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In this paper, the semileptonic weak decay process of B(s) → S scalar mesons is investigated by
using the light-cone QCD sum rules (LCSR) in the nonperturbative part. The corresponding transition
matrix elements leading to form factors and the branching ratio of this process are determined.
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INTRODUCTION

For several consecutive decades, the structure of scalar mesons has been investigated. It
was assumed that the scalar mesons with the masses greater than 1 GeV, such as f0(1370),
can form the nonet based upon their spectrum, and those with masses less than 1 GeV,
such as a0(980), K∗

0 (800), f0(980), and f0(600), form another nonet.
Investigation of strong and electromagnetic decays of scalar mesons, apart from the pro-

duction properties of scalar mesons in πN scattering, pp̄ annihilation, γγ formation, and heavy
meson decays, has been the subject of interest in literature. Belle and BaBar investigated the
scalar meson decays in the mass range of 1.0 and 1.5 GeV experimentally [1, 2].

We would like to investigate the semileptonic decay of B(s) to scalar meson (S) in order
to calculate the form factors and the branching ratio of this decay process.

The QCD sum rules method, which is based on relativistic quantum ˇeld theory, has been
successful in calculation of form factors in the perturbative part, but in the nonperturbative
part, namely for large momentum transfers or in the decay of scalar mesons with heavy
masses, confronts difˇculties. Correlation of the standard QCD sum rules (QCDSR) and hard
exclusive processes theory leads to the light cone QCD sum rules (LCSR) in which such
difˇculties are overcome by performing the operator product expansion in terms of twists
rather than dimensions [3].

Instead of using the vaccum condensation, which is used in QCDSR, in LCSR, the hadronic
distribution amplitudes are used. The light cone distribution amplitudes are nonperturbative
functions used to describe the hadronic structure.
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This paper is organized as follows. In Sec. 1, the effective Hamiltonian responsible for the
transition of b → u, s in the Standard Model, matrix elements parameterizations, and relations
between the form factors and the heavy quarks in the large recoil regions are discussed. In
Sec. 2, the distribution amplitudes of twist-2 and twist-3 obtained via QCDSR are given for
scalar mesons. Then LCSR method is used for the determination of the form factors. The
numerical calculation of the form factors and branching ratios as well as their application
in decays of Bs → K∗

0 (1430)lν̄l and Bs → K∗
0 (1450)lν̄l, and also leptonic longitudinal

asymmetry are discussed in Secs. 3 and 4. In the last section, discussion of results and a
conclusion are presented.

1. EFFECTIVE HAMILTONIAN
AND PARAMETERIZATIONS OF MATRIX ELEMENT

In order to ˇnd the effective Hamiltonian for transition of b → u, we integrate out the
particles, such as top quark, W± and Z bosons above the scale of μ = O(mb), and we get

Heff(b → ulν̄l) =
GF√

2
Vubūγμ(1 − γ5)b l̄γμ(1 − γ5)νl + h.c., (1)

where Vub denotes CKM matrix elements, and l = (e, μ, τ). Similarly, the effective Hamil-
tonian for 	avor-changing neutral current (FCNC) for b → s transition is obtained as follows:

Heff(b → sll̄) =
GF√

2
VtbV

∗
ts

[
Ceff

9 (μ) s̄γμ(1 − γ5)b l̄γμ(1 − γ5) l+

+ C10s̄γμ(1 − γ5)b l̄γμγ5l −
2mbC7 (μ)

q2
σμν(1 − γ5)qνb l̄γμl

]
+ h.c., (2)

where the term VubV
∗
us is neglected because |VubV

∗
us/VtbV

∗
ts| < 0.02. Ci denotes the Wilson

coefˇcients given in [4]. Wilson coefˇcient C10 does not depend on scale μ � O(mb), and
Ceff

9 (μ) is deˇned as follows ([5Ä11]):

Ceff
9 (μ) = C9(μ) + YSD(z, s′) + YLD(z, s′), (3)

where z = mc/mb, s′ = q2/m2
b , and YSD(z, s′) describes the short-distance contributions

from four-quark operators far away from the cc̄ resonance and is precisely determined by
perturbative QCD. The long-distance contributions YLD(z, s′) from four-quark operators near
cc are parameterized in the form of a phenomenological BreitÄWigner formula, and due to
the lack of sufˇcient data, is not considered. Therefore, we have [12]:

YSD(z, s′) = h(z, s′)(3C1(μ) + C2(μ) + 3C3(μ) + C4(μ) + 3C5(μ)+

+ C6(μ)) − 1
2
h(1, s′)(4C3(μ) + 4C4(μ) + 3C5(μ) + C6(μ))−

− 1
2
h(0, s′)(C3(μ) + 3C4(μ)) +

2
9
(3C3(μ) + C4(μ) + 3C5(μ) + C6(μ)), (4)
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where

h(z, s′) = −8
9

ln z +
8
27

+
4
9
x − 2

9
(2 + x) | 1 − x |1/2 ×

×

⎧⎪⎪⎨⎪⎪⎩
ln |

√
1 − x + 1√
1 − x − 1

| − iπ for x ≡ 4z2

s′ < 1
,

2 arctan
1√

x − 1
for x ≡ 4z2

s′ > 1
,

(5)

h(0, s′) =
8
27

− 8
9

ln
mb

μ
− 4

9
ln s′ +

4
9
iπ. (6)

In addition to that, the charm quark presence causes more corrections in the radiative
transition b −→ sγ, which can be absorbed into Ceff

7 and is given by [13]

Ceff
7 (μ) = C7(μ) + C′

b→sγ(μ), (7)

where

C′
b→sγ(μ) = iαs

[
2
9
η

14
23 (G1(xt) − 0.1687)− 0.03C2(μ)

]
, (8)

and

C′
b→γG1(xt) =

x(x2 − 5x − 2)
8(x − 1)3

+
3x2 ln 2x

4(x − 1)4
, (9)

where xt = m2
t /m2

W and η = αs(mW )/αs(μ). As can be seen from Eqs. (1) and (2), it is
obvious that in order to calculate decay amplitudes for the semileptonic decays of Bq′ → S,
the following hadronic matrix elements should be determined:

〈S(p)|sγμγ5|Bq′ (p + q)〉 and 〈S(p)|sσμνγ5q
νb|Bq′(p + q)〉. (10)

These two matrix elements are parameterized in the following form:

〈S(p)|s̄γμγ5b|Bq′ (p + q)〉 = −i[f+(q2)pμ + f−(q2)qμ],

〈S(p)|s̄σμνγ5q
νb|Bq′ (p + q)〉 = − 1

mB + mS

[
(2p + q)μ q2 −

(
m2

B − m2
S

)
qμ

]
fT

(
q2
)
.

(11)

The covariant trace formalism [14] causes the form factors at large recoils and should satisfy
the following relations:

f+(q2) =
2mB

mB + mS
fT (q2), f−(q2) = 0, and fT (q2) = −mb − mq

mb − ms
f−(q2), (12)

in which the hard gluon exchanges are neglected.
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2. SCALAR MESON DISTRIBUTION AMPLITUDES
AND LIGHT-CONE SUM RULES FOR FORM FACTORS

The scalar meason light-cone amplitudes for q2q̄1 are deˇned [2,15] as

〈S (p) |q̄2 (x) γμq1 (y)| 0〉 = pu

1∫
0

du ei(up · x+ūp·y) ΦS (u, μ) ,

〈S (p) |q̄2 (x) q1 (y)| 0〉 = mS

1∫
0

du ei(up · x+ūp·y) Φs
S (u, μ) , and

〈S (p) |q̄2 (x)σμνq1 (y)| 0〉 = −mS (pμzν − pνzμ)

1∫
0

du ei(up·x+ūp · y) Φσ
S (u, μ) ,

(13)

where z = x−y, mS is the meson mass and u denotes q, which is momentum fraction carried
by q2. ΦS (u, μ) is of twist-2, Φs

S (u, μ) and Φσ
S (u, μ) are of twist-3. These are scalar meson

distribution amplitudes with the following normalizations:

1∫
0

du ΦS (u, μ) = fS ,

1∫
0

du Φs
S (u, μ) =

1∫
0

du Φσ
S (u, μ) = f̄S, (14)

the vector current decay constant fS is deˇned as

〈S (p) |q̄2γ
μq1| 0〉 = fSpμ, (15)

and f̄S , the scalar density decay constant, is given by

〈S (p) |q̄2q1| 0〉 = mS f̄S, (16)

with
f̄S = μSfS , and μS =

mS

m2 (μ) − m1 (μ)
, (17)

where m1 and m2 denote masses of quarks q1 and q2, respectively. The distribution amplitudes
are expanded in terms of Jacobi polynomials in Hilbert space as

ΦS (u, μ) = f̄S (μ) 6uū

[
B0 (μ) +

∞∑
m=1

Bm (μ) C3/2
m (2u − 1)

]
,

Φs
S (u, μ) = f̄S (μ)

[
1 +

∞∑
m=1

am (μ)C1/2
m (2u − 1)

]
, and

Φσ
S (u, μ) = f̄S (μ) 6uū

[
1 +

∞∑
m=1

bm (μ) C3/2
m (2u − 1)

]
,

(18)
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where polynomials C
3/2
m (x) are special cases of Jacobi polynomials. The fundamental quan-

tity in QCD light-cone sum rules is the correlation function, which expresses a hadron as
the corresponding interpolating current with proper quantum number, such as spin, isospin,
(charge) parity and so on. The transition form factors are determined by calculating both
the phenomenological and the theoretical parts of correlation function and using dispersion
relation and quarkÄhadron duality approximation.

The correlation function corresponding to form factors f+(q2) and f−(q2) is deˇnded as

Πμ (p, q) = −
∫

d4x eiqx 〈S (p) |T {j2μ(x), j1(0)}| 0〉 , (19)

where j2μ(x) = q̄2 (x) γμγ5b (x) correspond, to weak transition of b to q2, and j1(0) corre-
spond, to Bq1 channel:

j2μ(x) = q2(x)γμγ5b(x), j1(0) = b(0)iγ5q1(0). (20)

The physical (phenomenological) part of correlation function for a complete set of states with
the same quantum numbers as Bq1 is obtained as

Πμ(p, q) = i
〈S(p)|q2(0)γμγ5b(0)|Bq1(p + q)〉〈Bq1(p + q)|b(0)iγ5q1(0)|0〉

m2
Bq1 − (p + q)2

+

+
∑

h

i
〈S(p)|q2(0)γμγ5b(0)|h(p + q)〉〈h(p + q)|b(0)iγ5q1(0)|0〉

m2
h − (p + q)2

, (21)

where the ground-state contribution is separated from the higher states, corresponding to the
Bq1 -meson channel. The vacuum-to-meson matrix element for Bq1 meson is

〈Bq1(p + q)|biγ5q1|0〉 =
m2Bq1

mb + mq1
fBq1 . (22)

Substituting Eqs. (11) and (22) into Eq. (21), the physical part of correlation function appears
as follows:

Πμ(p, q) =
m2

Bq1
fBq1

(mb + mq1)[m2
Bq1

− (p + q)2]
[f+(q2)pμ + f−(q2)qμ]+

+

∞∫
S

Bq1
0

ds
ρh
+(s, q2)pμ + ρh

−(s, q2)qμ

s − (p + q)2
. (23)

Now let us ˇnd the theoretical part of the correlation function. By using the perturbative QCD
and Operator Product Expansion (OPE) in the deep Euclidean region p2, q2 = −Q2 � 0, we
arrive at the theoretical part of correlation function:

Πμ(p, q) = ΠQCD
+ (q2, (p + q)2)pμ + ΠQCD

− (q2, (p + q)2)qμ =

=

∞∫
(mb+mq1 )2

ds
1
π

Im ΠQCD
+ (s, q2)

s − (p + q)2
pμ +

∞∫
(mb+mq1 )2

ds
1
π

Im ΠQCD
− (s, q2)

s − (p + q)2
qμ.
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Using the quarkÄhadron duality assumption,

ρh
i (s, q2) =

1
π

Im ΠQCD
i (s, q2)Θ (s − sh

0), (24)

where i = ®+¯, ®−¯. Let us use the Borel transformation as

B̂M2 = lim
−(p+q)2,n→∞

−(p+q)2/n=M2

(−(p + q)2)(n+1)

n!

