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DETERMINATION OF IVC BREAKPOINT
FOR JOSEPHSON JUNCTION STACK.

PERIODIC AND NONPERIODIC
(WITH γ = 0) BOUNDARY CONDITIONS

S. I. Serdyukova 1

Joint Institute for Nuclear Research, Dubna

We prove that in the case of periodic and nonperiodic (with γ = 0) boundary conditions, the
calculation of the current-voltage characteristic for a stack of n intrinsic Josephson junctions reduces to
solving a unique equation. The current-voltage characteristic V (I) has the shape of a hysteresis loop.
On the back branch of the loop, V (I) rapidly decreases to zero near the breakpoint Ib. We succeeded
to derive an equation determining the approximate breakpoint location.

„μ± § ´μ, ÎÉμ ¢ ¸²ÊÎ ¥ ¶¥·¨μ¤¨Î¥¸±¨Ì ¨ ´¥¶¥·¨μ¤¨Î¥¸±¨Ì (¸ γ = 0) £· ´¨Î´ÒÌ Ê¸²μ¢¨° ¢Ò-
Î¨¸²¥´¨¥ ¢μ²ÓÉ- ³¶¥·´μ° Ì · ±É¥·¨¸É¨±¨ ¤²Ö ¸¨¸É¥³Ò n ¢´ÊÉ·¥´´¨Ì ¤¦μ§¥Ë¸μ´μ¢¸±¨Ì ¶¥·¥Ìμ¤μ¢
¸¢μ¤¨É¸Ö ± ·¥Ï¥´¨Õ μ¤´μ£μ Ê· ¢´¥´¨Ö. ‚μ²ÓÉ- ³¶¥·´ Ö Ì · ±É¥·¨¸É¨±  V (I) ¨³¥¥É ¢¨¤ ¶¥É²¨
£¨¸É¥·¥§¨¸ . �  μ¡· É´μ° ¢¥É¢¨ ¶¥É²¨ £¨¸É¥·¥§¨¸  §´ Î¥´¨¥ V (I) ¡Ò¸É·μ ¸¶ ¤ ¥É ± ´Ê²Õ ¢ μ±·¥¸É-
´μ¸É¨ ±·¨É¨Î¥¸±μ° ÉμÎ±¨ Ib. � ³ Ê¤ ²μ¸Ó ¢Ò¢¥¸É¨ Ê· ¢´¥´¨¥, μ¶·¥¤¥²ÖÕÐ¥¥ ¶·¨¡²¨¦¥´´μ¥
§´ Î¥´¨¥ Ib.

PACS: 60.64

INTRODUCTION

A detailed investigation of the breakpoint current Ib and the breakpoint region width
gives important information concerning the occurrence of longitudinal plasma waves and
the peculiarities of stacks with a ˇnite number of intrinsic Josephson junctions [1Ä3]. The
breakpoint region in the current-voltage characteristics (IVC) follows from the solution of the
system of n dynamical equations of the phase differences for a stack of n intrinsic Josephson
junctions. In this work, we prove that in the case of periodic and nonperiodic (with γ = 0)
boundary conditions, the IVC calculation for a stack of n intrinsic Josephson junctions reduces
to solving a single equation of the form

η̈(t) = −βη̇(t) + I − sin (η(t)).

Solving this equation on the interval [0, Tmax] for different I , we get the current-voltage
characteristic V (I) as a hysteresis loop. First, the Cauchy problem with the zero initial
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conditions, η(I0, 0) = 0 and η̇(I0, 0) = 0, is solved. For each subsequent I = Ik+1, the found
η(Ik, Tmax) and η̇(Ik, Tmax) are used as initial data. On the back branch of the hysteresis
loop, V (I) rapidly decreases to zero near the breakpoint Ib [3]. Effective numerical and
analytical methods for IVC calculation were developed in [4]. We succeeded to derive an
equation determining the approximate breakpoint location Ĩb. This solves the problem of
choosing a point of going from analytical calculations to numerical ones: I = 2Ĩb. This
mixed method showed excellent results in IVC calculation for a stack of 9 intrinsic Josephson
junctions. The calculations were performed by using the REDUCE 3.8 system.

1. THE HYSTERESIS CALCULATION PROBLEM

The solution of the system

φ̈l =
n∑

l′=1

Al,l′(I − sin (φl′) − βφ̇l′ ), l = 1, . . . , n (1)

for different I (I = I0 + kΔI � Imax; I = Imax − kΔI) yields the current-voltage charac-
teristics of stacks as hysteresis loops [3]. For the initial value of the current, I = I0, the
system (1) is solved with zero initial data on the interval [0, Tmax]. For each subsequent
I (I = Ik+1), the found φl(Ik, Tmax), φ̇l(Ik, Tmax) are used as initial data.

