, serving as an
IR regulator. At the same time, it looks like a modification of Analytic Perturbation Theory (APT) com-
prising nonpower perturbative expansion that makes it compatible with linear integral transformations.

Figuratively (with minor reservations), the proposed MAPT differs from the minimal APT by simple
ansatz Q% — Q% + mﬁl.

Lexnp mccnenoB HUS COCTOUT B H XOXIGHHM T Ko Mommduk mum neptyp6 tusHoil KXII (pQCD),
KOTOp s, OyIydw perynspHON MpH HH3KHX BHEPIUSX, MOII Obl CIyXHTh NP KTHYECKHUM CPEICTBOM
H U3 ] HHBIX B 001 ctu Huxe 1 B Bmiots no uHgp Kp cHoro mpenen . Hen BHee OOH pyXeHwe
«B3PBIBHOTO» X P KTep IOBEJEHNS 4-TIeTIEBOTO psii TEOpUH BO3MYLIEHHH I hopMd KTOp Mp BHI
cymM BrépkeHn B 001 cti HuKe 1 ['sB ;1 eT cTHMY” 11 9TOH MOIBITKH.

Ipemwt r em 9 «M ccuBH si» Teopus Bo3mymeHuid (MTB) mmeer o8 kKopHsi. OH MOXeT Tp KTO-
B ThC K K 0ObIUH 51 6e3M ccoB 9 pQCD ¢ omHuM 106 BJIGHHBIM I P METPOM — «M CCOM DTG0 »
mg < 1 9B, ciyx 1meit nH(GP Kp CHBIM PEry/IsIpH3 TOPOM. B TO Xe Bpemsi ee MOXHO P CCM TPHUB Tb
K K MOAU(UK LU0 H JUTHYeCKOH Teopuu Bo3MyleHuil (ATB), ¢ coxp HeHueM ee HeCTENIEHHOM (HOPMbI
P 37TOXeHHd, KOTOp g 0OecleynB €T COBMECTUMOCTD C JIMHEWHBIMH MHTETD JIBHBIMH IPE0Op 30B HHSMU.

BrIp X sch 06p 3HO (C HEGOJIBIIMMH OrOBOPK MHM), pem1 I' eM 1 MTB omimy ercs oT MUHHM JIb-
Hoit ATB 3 meHoit Q% — Q% + mgl.

PACS: 12.38.Bx; 12.38.Cy

1. MOTIVATION AND OUTLINE

As is well known, the so-called perturbative QCD (pQCD) or the renormalization
group (RG)-improved QCD perturbation expansion taken in the UV limit is a firmly estab-
lished part of particle interaction theory. This piece is not only respectable but worthy of
admiration as, starting with gauge-noninvariant quantization, it correlates several dozens of
experiments at quite different scales from a few up to hundreds of GeV.
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At the same time, the pQCD meets serious troubles in the low-energy (large-distance)
domain below a few GeV at the scales marked by the QCD parameter A ~ 400 MeV. This
Achilles’ heel is related to its UV origin.

To avoid the unwanted singularity in the LE region, several modifications [1] of the pQCD
have been proposed. Recently, one of them, the Analytic Perturbation Theory [2] (APT), was
good enough [4] in describing the polarized '} " (Q?) = T'1(Q?) form factor of the Bjorken
Sum Rule (BjSR) amplitude down to a few hundred MeV.

The Bjorken moment was presented there as a sum of PT and higher-twist (HT) non-
perturbative contributions

Q%) = % [1- AR (@Y)] +Tur. Tur =) % (1)
1=2

with Ag;r including the forth-order term ~ (as(Q?))*. However, an attempt to fit JLab data
by expression (1) with appropriate HT coefficients failed as the perturbative part exploded
in the region 0.5-1 GeV and the extracted (via comparison with fitted JLab data) uo; values
turned out to be unstable with respect to higher-loop terms in first PT sum. This prevents the
description of data below 1 GeV.

Along with Eq. (1), in [4] the PT sum was changed to the APT one:

ART =3 e (aa(@)F = ARPT(QY) = e An(@?), )

k<4 k<4

with A (Q?), the APT ghost-free expansion functions. The positive result consists in good
fitting of the precise JLab data down to a few hundred MeV with stable HT parameters.

