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Inspired by the recent experiments (Nature. 2012. V. 486. P. 341; Nature. 2009. V. 459. P. 1069).
indicating doubly magic nuclei which lie near the drip-line and encouraged by the success of relativistic
mean-ˇeld (RMF) plus state-dependent BCS approach for the description of the ground-state properties
of the drip-line nuclei, we have further employed this approach, across the entire periodic table, to
explore magic nuclei. In our RMF+BCS, approach, the single-particle continuum corresponding to
the RMF is replaced by a set of discrete positive energy states for the calculations of pairing energy.
Detailed analysis of the two-proton/neutron separation energy, single-particle spectrum, pairing energies
and densities of the nuclei predicts that some of the traditional shell closures disappear in the vicinity
of the drip-lines and some new shell closures emerge.

�¸´μ¢Ò¢ Ö¸Ó ´  ´μ¢ÒÌ Ô±¸¶¥·¨³¥´É ²Ó´ÒÌ ¤ ´´ÒÌ (Nature. 2012. V. 486. P. 341; Nature.
2009. V. 459. P. 1069) μ ¤¢ ¦¤Ò ³ £¨Î¥¸±¨Ì Ö¤· Ì, ±μÉμ·Ò¥ ²¥¦ É ¢ μ¡² ¸É¨ ¢¡²¨§¨ £· ´¨ÍÒ
¸É ¡¨²Ó´μ¸É¨, ¨ ´  Ê¸¶¥Ì Ì ³μ¤¥²¨ ·¥²ÖÉ¨¢¨¸É¸±μ£μ ¸·¥¤´¥£μ ¶μ²Ö (RMF) ¸μ¢³¥¸É´μ ¸ § ¢¨¸ÖÐ¨³
μÉ ¸μ¸ÉμÖ´¨Ö ¶·¨¡²¨¦¥´¨¥³ (BCS) ¢ μ¶¨¸ ´¨¨ ¸¢μ°¸É¢ μ¸´μ¢´μ£μ ¸μ¸ÉμÖ´¨Ö Ö¤¥· ´  £· ´¨Í¥
¸É ¡¨²Ó´μ¸É¨, ¢ ´ ¸ÉμÖÐ¥° · ¡μÉ¥ ¤ ´´μ¥ ¶·¨¡²¨¦¥´¨¥ ¨¸¶μ²Ó§Ê¥É¸Ö ¤²Ö μ¶¨¸ ´¨Ö ³ £¨Î¥¸±¨Ì Ö¤¥·
¢¸¥° ¶¥·¨μ¤¨Î¥¸±μ° É ¡²¨ÍÒ Ô²¥³¥´Éμ¢. ‚ ¶·¨¡²¨¦¥´¨¨ RMF+BCF μ¤´μÎ ¸É¨Î´Ò° ±μ´É¨´ÊÊ³,
¸μμÉ¢¥É¸É¢ÊÕÐ¨° RMF, § ³¥´Ö¥É¸Ö ´ ¡μ·μ³ ¤¨¸±·¥É´ÒÌ ¸μ¸ÉμÖ´¨° ¸ ¶μ²μ¦¨É¥²Ó´μ° Ô´¥·£¨¥°
¨ ¨¸¶μ²Ó§Ê¥É¸Ö ¤²Ö ¢ÒÎ¨¸²¥´¨Ö Ô´¥·£¨¨ ¸¶ ·¨¢ ´¨Ö. „¥É ²Ó´Ò°  ´ ²¨§ Ô´¥·£¨¨ · §¤¥²¥´¨Ö ¤¢ÊÌ
¶·μÉμ´μ¢/´¥°É·μ´μ¢, μ¤´μÎ ¸É¨Î´μ£μ ¸¶¥±É· , Ô´¥·£¨° ¸¶ ·¨¢ ´¨Ö ¨ ¶²μÉ´μ¸É¥° Ö¤¥· ¶μ± §Ò¢ ¥É,
ÎÉμ ´¥±μÉμ·Ò¥ É· ¤¨Í¨μ´´Ò¥ § ³Ò± ´¨Ö μ¡μ²μÎ¥± ¨¸Î¥§ ÕÉ ¢ μ±·¥¸É´μ¸É¨ £· ´¨ÍÒ ¸É ¡¨²Ó´μ¸É¨,
´μ ¶·¨ ÔÉμ³ ¶μÖ¢²ÖÕÉ¸Ö ´μ¢Ò¥ § ³Ò± ´¨Ö.