In the case of periodic boundary conditions, the matrix A is a square matrix of order n⎛
⎜⎜⎜⎜⎜⎜⎝

A = 1 + 2α −α 0 . . . 0 −α
−α 1 + 2α −α 0 . . . 0
0 −α 1 + 2α −α 0 . . .

. . . . . . . . . . . . . . . . . .
0 . . . 0 −α 1 + 2α −α
−α 0 . . . 0 −α 1 + 2α

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2)

Henceforth, the parameter α gives the coupling between junctions, β is the dissipation para-
meter, and I is the external current normalized to the critical current Ic.

In the case of nonperiodic boundary conditions with γ = 0, the matrix A is three-diagonal,⎛
⎜⎜⎜⎜⎜⎜⎝

A = 1 + α −α 0 . . . 0 0
−α 1 + 2α −α 0 . . . 0
0 −α 1 + 2α −α 0 . . .

. . . . . . . . . . . . . . . . . .
0 . . . 0 −α 1 + 2α −α
0 0 . . . 0 −α 1 + α

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3)

In the general case of nonperiodic boundary conditions, a1,1 = an,n = 1 + α(1 + γ),
where γ = s/s0 = s/sn, with s, s0, sn denoting the thickness of the middle, ˇrst and last
superconducting layers, respectively [3]. The condition γ = 0 simulates the limiting case of
negligible thick inner layers, as compared to the two enter layers.

The dynamics of the phases φl(t) has been simulated by solving the system (1) using the
fourth-order RungeÄKutta method [5]. After simulation of the phase dynamics, the voltages
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on each junction were calculated as

∂φl

∂t
=

n∑
l′=1

Al,l′Vl′ . (4)

The average voltage V̄l across the lth junction is given by

V̄l =
1

Tmax − Tmin

Tmax∫
Tmin

Vl dt. (5)

Finally, the total voltage V of the stack is obtained by summing up these averages:

V =
n∑

l=1

V̄l. (6)

2. THE SYSTEM TRANSFORMATION

The calculation can be simpliˇed using speciˇc properties of the matrices (2) and (3).
These matrices are symmetric. They admit complete systems of orthonormal eigenvectors El,
with real eigenvalues λl [6].

The fundamental matrices D, the columns of which are El, reduce the A-matrices to
diagonal forms:

D∗AD = Λ = diag (λ1, λ2, . . . , λn).

After the change of variables

φl =
n∑

l′=1

dl,l′ψl′ and Vl =
n∑

l′=1

dl,l′Wl′ ,

we get the system

ψ̈l = −λlβψ̇l + λl · I · Sl − λl

n∑
l′=1

dl′,l sin (φl′ ), l = 1, . . . , n,

where Sl is the sum of the El elements,

Sl =
n∑

l′=1

dl′,l.

Equations (4) and (5) result in

∂ψl

∂t
= λlWl, W̄l =

ψl(Tmax) − ψl(Tmin)
λl(Tmax − Tmin)

,

respectively, while the total voltage of the stack is given by

V =
n∑

l=1

Sl · W̄l. (7)
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3. THE SPECTRAL DATA

In the case of periodic boundary conditions, the eigenvalue problem of A has the solution

λl = 1 + 2α(1 − cos (φl)), φl =
2π(l − 1)

n
, l = 1, . . . , n;

E1 =
1√
n

⎡
⎢⎢⎢⎣
1
1
...
1

⎤
⎥⎥⎥⎦, El =

√
2
n

⎡
⎢⎢⎢⎣

cos (φl)
cos (2φl)

...
cos (nφl)

⎤
⎥⎥⎥⎦, l = 2, . . . , n;

S1 =
√

n, Sl = 0, l = 2, . . . , n.

Similarly, in the case of nonperiodic boundary conditions with γ = 0, we get

λl = 1 + 2α(1 − cos (φl)), φl =
π(l − 1)

n
, l = 1, . . . , n;

E1 =
1√
n

⎡
⎢⎢⎢⎣
1
1
...
1

⎤
⎥⎥⎥⎦, El =

√
2
n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos
(

π(l − 1)
2n

)

cos
(

3π(l − 1)
2n

)
...

cos
(

π(2n − 1)(l − 1)
2n

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, l = 2, . . . , n;

S1 =
√

n, Sl = 0, l = 2, . . . , n.