This achievement rises hope for the possibility of a global fitting down to the IR limit.
Unhappily, none of the above-mentioned ghost-free modifications is suitable for this goal.
The common drawback is the use of UV logs in the IR region.

To approach the global fitting of data (like ones for the BjSR form factor), one needs to
have a theoretical framework with two essential features:

e Correspondence with common pQCD in the UV (that is above a few GeV);

e Correlation with lattice simulation results for the effective coupling a4(Q) smooth
behavior in the low-energy domain.

As a primary launch pad for this construction, the above-mentioned APT seems good.
It satisfies the first of the conditions and, qualitatively, the second one. To exempt the APT-
like scheme from its last drawback — the singularity (with an infinite derivative) in the IR
limit, one has to disentangle it from the UV logs. To this end, a mass-dependent RG-invariant
modification inspired by our paper [5] will be used.

In Sec. 3, on the basis of the massive renormalization group (see Sec.?2), the nonsingular
version of pQCD with one additional (besides A) parameter, an effective «gluonic» mass, myg,
a massive pQCD, MPT for short, is formulated.
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2. MASSIVE PERTURBATION THEORY

In [5], a particular way of constructing the QCD invariant coupling o (Q?) free of
unphysical singularities was proposed. In contrast to the APT, it does not involve explicit
nonperturbative contributions. Instead, the (Q? algebraic (non-log) dependence appeared there
due to threshold effects, and an essential technical ingredient was the assumption of the finite
gluon mass formal presence.

The model expression for s (Q?) was obtained there by the RG summation of the mass-
dependent diagram contribution — see below Eqs. (4) and (6). It depends upon the gluon m
and light-quark myq (Iq = u, d, s) masses; in the IR region Q? > 0 has no singularities with a
finite limiting value cs(0) and, as @*/m? — oo, smoothly transits into the usual asymptotic
freedom formula.

2.1. Mass-Dependent 1-Loop Diagram. At the one-loop level, the starting element is the
massive (mass-dependent) 1-loop contribution. For example, to the virtual dissociation of a
vector particle (photon, gluon) into a massive fermion—antifermion pair (et +¢e~, ¢+ ¢) in
the s-wave state there corresponds a function I5(Q?/m?) representable via spectral integral’

B Ookis(U)dO' _ Jo—1 _ ron
[g(z)—2/70(0+z), ko)=L LO)=0492, LO)=23 @)

which in the space-like region z > 0 is a positive, monotonically growing function with the
log asymptotic behavior IV (z = Q?/m?) ~Inz — Cs + O(1/2); Cs = 2(1 — In2) and the
regular IR limit with a finite derivative.

2.2. Massive Renormalization Group Summation. For the QCD coupling modification
at small space-like Q? < A2, we involve the mass-dependent Bogoliubov renormalization
group (mRG) formulated in the pioneer RG papers [8] in the mid-fifties. As has been known
since that time [9], the mRG, like the common massless RG, sums iterations of a one-loop

contribution? as(z)gt] =as —a?A1(z,y) + ..., into the geometric progression
2 2
Y A 4
s (Q )rg 1+OCSA1(Z,y), z m2’ Yy 2 “4)

For the 2-loop case, with As, the genuine second-loop contribution

as(z,y)ft] = g — agAl(z, y) + a‘z(A% —As(z,y) + ..., (5)
an analogous (approximate) RG-invariant «massive» sum
(2] — %s 6
Qg Z7 rg
s(2,9) 0 ) (©)

1+ asAi(z,y) + as 1+ asAi(...)