PACS: 21.10.-k; 21.60.Ev

INTRODUCTION

In 1949, Mayer, Haxel, Suess and Jensen [1, 2] independently showed that the observed
shell closures at nucleon numbers 8, 20, 50, 82 and 126 could be explained by the inclusion
of a spin-orbit potential. These special proton and/or neutron numbers were termed as
®magic numbers¯. It referred to the fact that nuclei with these Z and/or N values had
large gaps between occupied and empty single-particle states, and thus have strong stability
against excitations to higher levels. A change in the spacing of single-particle levels in the
region away from the valley of β stability gives rise to the shell gaps which are different
from those observed for nuclei close to the valley of stability. Due to this reason, some
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of the traditional magic numbers disappear in the exotic nuclei and new magic numbers
emerge.

Experimental and theoretical studies of such exotic nuclei with extreme isospin values
constitute one of the most active current areas of research in nuclear physics. Experi-
ments [3Ä9] with radioactive nuclear beams provide the opportunity to study very short-lived
nuclei with large [N−Z] value. Further, in recent experiments with radioactive nuclear beams
(RNB), disappearance of traditional magic numbers and appearance of new magic numbers
have been observed in nuclei with exotic isospin ratios [8, 9]. More recently, it has been
demonstrated in two independent experiments [5, 6] that 24O, the heaviest isotope of oxygen
with neutron number N = 16, is a doubly magic nucleus at neutron drip line. Towards
proton drip line 100Sn has also been found as a doubly magic nucleus by Hinke et al. [3]
and towards neutron drip line reaction cross section of 22C has been found signiˇcantly
larger than those of its neighborhood isotopes, suggesting 22C as a doubly magic halo nu-
cleus [7].

Theoretical descriptions of drip-line nuclei in terms of a few-body model or clusters [10,
11], shell-model [12, 13] and mean-ˇeld theories, both nonrelativistic [14, 15] as well as rel-
ativistic mean ˇeld (RMF) [16Ä30] have been well obtained. The advantage of the RMF
approach is that it provides the spin-orbit interaction in the entire mass region, which is
consistent with the nuclear density [20]. This indeed has been found to be very important
for the study of unstable nuclei near the drip-line [19]. It has been shown [27, 28] that the
relativistic mean-ˇeld (RMF) plus BCS approach wherein the continuum has been replaced
by the discrete single-particle states for the calculation of the pairing energy provides an alter-
native fast approach to the relativistic HartreeÄFockÄBogoliubov (RHB) description [22, 26]
of the drip-line nuclei.

Encouraged by the success of our RMF+ BCS approach [27, 28], and the impetus pro-
vided by the recent experimental developments, especially the measurements [3Ä7], we
have employed it for the study of structure of evenÄeven nuclei covering the whole pe-
riodic region up to the drip-lines (8 � Z � 82 and 8 � N � 126) to investigate the
unusual proton and neutron magic numbers and doubly magic nucleus. The shell clo-
sures with pronounced gaps between shells in nuclei endow them with spherical shape.
Consequently, the magic nuclei are characterized by zero deformation. In our system-
atic investigations we ˇrst carry out RMF+ BCS calculations including the deformation
degree of freedom [30] (to be referred to throughout as deformed RMF+ BCS) to iden-
tify magic numbers from two-neutron/proton separation energy and to establish whether
the entire chain of magic isotones/isotopes for a given neutron/proton number is indeed
spherical or not.

In the case of negligible/zero deformation, we take advantage of the RMF+ BCS ap-
proach for spherical shapes [27] (to be referred to throughout as spherical RMF+ BCS) for
the analysis of results in terms of spherical single-particle wave functions and energy levels
to make the discussion of shell closures and magicity, etc., more convenient and transparent.
Also, behavior of the single-particle states near the Fermi surface which in turn plays an im-
portant role near the drip-line can be easily understood. Moreover, within such a framework,
contributions of neutron and proton single-particle states to the density proˇles, pairing gaps,
total pairing energy, etc., which are also equally important in the study of exotic phenomena,
can be demonstrated with clarity. This approach indeed turns out to be very useful for the
study of poorly understood exotic nuclei.
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1. RELATIVISTIC MEAN-FIELD THEORY