Matrices of such kind have been previously noticed as well [7]. The system

ψ̈1 = −βψ̇1 +
√

n · I0 −
n∑

l′=1

dl′,1 sin (φl′ ),

ψ̈l = −λlβψ̇l − λl

n∑
l′=1

dl′,l sin (φl′ ), l = 2, . . . , n,

with zero initial conditions, has the solution ψ̄ = [ψ1
1 , 0, . . . , 0]∗, where ψ1

1 is the solution of
the equation

ψ̈1 = −βψ̇1 +
√

n · (I0 − sin (ψ1/
√

n)),

with zero initial data.
For each subsequent I, I = Ik+1, solving the system (1) reduces to solving the equation

ψ̈1 = −βψ̇1 +
√

n · (Ik+1 − sin (ψ1/
√

n)),

with initial data
ψ1(0) = ψk

1 (Tmax), ψ̇1(0) = ψ̇k
1 (Tmax).
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We notice that for any ψ̄ = [ψ1, 0, . . . , 0]∗, we have

φ̄ = Dψ̄ = ψ1[1, 1, . . . , 1]∗/
√

n,

and, hence,
n∑

l′=1

dl′,l sin (φl′ ) = Sl sin (ψ1/
√

n),

which equals
√

n sin (ψ1/
√

n), when l = 1, and zero, when l = 2, . . . , n.

4. ASYMPTOTIC FORMULAS

In both considered cases, the hysteresis calculation problem is reduced to solving the
unique equation

η̈(t) = −βη̇(t) + I − sin (η(t)), (8)

where η(t) = ψ1(t)/
√

n. Following [8], we replace the search of the solution of (8) with
initial data η(0) = d1, η̇(0) = d2, with the search of the solution of the equivalent integral
equation

η(t) = d1 +
(d2 − ω)

β
(1 − e−βt) + ωt − 1

β

t∫
0

(1 − e−β(t−s)) sin (η(s)) ds.

Using the simple iterations method

ηl+1(t) = d1 +
(d2 − ω)

β
(1 − e−βt) + ωt − 1

β

t∫
0

(1 − e−β(t−s)) sin (ηl(s)) ds, η0 = 0,

we get for large t and ω: η1 = ωt + A + O(e−βt),

η2(t) = ωt + A + θ +
sin (ωt + A + arctg (β/ω))

ω
√

β2 + ω2
+ O(ω−3 + e−βt), (9)

η3(t) =
(

ω − cos (θ)
2ω(ω2 + β2)

+
sin (θ)

2β(ω2 + β2)

)
t + A−

− cos (A + θ)
βω

− cos (2A + θ)
4βω3

− sin (θ − arctg (β/ω))

2β2ω
√

β2 + ω2
+

+
sin (ωt + A + θ + arctg (β/ω))

ω
√

β2 + ω2
+ O(ω−4 + e−βt). (10)

Here ω = I/β, A = d1 + (d2 − ω)/β, θ = − cos (A)/(ωβ).
Therefore, V (I, n) =

√
nW̄1(I) (see (7)),

W̄1(I) =
√

n
η(I, Tmax) − η(I, Tmin)

Tmax − Tmin
, and V (I, n) = n

η(I, Tmax) − η(I, Tmin)
Tmax − Tmin

.
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5. APPROXIMATE BREAKPOINT LOCATION

The approximate breakpoint location ω can be found from (10) as a solution of the
equation F (ω) = 0, where

F (ω) = ω +
sin (θ − arctg (β/ω))

2βω
√

ω2 + β2
+

sin (ωTmax + A + θ + arctg (β/ω))

ω
√

β2 + ω2(Tmax − Tmin)
−

− sin (ωTmin + A + θ + arctg (β/ω))

ω
√

β2 + ω2(Tmax − Tmin)
.

Here A = −ω/β for the vanishing initial conditions d1 = d2 = 0. The polynomial
P (x) = 4β2ω4(ω2 + β2) − 1 has the unique positive root xt = 1.35232. We ˇnd that
F (xt) = 1.447 . . . and F (1) = −1.434 . . . The approximate breakpoint location is then
calculated by using the interval bisection method, Ĩb = 0.210248 . . . Roughly speaking, the
jump to numerical calculations must be done at 2Ĩb. In our calculations, we put Tmin = 50,
Tmax = 1000, ΔI = 0.05. The step in the RungeÄKutta method was h = 0.1. All the
calculations were performed by using the REDUCE 3.8 system [9].

Figure 1 depicts the back way of the hysteresis loop. The solid and dotted lines refer
to numerical and ®asymptotic¯ using (9) calculations, respectively. In Fig. 2, the solid line
is the same as in Fig. 1, while the circles on this line refer to calculation performed by the
following mixed analytical-numerical method. The right way of the hysteresis loop and the
back way on the interval 2Ĩb < I < 1.45 are computed using the asymptotic formula (9). The
rest points of the hysteresis loop are computed numerically. Figure 3 depicts the back way of
the hysteresis loop for n = 1, 3, 5, 9, 13, and 17. More precisely, points in these graphs for
n = 3, 5, 9, 13, and 17 are nothing else, but(

Ik, n
η(Ik, Tmax) − η(Ik, Tmin)

Tmax − Tmin

)
,

where η(Ik, t) have been computed by mixing the analytical and numerical approaches.
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