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Nuclear shape transition has been actively studied in the past decade. In particular, the understanding
of this phenomenon from a microscopic point of view is of great importance. Because of this reason,
many works have been employed to investigate shape phase transition in nuclei within the relativistic
and nonrelativistic mean ˇeld models by examining potential energy curves (PECs). In this paper, by
using layered feed-forward neural networks (LFNNs), we have constructed consistent empirical physical
formulas (EPFs) for the PECs of 38−66Ti calculated by the HartreeÄFockÄBogoliubov (HFB) method
with SLy4 Skyrme forces. It has been seen that the PECs obtained by neural network method are
compatible with those of HFB calculations.

‚ ¶μ¸²¥¤´¥¥ ¢·¥³Ö  ±É¨¢´μ ¨§ÊÎ ÕÉ¸Ö Ö¤¥·´Ò¥ ¶¥·¥Ìμ¤Ò, ¸¢Ö§ ´´Ò¥ ¸ Ëμ·³μ° Ö¤· . ‚ Î ¸É´μ-
¸É¨, ¡μ²ÓÏμ° ¨´É¥·¥¸ ¢Ò§Ò¢ ¥É ¶μ´¨³ ´¨¥ ÔÉμ£μ Ë¥´μ³¥´  ¸ ³¨±·μ¸±μ¶¨Î¥¸±μ° ÉμÎ±¨ §·¥´¨Ö. �μ
ÔÉμ° ¶·¨Î¨´¥ ³´μ¦¥¸É¢μ · ¡μÉ ¶μ¸¢ÖÐ¥´μ ¨¸¸²¥¤μ¢ ´¨Õ Ö¤¥·´ÒÌ Ë §μ¢ÒÌ ¶¥·¥Ìμ¤μ¢, ¸¢Ö§ ´´ÒÌ ¸
Ëμ·³μ° Ö¤· , ¢ · ³± Ì ·¥²ÖÉ¨¢¨¸É¸±¨Ì ¨ ´¥·¥²ÖÉ¨¢¨¸É¸±¨Ì ³μ¤¥²¥° ¸·¥¤´¥£μ ¶μ²Ö ¶ÊÉ¥³ ¨§ÊÎ¥´¨Ö
Ê·μ¢´¥° ¶μÉ¥´Í¨ ²Ó´μ° Ô´¥·£¨¨ (“��). ‚ ´ ¸ÉμÖÐ¥° · ¡μÉ¥ ¸É·μÖÉ¸Ö ¶μ¸²¥¤μ¢ É¥²Ó´Ò¥ Ô³¶¨·¨-
Î¥¸±¨¥ Ë¨§¨Î¥¸±¨¥ Ëμ·³Ê²Ò ¤²Ö “�� ¨§μÉμ¶μ¢ 38−66Ti, · ¸cÎ¨É ´´Ò¥ ³¥Éμ¤μ³ • ·É·¨Ä”μ± Ä
	μ£μ²Õ¡μ¢  ¸ SLy4-¸¨² ³¨ ‘±¨·³  ¸ ¶μ³μÐÓÕ ®layered feed-forward¯ ´¥°·μ´´ÒÌ ¸¥É¥°. �μ± § ´μ,
ÎÉμ “��, ¶μ²ÊÎ¥´´Ò¥ ¸ ¨¸¶μ²Ó§μ¢ ´¨¥³ ´¥°·μ´´ÒÌ ¸¥É¥°, ¸μ¢³¥¸É¨³Ò ¸ · ¸cÎ¨É ´´Ò³¨ ³¥Éμ¤μ³
• ·É·¨Ä”μ± Ä	μ£μ²Õ¡μ¢ .

PACS: 32.10.Bi; 87.18.Sn

INTRODUCTION

The study of the structural evolution in atomic nuclei with changing numbers of their
neutron and proton constituents dates back to the early days of the nuclear physics. In the last
decade, a number of theoretical developments have given insights into, and ways to model,
this structural evolution, particularly in transitional regions of rapid change [1, 2]. These
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breakthroughs involve the concepts of quantum phase transitions (QPTs) and the critical-point
symmetries. A new class of symmetries E(5) and X(5) have been suggested to describe
shape phase transitions in atomic nuclei by Iachello [3, 4]. The E(5) critical-point symmetry
has been found to correspond to the second-order transition between U(5) and O(6), while
the X(5) critical-point symmetry has been found to correspond to the ˇrst-order transition
between U(5) and SU(3). These symmetries were experimentally identiˇed in the spectrum
of 134Ba [5] and 152Sm [6].