Our RMF calculations have been carried out using the model Lagrangian density with
nonlinear terms for both the σ and ω mesons along with the TMA parametrization as described
in detail in [19,27]:

L = ψ̄[ıγμ∂μ − M ]ψ +
1
2
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2
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where the ˇeld tensors H , G and F for the vector ˇelds are deˇned by

Hμν = ∂μων − ∂νωμ,

Ga
μν = ∂μρa

ν − ∂νρa
μ − 2gρ εabcρb

μρc
ν ,

Fμν = ∂μAν − ∂νAμ,

and other symbols have their usual meaning. Based on the single-particle spectrum calculated
by the RMF described above, we perform state-dependent BCS calculations [31, 32]. As we
already mentioned, the continuum is replaced by a set of positive-energy states generated by
enclosing the nucleus in a spherical box. Thus, the gap equations have the standard form for
all the single-particle states, i.e.,

Δj1 = −1
2

1√
2j1 + 1

∑
j2

〈
(j12) 0+|V |(j22) 0+

〉
√(

εj2 − λ
)2 + Δ2

j2

√
2j2 + 1Δj2 , (2)

where εj2 are the single-particle energies, and λ is the Fermi energy, whereas the particle
number condition is given by

∑
j

(2j + 1) v2
j = N . In the calculations we use for the pairing

interaction a delta force, i.e., V = −V0δ(r) with the same strength V0 for both protons and
neutrons. The value of the interaction strength V0 = 350 MeV · fm3 was determined in [27]
by obtaining a best ˇt to the binding energy of Ni isotopes. We use the same value of
V0 for our present studies of isotopes of other nuclei as well. Apart from its simplicity,
the applicability and justiˇcation of using such a δ-function form of interaction has recently
been discussed in [14], whereby it has been shown in the context of HFB calculations that
the use of a delta force in a ˇnite-space simulates the effect of ˇnite-range interaction in
a phenomenological manner (see also [33] and [34] for more details). The pairing matrix
element for the δ-function force is given by

〈
(j12) 0+ |V | (j22) 0+

〉
= −V0

8π

√
(2j1 + 1)(2j2 + 1) IR, (3)

where IR is the radial integral having the form

IR =
∫
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1
r2

(
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j1 Gj2 + F �
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)2
. (4)
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Here Gα and Fα denote the radial wave functions for the upper and lower components,
respectively, of the nucleon wave function expressed as

ψα =
1
r

(
i Gα Yjαlαmα

Fα σ · r̂ Yjαlαmα

)
, (5)

and satisfy the normalization condition
∫

dr {|Gα|2 + |Fα|2} = 1. (6)

In Eq. (5), the symbol Yjlm has been used for the standard spinor spherical harmonics
with the phase il. The coupled ˇeld equations obtained from the Lagrangian density in (1) are
ˇnally reduced to a set of simple radial equations [18] which are solved self-consistently along
with the equations for the state-dependent pairing gap Δj and the total particle number N for
a given nucleus.

The relativistic mean-ˇeld description has been extended for the deformed nuclei of axially
symmetric shapes by Gambhir, Ring and their collaborators [35] using an expansion method.
The treatment of pairing has been carried out in [30] using state-dependent BCS method [31]
as has been given by Yadav et al. [27] for the spherical case. For axially deformed nuclei,
the rotational symmetry is no more valid and the total angular momentum j is no longer a
good quantum number. Nevertheless, the various densities still are invariant with respect to
a rotation around the symmetry axis. Here we have taken the symmetry axis to be the z axis.
Following Gambhir et al. [35], it is then convenient to employ the cylindrical coordinates.