Ai(..)
was also devised later (Eq. (8) of paper [10]). There,

2 2 2
Al=120(; y — 1f (%) —If (%) — fe—1 In (%) ) ™

IFor an explicit expression, see Sec.24.1 in the textbook [6] and Sec.35.1 in the monograph [7].
2Here and below, the superscript in square brackets Al denotes the order of loop approximation.

uv
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with transition to the QCD scale

2y 1
Oés(Q )rg - 50 ln (QQ/AQ) (8)
performed via the relation
1 2 2
() = (55 ®

3. THE MPT CONSTRUCTION

3.1. One-Parameter Massive Model. A simple idea is also to change the usual UV
logarithm Inz (z = Q%/A?) that is also singular in the IR for the «long logarithm» L¢(z) =
In (£ + ) which reproduces qualitatively the smooth LE behavior of function (3), being
regular at Q% = 0. It is worthy of note that the new parameter is expressed via the coupling
constant (at Q> = 0) by the relation £ = e!/%0% nonanalytic at a; = 0. It corresponds to the
«effective gluonic mass» mg = /€A, an old notion (see a recent survey by Simonov [11]
and references therein) used as an IR regulator. In short, our ansatz is

Q* — Q* +m3. (A)

One-loop case. The «1-loop structure» in the denominator of Eq.(8) is changed now to
the «long logarithm» with &, an adjustable parameter:

Inz — Le(x) = In(€ + ), x:f\g—j. (10)
At moderate LE scales the form
Lg(x):1n§+ln(1+qba:)=5028+1n(1+¢x), p=1/¢ 11
is more adequate. In terms of this LE form, one has
Al (@:6) : o p=e Ve (1)

- Bo In (€ + x) - 14+ asfB In(1+x¢)’
with oy = as(z = 0); as|e=10+2 = 0.61 F 0.05. The finite derivative at () = 0 is also of
interest, A[ll’]MpT(O, £) = —Boal.

The 2-loop l-parameter model. Starting with the 2-loop massive RG-summed result,

Eq. (6) corresponding to the mass-dependent PT expansion, Eq. (5), we generalize Eq. (12) by
using the same «long logarithm» model for the second-loop contribution

Az (z¢) = f1 In (1 + ¢x), (13)

which results in
Qg

Ahpr(@,€) = i Lad)
l+as6oIn(1+¢x)+ 0455— In[l+ as B0 In(14 ¢z)]
0

written down in the denominator representation [12].
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Now, the condition as(M2) = 0.34 can be used for a rough evaluation of an «effective
MPT-QCD scale» value. In the NLO case, the A[?/(¢) dependence on ¢ turns out to be rather
weak!:

API(10 + 2) ~ (315 F 10) MeV. (15)

The related myg) = VEALR! value could be close to the nucleon mass at & ~ 10.

3.2. Higher MPT Expansion Functions. In the construction under devising, we intend
to preserve an essential APT feature, namely, the nonpolynomiality of the modified «pertur-
bative» MPT expansion, expansion over a set’> of functions {Ax(Q? ¢)} connected by the
same differential relations as in the APT (with the dotted notation for logarithmic derivative
F(z) = zF'(z))

—%(,%Ak(x,g):: - %Ak(x,f) = BoAr+1(2, &) + BrApt2(z,8) + ... (16)

To the arguments ascending to the 80s [13] and related to the 72-terms summation procedure
in the s-channel (see also [2]), one can add a fresher reasoning [14].

The second MPT function. This recurrence property ensures compatibility [15] with linear
transformations involved in transition to the distance picture (Fourier-conjugated with the
momentum-transfer one) and to the annihilation s-channel.

In a particular case k = 1, with (12), and neglecting the second r.h.s. term, i.e., using the
one-loop relation

A (,€) = —kiﬁoAm,o (17)

as a definition for higher functions, one gets the second expansion function?

ox

AQ(xvf) = (Al(l',f))QR((IJ,E), R((E) = Lg((L’) = 1+ (bxv

¢ =1/¢, (18)

that turns to zero in the IR limit. Besides, .A5(0, &) = a2¢.

The third MPT expansion function obtained by Eqgs.(17) and (18) can be represented in
the form

—20 A[gl,]MPT (2,€) = Ao mpr (7, €) = 241 mpr ALmpr R(z) + (ALmer)?R(z),  (19)

which is sufficient for perceiving IR properties .A[gl] (0,£) =0; ,4[31]/(07 €) = —a2¢.