(
d

d(p + q)2

)n

, (25)

and the form factors are ˇnally obtained as follows:

fi(q2) =
mb + mq1

πfBq1
m2

Bq1

s
Bq1
0∫

(mb+mq1 )2

Im ΠQCD
i (s, q2) exp

(
m2

Bq1
− s

M2

)
ds. (26)

Let us substitute Eq. (20) into Eq. (19) to get

Πμ(p, q) = −
∫

d4x eiqx〈S(p)|q2(x)γμγ5 b(x)b(0)︸ ︷︷ ︸ iγ5q1(0)|0〉. (27)

Howerer, the full quark propagator is given as [16,17]:

〈0|T {bi(x)bj(0)}|0〉 = δij

∫
d4k

(2π)4
e−ikx i

	k − mb
− ig

∫
d4k

(2π)4
e−ikx×

×
1∫

0

dv

[
1
2

	k + mb

(m2
b − k2)2

Gμν
ij (vx)σμν +

1
m2

b − k2
vxμGμν(vx)γν

]
,

where the ˇrst term corresponds to free quark propagator, Gμν
ij = Ga

μνT a
ij and Tr [T aT b] =

(1/2)δab. Neglecting the LCDAs of higher excited states [31], and by substituting the ˇrst
term of Eq. (28) into Eq. (27), we get:

Πμ(p, q) = −
∫

d4x

∫
d4k

(2π)4
ei(q−k)x i

	k − mb
〈S(p)|q2(x)γμγ5iγ5q1(0)|0〉. (28)

Now by substituting Eq. (13) into Eq. (28) and calculating the integrals, the correlation function
is found as

Πμ(p, q) = pμ

1∫
0

du
1

m2
b − (q + up)2

{
− mbΦS(u)+

+ umSΦs
S(u) + 4mSΦσ

S(u)
q2 + up · q

m2
b − (q + up)2

}
+

+ qμ

1∫
0

du
1

m2
b − (q + up)2

{
mSΦs

S(u) − 4mSΦσ
S(u)

q · p + up2

m2
b − (q + up)2

}
≡

≡ ΠQCD
+ (q2, (p + q)2)pμ + ΠQCD

− (q2, (p + q)2)qμ (29)
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from which the form factors are found as follows:

f+(q2) =
(mb + mq1)
m2

Bq1
fBq1

exp
(

m2
B

M2

){ 1∫
u0

du

u
exp

(
− S(u)

M2

)
×

×
[(

− mbΦS (u) + mS (uΦs
S (u) − 2Φσ

S (u))
)

+
2mS

uM2
Φσ

S (u)
(
m2

b − u2p2 + q2
) ]

+

+
mS

6
Φσ

S (u0) exp
(
− s0

M2

)
m2

b − u0p
2 + q2

m2
b + u2

0p
2 − q2

}
, (30)

f−(q2) =
(mb + mq1)
m2

Bq1
fBq1

exp
(

m2
B

M2

){ 1∫
u0

du

u
exp

(
− S(u)

M2

)
×

×
[(

mS

(
Φs

S(u) +
2
u

Φσ
S(u)

))
− 2mS

u2M2
Φσ

S(u)(m2
b + u2p2 − q2)

]
−

− mS

6u0
Φσ

S(u0) exp
(
− s0

M2

)}
, (31)

where

u0 =
−(S0 + Q2 − m2

meson) +
√

(S0 + Q2 − m2
meson)2 + 4m2

meson(m2
b + Q2)

2m2
meson

. (32)

Now in order to ˇnd the form factor fT (q2) for the transition b → s, we start with the
following correlation function:

Π̃μ (p, q) = −
∫

d4x eiqx
〈
S (p)

∣∣T {
j̃2μ(x), j1(0)

}∣∣ 0〉 , (33)

where
j̃2μ(x) = q̄2(x)σμνqνγ5b(x). (34)

The phenomenological part of the correlation function is

Π̃μ (p, q) =
〈S(p)|q2(x)σμνqνγ5b(x)|Bq′ (p + q)〉〈Bq′ (p + q)|b(0)iγ5q1(0)|0〉

m2
Bq1 − (p + q)2

+

+
∑

h

i
〈S(p)|q2(x)σμνqνγ5b(x)|0〉|h(p + q)〉〈h(p + q)|b(0)iγ5q1(0)|0〉

m2
h − (p + q)2

, (35)

and the theoretical part of the correlation function in the perturbative context is given by