The scalar, vector, isovector and charge densities, as in the spherical case, are expressed in
terms of the spinor πi, its conjugate π+

i , operator τ3, etc. These densities serve as sources for
the ˇelds φ = σ, ω0, ρ0 and A0, which are determined by the KleinÄGordon equation in cylin-
drical coordinates. Thus, a set of coupled equations, namely, the Dirac equation with potential
terms for the nucleons and the KleinÄGordon-type equations with sources for the mesons and
the photon, is obtained. These equations are solved self-consistently. For this purpose, as de-
scribed above, the well-tested basis expansion method has been employed [35]. The bases used
here are generated by an anisotropic (axially symmetric) harmonic oscillator potential. The up-
per and lower components of the nucleon spinors, the ˇelds as well as the baryon currents and
densities, are expanded separately in these bases. The expansion is truncated so as to include
all the conˇgurations up to a certain ˇnite value of the major oscillator shell quantum num-
ber. In this expansion method, the solution of the Dirac equation gets reduced to a symmetric
matrix diagonalization problem, while that of the KleinÄGordon equation reduces to a set of
inhomogeneous equations. The solution provides the spinor ˇelds, and the nucleon currents
and densities (sources of the ˇelds), from which all the relevant ground-state nuclear properties
are calculated. For further details of these formulations, we refer the reader to [30,35].

2. RESULTS AND DISCUSSIONS

2.1. Neutron Shell Closures. In order to investigate the effect of isospin on tradi-
tional neutron shell closures, we plot in Fig. 1 the two-neutron separation energy S2n ob-
tained in deformed RMF approach for the evenÄeven nuclei with different isospin values
TZ = (N − Z)/2 ranging from Ä3 to 15 as a function of neutron number N . In this ˇgure,
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Fig. 1. The two-neutron separation energy S2n obtained within the deformed RMF approach. The lines
connect the nuclei with the same isospin value TZ = (N −Z)/2 = −3 to 15. At the magic numbers a

sudden decrease in the separation energy is evidently seen

the results for nuclei with neutron number N only up to 54 have been displayed. Plot of S2n

covering nuclei with higher N exhibiting similar characteristics has not been displayed here
in order to keep the ˇgure uncluttered. In Fig. 1, and in similar plots for heavier nuclei, a
sudden decrease in the two-neutron separation energies S2n is clearly seen at the major shell
closures corresponding to traditional neutron magic numbers N = 8, 20, 28, 50, 82 and 126.
These major neutron shells are seen generally to persist well into the regions belonging to
the proton-rich as well as neutron-rich nuclei while approaching the drip-lines. For these
magic numbers the chains of bound isotones are relatively large. Such magic numbers may
be termed as strong magic numbers. However, there are instances, especially for neutron-
rich cases, whereby a major shell structure is weakened and the associated magic number
disappears with the emergence of a new magic number.

It is seen in Fig. 1 that the traditional neutron shell closure at N = 50 disappears for the
nucleus 70Ca (TZ = 15) lying in the vicinity of two-neutron drip-line of the Ca isotopic chain.
It may be mentioned that the deformed RMF calculations show that the nucleus 70Ca is just
unbound with very small negative two-neutron separation energy (∼ −400 keV). However,
we have taken the nucleus 70Ca for the present description as a bound one despite a very small
negative value of the two-neutron separation energy implying an unbound nucleus. Similarly,
it is found that the neutron shell closure at N = 28 disappears for the nucleus 40Mg (TZ = 8)
lying at the two-neutron drip-line of the nuclei corresponding to the N = 28 isotonic chain.
Another important result that can be seen from Fig. 1 is the emergence of new shell closures
at the neutron number N = 40 (for TZ = 7 to 11) and N = 14 (for TZ = −3 to 0).
Consequently, a shell closure at N = 40 is found for the nuclei 58Ar, 60Ca, 62Ti, 64Cr and
66Fe. Similarly, the calculated results show that the neutron shell closure occurs at N = 14
for the nuclei 28Si, 30S, 32Ar and 34Ca.
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Fig. 2. Variation of the neutron single-particle energies obtained within the spherical RMF calculations

for the N = 50 isotonic chain with increasing proton number Z. The neutron Fermi level has been

shown by ˇlled circles connected by solid line

In order to gain some more evidence for the disappearance of traditional shell closures at
the neutron number N = 28 and N = 50, and likewise the appearance of new shell closures
at N = 14 and N = 40, we present here a detailed study of the calculated results for the radial
density distribution and the single-particle spectra of the spherical nuclei identiˇed from the
deformed RMF calculations. The results of the deformed RMF calculations for the N = 50
isotonic chain show that all the nuclei with neutron number N = 50 are spherical in shape
with zero deformation. Therefore, in order to understand the disappearance of the neutron
shell closure at N = 50 in the vicinity of the neutron drip-line, we employ spherical RMF
approach to obtain the neutron single-particle spectrum of the nuclei belonging to N = 50
isotonic chain. These results have been displayed in Fig. 2 as a function of increasing
proton number Z.