'With values less than the pQCD one A™f =3 = (420 % 10) MeV.
2The same symbol A, as in the minimal APT with limiting relation A (2, £ = 0) = A (z) is used.
3For discussion of a more accurate definition of the two-loop second function, see Appendix.
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4. GENERAL FEATURES OF THE MPT SCHEME

Here, we shortly discuss some important features of the proposed MPT construction.
4.1. Annihilation Channel. For the transition to the s-channel, f(Q?) — F(s), one uses
the spectral representation and the Adler-type relation

1 7 plo)do T F(s)d
Q=5[22 j@ =@ [ s
0 0
which, in turn, results in
Td
) =1 [ plo) plo) =31(-a o) (20)

S

In the simplest one-loop case (12),

1] L 1 B l 7 p1(o) do B m0(c — &)
B0 Allpn(:6) = e = 7 [ AR ml) = @

® 2
W s =L [0 _ 1 ! O iiir!
Bo A ppr(s;€) = 7T/ . pi(o) = ﬂarctan I () L_(s)=In e . (22

This expression remains regular around s ~ mél + A? and constant below s = mél.

To obtain the higher Ax\pr functions, one should use a differential recurrent relation,
just as in APT. For the two-loop case, one can combine it with the two-loop effective log L*,
a trick proposed in [3] and further developed in [16].

5. COMPARISON WITH APT AND DISCUSSION

To compare the new construction with the APT one, in Fig. 1 we give the curves at a few
values of £ = 10+ 2 in the region below 2 GeV for the first MPT function A[f’]MPT (14)
together with the corresponding APT (dashed) curve.

It can be seen from the NLO curves that values £ = 8—10 seem to be preferable.
Indeed, for these values, the first MPT function, A[12] (z,€) is reasonably close to the first
APT one down to 1 GeV. At the same time, in the region around 500-700 MeV it deviates
from APT but is more similar to the results of lattice simulations, especially to the Orsay
group [17,19] ones.

Figure 2 exposes the second and third MPT functions as roughly estimated by the one-loop
Egs. (18) and (19). It is seen that instead of singular IR slopes of all APT thick dashed (red)
curves, all the MPT functions are the IR regular ones. At the same time, just as in APT,
the second and third MPT functions A3 3.mpT are noticeably smaller than square (A1,MPT)2
and cube (ALMPT)?’ of the first one. For example, at @) = 0.5 GeV and Q = 1.0 GeV the
reduction factors for the A3 \pr are about 0.2 and between 0.1-0.2 correspondingly. Besides,
the A3 ppr is negative below 1 GeV.
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0, GeV

Fig. 1. The values of the first MPT function (for a few £ values) in comparison with the APT one

0.25

0.20

0, GeV

Fig. 2. (Color online) The values of the second and third MPT functions vs. the APT ones

Now, the «MPT-perturbative» expansion similar to Eq. (2), due to recurrent relation (17),
can be represented in a form of Taylor series expanded over the parameter Alnx = ¢ 7/5p =
1.60 with the final effect

1 2
Alpr ;AI,MPT(x*), gt =gpe AT = (f*)z’ A* = 2.25A. (23)

One should keep in mind that both the logarithm shift Alnz and the «one-term approxi-
mation» (23) error dAnpr ~ A3 mpT are scheme-dependent quantities. In the MS scheme
under consideration, § Aypr — due to the smallness of the reduction factor — is negligible.

However, one can get another angle on Eq. (23) and return to the old idea of the effective
coupling constant [20], which is not so far from «RESIPE» [21] and from the «commensurate
scale relations» [22] concepts. Then, the new scale can be treated as a specific one for the
given process; A* = Ag;.
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The «glueball mass» values given in Table 1 for the LO and NLO cases also look attractive.

They can be confronted with the glueball mass MQ%Q ~ 1—2 GeV of paper [11] and with
gluon mass M ~ 500 MeV from the lattice estimate [17] as well as from solution of the
Schwinger-Dyson equations (see [23] and references therein).