Π̃μ (p, q) = [−pμq2 + qμ(q · p)]

1∫
0

du
1

m2
b − (q + up)2

×

×
{

ΦS(u) − 4mbmS
Φσ

S(u)
(m2

b − (q + up)2)

}
. (36)
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By using Borel transformation in terms of variable (p + q)2 and dispersion relation, the form
factors are found:

fT (q2) =
(mb + mq1) (mB + mS)

m2
Bq1

fBq1

exp
(
−m2

B

M2

)
×

×
{ 1∫

u0

−du

2u

[
ΦS(u) − 4

mbmSΦσ
S(u)

uM2

]
exp

(
−S(u)

M2

)
+

+
mbmS

6
Φσ

S (u0) exp
(
− S0

M2

)
1

m2
b + u2

0p
2 − q2

}
. (37)

3. NUMERICAL ANALYSIS

The following values have been used for parameters in our numerical calculations [18Ä25]:

GF = 1.166 · 10−2 GeV−2, |Vub| = 3.96+0.09
−0.09 · 10−3,

|Vtb| = 0.9991, |Vts| = 41.61+0.10
−0.80 · 10−3,

mb = (4.68 ± 0.03) GeV, ms(1 GeV) = 142 MeV,
mu(1 GeV) = 2.8 MeV, md(1 GeV) = 6.8 MeV,

mB0 = 5.279 GeV, mBs = 5.368 GeV,
fB0 = (0.19 ± 0.02) GeV, fBs = (0.23 ± 0.02) GeV.

From Eqs. (30), (31) and (37), it is seen that the sum rules for form factors also depend
upon the continuity threshold s and Borel parameter M2. Since M2 is not physical, physical
quantities, such as form factors, should not depend upon M2. In order to ˇnd the acceptable
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Fig. 1. Dependence of form factors f+ (a),

f− (b) and fT (c) at q2 = 0 responsible for the

decay of BS → K∗
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0 = 36 GeV2
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region for M2, the form factors at zero momentum are plotted versus M2, and the region,
in which the slope is zero, is selected as acceptable range for M2. In addition, we should
not forget that M2 must be large enough to suppress higher order twists and small enough to
suppress the higher excited states. The standard value of the threshold in the X channel is

s0X = (mX + ΔX)2, (38)

where ΔX is taken from [26, 27]. The continuity thresholds are sB0
0 = (35 ± 2) GeV2

and sBs
0 = (36 ± 2) GeV2 for B0 and Bs channels. Once the region for M2 is found,

the form factors are plotted versus Q2 for each value of acceptable M2. The range of
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Fig. 2. Dependence of form factors f+ (a),
f− (b) and fT (c) responsible for the decay

of BS → K∗
0 (1430)ll on q2 with the chosen

threshold parameter s
Bq1
0 = 36 GeV2

Table 1. Decay constants and Gegenbauer moments for the twist-2 distribution amplitude ΦS of
scalar mesons at the scale μ = 1 GeV [2]

State f̄ , MeV B1 B3

a0(1450) 460 ± 50 −0.58 ± 0.12 −0.49 ± 0.15
K∗

0 (1430) 445 ± 50 −0.57 ± 0.13 −0.42 ± 0.22
f0(1500) 490 ± 50 −0.48 ± 0.11 −0.37 ± 0.20

Table 2. Gegenbauer moments for the twist-3 distribution amplitudes Φs
S and Φσ

S of scalar mesons
at the scale μ = 1 GeV [15]

State a1 · 10−2 a2 a4 b1 · 10−2 b2 b4

a0 0 −0.33 ∼ −0.18 −0.11 ∼ 0.39 0 0 ∼ 0.058 0.070 ∼ 0.20
K∗

0 1.8 ∼ 4.2 −0.33 ∼ −0.025 Å 3.7 ∼ 5.5 0 ∼ 0.15 Å
f0 0 −0.33 ∼ −0.18 0.28 ∼ 0.79 0 −0.15 ∼ −0.088 0.044 ∼ 0.16
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Q2 is chosen between 0 and 15. These procedures are given in Figs. 1 and 2. In our
calculations based upon the mentioned criteria, the value of M2 is chosen to be 10 GeV2.
The values of required constants and coefˇcients used in our numerical analysis are given in
Tables 1 and 2.