It is readily seen in Fig. 2 that the large energy gap between the single-particle levels
1g9/2 and 1g7/2 which is responsible for the traditional neutron shell closure at N = 50
is signiˇcatively reduced due to the changed characteristics of the spin-orbit splitting for
the neutron-rich drip-line nucleus 70Ca having a large isospin value (TZ = 15). Due to
this behavior of neutron single-particle states, shell closure at the traditional neutron magic
number N = 50 is found to disappear. This result is also supported by the nonzero neutron
pairing energy value (−2.99 MeV) for the neutron-rich nucleus 70Ca (TZ = 15). Further,
from the deformed RMF calculations it is found that nuclei with Z = 18−40 belonging to
N = 40 isotonic chain have the spherical shape, whereas all the nuclei (except 22O and
34Ca) which belong to the N = 14 isotonic chain are deformed. With this in view, we
have employed the spherical RMF approach only for the N = 40 isotonic chain to obtain the
neutron single-particle spectrum.

The results obtained from the spherical RMF calculations have been displayed in Fig. 3. It
is evident that the large energy gap between the neutron single-particle levels 2p1/2 and 1g9/2

is responsible for the shell closure which is found to occur for the neutron number N = 40
in the nuclei with proton number Z = 18 to 26. However, this gap starts to diminish for the
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Fig. 3. Variation of the neutron single-particle energies obtained within the spherical RMF calculations
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nuclei with Z > 26 resulting in the disappearance of the magic number N = 40. Again these
results are also supported by the nonzero neutron pairing energy value for the neutron-rich
nuclei 68Ni (TZ = 6) and 70Zn (TZ = 5).

In Fig. 4, we have displayed the results of spherical RMF approach for the neutron single-
particle spectrum for the Z = 20 isotopic chain. It is clearly seen from the ˇgure that the
large energy gaps between single-particle levels 1d5/2 and 1d3/2, and that between the levels
2p1/2 and 1g9/2 are responsible for the neutron shell closures in the Ca isotopes for the
neutron number N = 14 and N = 40 apart from the traditional shell closures at N = 20
and N = 28. As mentioned earlier, the N = 50 shell closure is seen to disappear due to the
absence of the gaps between the single-particle states 1g9/2 and 1g7/2 near drip line.
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isotope. The insets show the results on a logarithmic scale up to rather large distances

These conclusions are further supported by the results of the calculated densities for the
Z = 20 isotopic chain displayed in the lower panel of Fig. 5. Evidently, for the neutron
number N = 14, 20, 28 and 40, the neutron densities fall off rapidly and have smaller tails as
compared to the isotopes with other neutron numbers. This sharp fall in asymptotic density
values is due to the fact that for the closed shell isotopes there are no contribution to the
density from the quasi-bound states having positive energy even though they are located close
to zero energy near the continuum threshold.

2.2. Proton Shell Closures. Analogously to our investigations described in the preceding
section, we have carried out the study of the behavior of traditional proton shell closures to
identify the disappearance of traditional magic numbers or the emergence of the new magic
numbers as we approach the drip-lines. To illustrate this, we have plotted in Fig. 6 the
two-proton separation energy S2p obtained in the deformed RMF approach for the evenÄeven
nuclei with different isospin values TZ = (N − Z)/2 ranging from Ä3 to 15 as a function
of proton number Z. As seen from Fig. 6 and from the similar plot for the higher Z values
(not shown here), a sudden decrease is observed in the two-proton separation energy S2p at
the traditional proton magic numbers Z = 8, 20, 28, 50 and 82. Similarly to the emergence
of new neutron shell closure at N = 14, a new proton shell closure at Z = 14 is seen for the
nuclei 26−42Si (TZ = −1 to 7).

Moreover, similar to the case of neutron shell closure at N = 50 which is found to be
absent in the neutron-rich nuclei located in the vicinity of neutron drip-line, the proton shell
closure at Z = 50 is found to disappear near the proton drip-line for the nuclei with high
isospin values, for example, in the nucleus 176Sn.