Table 1. «Glueball mass» andAg; for a few values of ¢

| A | ml) | As | m | As

8 | 244 | 690 | 324 | 915 | 730
10 | 249 | 787 | 315 | 995 | 710
12 | 253 | 876 | 305 | 1160 | 686

Besides, as can be shown [24], the MPT perturbative sum Appr, together with a duly
modified HT sum, allows one to fit the JLab data down to the very IR limit — see below Fig. 4
in Appendix B. There, the generic HT function was conjectured in the IR-regular form
pa (Q* +mi,)~! with the only parameter. It is remarkable that its value my; ~ 0.7—1 GeV
is close to the mg) one. This gives hope that ansatz (A) reflects some general physical essence.
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Appendix A
2-LOOP MPT HIGHER FUNCTIONS

For a more accurate definition of the 2-loop higher expansion functions, one could use
recurrent relation (16) at £k = 1 and truncated Eq. (17) for the k = 2 case.

With the technical notation p(t = Inz) = —(1/60) A1 mpr (), ‘A[QQ,]MPT(x) = y(t), one
gets two relations of Eq. (16). Neglecting A4 \ipr, We come to a boundary value problem

W)=~ 03(0) = o(1), 9(0) =0, 0= 10 24
2065
and auxiliary relations
0 I L 25
Asnpr(®€) = =52 (1), Aswer(,€) 67 G(t). (25)

Solution of (24) y(t) = [ e * (t + s6) ds being expanded in powers of 6 yields the form
0

1
Bo
completely correlating with Eq. (16).

A[12,]MPT(377 §) — ] As mpr + O(Ag mpr), (26)

Apr (€)= - &
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On the other hand, one can use an approximate, «two-loop effective log trick» of
papers [16]:

{=1Inx — Lo[l]:=C + b ln/{?+ 272, b:%. (27
0
Combining this with Eqgs. (8) and (10), one gets (with L¢(x) = In (£ + x))
s L S| G C) -
./417[2 (IE, g) ﬁO £2 [Lg (J), E)] ) A27€2 (IE, g) ﬁg (£2 [Lg (.13)])2 ) (28)

—r _ Le(x) . R

With due account for the numerical values Gy(ny = 3) = 0.716, b = 0.566, one has
s 1 N LT
O T et bin /e o2 7 B33—¢

with! ale—1042 = 0.435 F 0.03, A2, (€ = 10 £ 2) = (490 + 35) MeV ~ 1.95A+; for more
detail, see Table 2.

Table 2

g A1 mggll] A2 mg] s A2,l2

8 | 244 | 690 | 324 | 915 | 0.438 | 455
10 | 249 | 787 | 315 | 995 | 0.435 | 490
12 | 253 | 876 | 305 | 1160 | 0.432 | 525

These expressions can be confronted with the previous ones (Egs.(14) and (18)). For
example, at Q ~ 500 MeV,  ~ 1 and AT}, (1,€ =8) ~ 0.45, AT}, (1,6 = 12) = 0.40.

In the context of relation (23), the second term in the r.h.s. of the last expansion (26)
reduces further the error JA* of expression (23) for Aypr.

Appendix B
THE ANSATZ (A) EFFECT ON THE BJORKEN SUM RULE ANALYSIS

The net effect of the Ansatz (A) used literally (but roughly) can be described as a transition
to the new momentum-transfer scale in both perturbative (PT) and higher-twist (HT) items.
Explicitly, in Eq. (1), this means

B G = 2 (29)

Q Q2 + mht

Meanwhile, as was shown above, under a more detailed analysis (that includes differential
recurrent relations) the correspondence is more intricate — see, e.g., Figs. 1 and 2.

Ang(QQ) _, AMPT _, AEJT(QQ + m§1)7 Tyt =

IFor the practical use of the last simple relation, see [25].
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Fig. 3. Figure 5 from paper [4]
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Fig. 4. The MPT fitting of the JLab data with change (29) used, according to [24]

Nevertheless, it is evident by observation that for mg ~ 500 MeV the solid (green) curve
from Fig.3 (taken from paper [4]) visually corresponds to Fig.4 curve (according to [24])

with «shifted» scale Qg =Q?- mzl.
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