4. BRANCHING RATIO AND POLARIZATION ASYMMETRY CALCULATION

Once the transition form factors are found, it is possible to determine quantities, such as
branching ratio and polarization asymmetry in the phenomenological region. Due to lack of
scalar-type coupling between the lepton pairs, the forwardÄbackward asymmetry for decay
modes B̄0 → K∗

0 (1430)ll̄ and Bs → f0(1500)ll̄ is exactly equal to zero [29,30].
The semileptonic decay B̄0 → K∗

0 (1430)ll̄ involves the 	avour changing neutral interpo-
lating current. In the rest frame of B̄0 meson, the decay width is given in [18] as

dΓ(B̄0 → K∗
0 (1430)ll̄)

dq2
=

1
(2π)3

1
32mB̄0

umax∫
umin

|M̃B̄0→K∗
0 (1430)ll̄|2 du, (39)

where u = (pK∗
0 (1430) + pl)2, q2 = (pl + pl̄)

2 and pK∗
0 (1430), pl and pl̄ are four momenta

of K∗
0 (1430), l and l̄, respectively. |M̃B̄0→K∗

0 (1430)ll̄|2 denote the decay amplitude after
integraton with respect to the angles between lepton l and the meson K∗

0 (1430). The upper
and lower limits of integration are as follows:

umax = (E∗
K∗

0 (1430) + E∗
l )2 −

(√
E∗2

K∗
0 (1430) − m2

K∗
0 (1430) −

√
E∗2

l − m2
l

)2

,

umin = (E∗
K∗

0 (1430) + E∗
l )2 −

(√
E∗2

K∗
0 (1430) − m2

K∗
0 (1430) +

√
E∗2

l − m2
l

)2

,

(40)

where E∗
K∗

0 (1430) and E∗
l are the rest frame energies of K∗

0 (1430) and l, which are obtained
from the following relations:

E∗
K∗

0 (1430) =
m2

B̄0
− m2

K∗
0 (1430) − q2

2
√

q2
, E∗

l =
q2

2
√

q2
. (41)

Considering all the parameters involved, the differential decay rate for Bq′ → Sll̄ is given
as [28]

dΓ
(
Bq′ → Sll̄

)
ds′

=
G2

F |VtbVts|2 m5
Bα2

em

1536π5

(
1 − 4rl

s′

)1/2

×

× ϕ
1/2
S

[(
1 +

2rl

s′

)
αS + rlδS

]
, (42)
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where

αem =
1

129
, s′ =

q2

m2
B

, rl =
m2

l

m2
B

, rS =
m2

S

m2
B

,

ϕS = (1 − rS)2 − 2s(1 + rS) + s2,

αS =ϕS

⎛⎝∣∣∣∣∣Ceff
9

f+

(
q2
)

2
− 2

C7fT (q2)
1 +

√
rS

∣∣∣∣∣
2

+

∣∣∣∣∣C10

f+

(
q2
)

2

∣∣∣∣∣
2
⎞⎠ ,

δS = 6 |C10|2
{

[2 (1 + rS) − s]

∣∣∣∣∣f+

(
q2
)

2

∣∣∣∣∣
2

+

+ (1 − rS) Re

[
f+

(
q2
)(

f−(q2) −
f+

(
q2
)

2

)∗]
+ s

∣∣∣∣∣f−(q2) −
f+

(
q2
)

2

∣∣∣∣∣
2}

.

It is obvious that the decay rates for electron- and muon-pair ˇnal states are considerably
higher than the decay rate for tauon-pair due to the heavily suppressed phase space. Finally,
let us consider the polarization asymmetry for a decay Bq′ → Sll̄. The four-spin vector sμ

in the rest frame is deˇned as
(sμ)r.s = (0, ξ̂). (43)

The unit vector along the longitudinal direction of leptons' polarization is given by