In order to get an insight into the proton magic number Z = 14, we have carried out
a detailed study of proton single-particle energy variations obtained by employing spheri-
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cal RMF approach for the isotonic chain of spherical nuclei corresponding to the neutron
number N = 20. For the purpose of illustration, we have shown in Fig. 7 such a variation of
the proton single-particle energies obtained, in the spherical RMF calculation for the N = 20
isotonic chain.

The bound isotones for this chain have proton number ranging from Z = 8 to Z = 26.
An appreciable gap between the proton single-particle states 1d5/2 and 1d3/2 are responsible
for the occurrence of proton shell closure for the proton number Z = 14. Traditional proton
shell closures at Z = 8 and 20 are seen to exist due to large energy gaps between occupied
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for the nuclei belonging to the isotonic chain with neutron number N = 20. These results have been
obtained within the spherical RMF approach. The numbers on the lines representing density proˇle

indicate the proton number Z. The inset shows the results on a logarithmic scale up to rather large

radial distances. Long dashes depict isotones which exhibit proton shell closure

and empty proton single-particle states. Another important conclusion which is drawn from
Fig. 6 is that in contrast to the case of neutron shell closure at N = 40, no proton shell closure
is seen at proton number Z = 40.

These conclusions are further supported by the results of the calculated densities for the
N = 20 isotonic chain displayed in Fig. 8. The proton densities of the N = 20 isotones
reveal that for the proton numbers Z = 8, 14 and 20 which correspond to proton shell closure
in the nuclei 28O, 34Si and 40Ca, respectively, the density distribution is rather conˇned to
smaller radial distances and diminishes quickly, as is indicated by the slope of these curves.
The densities for the isotones with sharp falloff have been represented by long dashed lines,
and for the purpose of clarity this falloff has been shown as an inset for large distances in a
logarithmic plot, as can be seen in Fig. 8.

3. SUMMARY

Inspired by the recent experiments [3Ä7] indicating doubly magic nuclei and encouraged
by the success of our relativistic mean-ˇeld (RMF) plus state-dependent BCS approach for
the description of the ground-state properties of the drip-line nuclei [27,28], we have further
employed this approach, across the entire periodic table, to explore the unusual shell closures
and doubly magic nuclei.

The Lagrangian density with nonlinear terms for the σ and ω mesons along with the TMA
force parameters [19] has been employed for the purpose. State-dependent BCS calculations
employing a delta-function interaction with the same interaction strength throughout have
been performed for the pairing correlation energy. The calculated results comprising the
systematics for the two-neutron and two-proton separation energies, single-particle energy
and the neutron and proton density distribution proˇles have been analyzed to predict the
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possible magic numbers, and to explore and examine the disappearance of traditional magic
numbers. It is found from the results for the evenÄeven nuclei covering the range 8 � Z � 82
that the appearance and disappearance of magic numbers near the drip-lines is quite a prevalent
characteristic found amongst the drip-line nuclei. We have also presented the results of two-
proton separation energy with increasing proton number and two-neutron separation energy
with increasing neutron number for different isospin values. This is found very helpful to
check the dependence of traditional shell closures on the isospin.

It has been demonstrated that the traditional neutron shell closure at N = 50 disappears
for the nucleus 70Ca (TZ = 15) lying in the vicinity of two-neutron drip-line of the Ca
isotopic chain. Similarly, neutron shell closure at N = 28 disappears for the nucleus 40Mg
(TZ = 8) lying at the two-neutron drip-line of N = 28 isotonic chain. Another important
result is emergence of new shell closures at N = 40 (for TZ = 7 to 11) and N = 14 (for
TZ = −3 to 0). Consequently, N = 40 is found to be a shell closure for the nuclei 58Ar,
60Ca, 62Ti, 64Cr and 66Fe, whereas N = 14 corresponds to shell closure for the nuclei 28Si,
30S, 32Ar and 34Ca. Similarly to the case of new neutron shell closure at N = 14, a new
proton shell closure at Z = 14 is seen for the nuclei 26−42Si (TZ = −1 to 7). Moreover,
similarly to the case of neutron shell closure at N = 50, which has been found to be
absent in the neutron-rich nuclei located in the vicinity of neutron drip-line, the proton shell
closure Z = 50 is found to disappear near the proton drip-line for the nuclei with extreme
high isospin value, for example, in nucleus 176Sn. These results are found to be consistent
with the experimental systematics [36] of two-proton and two-neutron separation energies,
S2p and S2n, respectively.
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