êL =
pL

| pL | , (44)

where PL(s′) is given as

PL(s′) =

dΓ
(
êLξ̂ = 1

)
ds′

−
dΓ

(
êLξ̂ = −1

)
ds′

dΓ
(
êLξ̂ = 1

)
ds′

+
dΓ

(
êLξ̂ = −1

)
ds′

, (45)

which is similar to forwardÄbackward asymmetry PL(s′) that has odd parity, but even CP .
An explicit expression for PL(s′) for the decay Bq′ → Sll̄ in the rest frame of lepton pair

is given as [28]

PL(s′) =
2
(

1 − 4rl

s′

)1/2

(
1 +

2rl

s′

)
αS + rlδS

×

× Re

[
ϕS

(
Ceff

9

f+

(
q2
)

2
− 2

C7fT

(
q2
)

1 +
√

rS

)(
C10

f+

(
q2
)

2

)∗]
. (46)
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Equation (46) is an indication of the fact that in the limit of zero lepton mass, the asymmetry
is independent of form factors, and due to small value of Wilson coefˇcient C7, compared
with Ceff

9 and C10, it is approximately given as

PL(s′) =
2Re[Ceff

9 C∗
10]

|Ceff
9 |2 + |C10|2

+ O(C7) � −1. (47)

The results of our calculations are given in Figs. 3 and 4 and summarized in Table 3 in which
our results are compared with the values obtained with other approaches.
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Table 3. Numerical results for the total decay width of B0 → a0(1450)ll̄, B̄0 → K∗
0 (1430)ll̄, and

Bs → K∗
0 (1430)ll̄ with l = e, μ, τ in the light-cone sum rules approach, together with the numbers

estimated in QCD sum rules [32, 33] and LFQM [28]

State B̄0 → a0(1450) B̄0 → K∗
0 (1430) Bs → K∗

0 (1430)

e+e−

OUR 7.15 · 10−4 6.28 · 10−7 2.47 · 10−6

LCSR 1.8+0.9
−0.6 · 10−4 5.7+3.4

−2.4 · 10−7

LFQM 1.63 · 10−7 [28]

QCDSR (2.09−2.68) · 10−7 [32]

μ+μ−

OUR 7.09 · 10−4 6.28 · 10−7 2.45 · 10−6

LCSR 1.8+0.9
−0.7 · 10−4 5.6+3.1

−2.3 · 10−7

LFQM 1.62 · 10−7 [28]

QCDSR (2.07−2.66) · 10−7 [32]

τ+τ−

OUR 9.17 · 10−5 1.16 · 10−9 5.93 · 10−8

LCSR 6.3+3.4
−2.5 · 10−5 9.8+12.4

−5.5 · 10−9

LFQM 2.86 · 10−9 [28]

QCDSR (1.70−2.20) · 10−9 [32]

CONCLUSIONS

The values of form factors for different q2 values obtained here are compared with the
results obtained with other approaches. There are some differences, small but noticeable,
though experimental data will clarify the correct one in the future.

Here by applying the light-cone QCD sum rules, we investigated Bs → K∗
0 (1430)ll̄,

B0 → K∗
0 (1430)ll̄ and B0 → a0(1450)ll̄ decays with distribution amplitudes up to the

twist-3. In general, it is concluded that form factors for decay of B → S are almost twice
the value of B → P .

The form factors f+(q2), f−(q2) and fT (q2) found here are for large recoil in heavy
quark regions. The branching ratios were determined for the three decays mentioned above.
Our ˇndings indicate that the values of branching ratios for B̄S → K∗

0 (1430)e+e− and B̄S →
K∗

0 (1430)μ+μ− are of order 10−6, for B̄0 → a0(1450)e+e− and B̄0 → a0(1450)μ+μ− are

of order 10−4, while for B̄0 → K∗
0 (1430)e+e− and B̄0 → K∗

0 (1430)μ+μ− are of order
10−7, for B̄S → K∗

0 (1430)τ+τ− is of order 10−8, for B̄0 → K∗
0 (1430)τ+τ− is of order

10−9, and, ˇnally for B̄0 → a0(1450)τ+τ− is of order 10−5.
Finally, the longitudinal lepton polarization asymmetry of the three decays mentioned

above was calculated and is in good agreement with the results obtained with light-front
quark model (LFQM) approaches. The lepton polarization asymmetry for tauon is much
smaller than that of muon and electron and cannot be measured due to the efˇciency for the
detectability of the tauon.
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