From theoretical point of view, QPTs have been studied within the Interacting Boson
Model (IBM) and the solutions of BohrÄMottelson differential equations. They are useful
representations for describing QPTs in nuclei. Also, phenomenological mean ˇeld mod-
els, e.g., HartreeÄFockÄBogoliubov (HFB) method [7, 8] and relativistic mean ˇeld (RMF)
model [9Ä11] have been used to investigate the critical-point nuclei with E(5) or X(5) sym-
metry in [12Ä20]. In these studies, potential energy curves (PECs) obtained from quadrupole
constrained calculations have been used for describing the possible critical-point nuclei. Rel-
atively 
at PECs are obtained for critical-point nuclei with E(5) symmetry, while in nuclei
with X(5) symmetry, PECs with a bump are obtained. It should be noted, however, that one
should go beyond a simple mean ˇeld level for a quantitative analysis of QPT in nuclei. For
this purpose, some methods have been utilized in [21Ä24]. The application of these methods
for a systematic study of QPT in nuclei is at present still very time-consuming. Therefore,
the evolution of the PECs along the isotopic or isotonic chains is important and can be used
for qualitative understanding of QPTs in nuclei.

In [19], the HFB method with SLy4 Skyrme forces has been employed to investigate
ground-state properties of evenÄeven 38−66Ti isotopes. The calculated binding energies and
deformations with the Skyrme force were obtained in good agreement with the available
experimental data. In particular, shape evolution of Ti isotopes has been investigated by
using calculated PECs to search for E(5) symmetry in Ti isotopes, together with the neutron
single-particle levels. Particularly, 46Ti has been suggested as possible critical-point nucleus
with E(5) symmetry.

Recently, neural networks have emerged with successful applications in many ˇelds, ob-
taining potential energy surfaces [25], studying nuclear mass systematics [26], investigating
nucleon separation energies [27], classifying unknown energy levels [28], estimating the
density functional theory energy [29], investigating ground-state geometries [30], mapping
potential energy surfaces [31], determination of beta decay half-lives [32], and identifying
impact parameter in heavy-ion collisions [33]. In this work, borrowing data from our pre-
vious work [19], the PECs for 38−66Ti isotopes as a function of quadrupole deformation
parameter (β2) were obtained by using layered feed-forward neural networks (LFNNs).

Due to the physical phenomena correlated with potential energy curves (PECs) of the
isotopes are characteristically highly nonlinear, it may be difˇcult to construct empirical
physical formulas (EPFs) for binding energy functions. By appropriate operations of mathe-
matical analysis, derivation of highly nonlinear physical functions for binding energies is of
utmost interest. These EPFs would be used for speciˇc purposes in analyzing PECs. We
particularly aim to construct explicit mathematical functional form of LFNNÄEPFs for PECs.
While the PECs were intrinsically nonlinear, even so training set LFNNÄEPFs successfully
ˇtted these binding energies. Furthermore, test set LFNNÄEPFs consistently predicted the
binding energies. That is, the physical laws embedded in the data were extracted by the
LFNNÄEPFs.
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The letter is organized as follows. In Sec. 1, the HFB method and numerical details are
given brie
y. In Sec. 2, details on artiˇcial neural networks are given. The results of this
study and discussions are presented in Sec. 3. Finally, conclusions are given in Sec. 4.

1. HFB FORMALISM AND NUMERICAL DETAILS

In the HFB method, many properties of the nuclei can be described in terms of a model of
independent particles which move in an average potential. In the HFB formalism, a two-body
Hamiltonian of a system of fermions can be interpreted in terms of a set of annihilation
and creation operators. The ground-state wave function is described as the quasi-particle
vacuum and the linear Bogoliubov transformation provides connection between the quasi-
particle operators and the original particle operators. The basic building blocks of the HFB
method are the density matrix and the pairing tensor, and expectation value of the HFB
Hamiltonian could be expressed as energy functional (details can be found in [8, 34]). In
terms of Skyrme forces, the HFB energy has the form of local energy density functional
which contains the sum of the mean ˇeld and pairing energy densities. These ˇelds can be
calculated in the coordinate space [8,34].

In this work, input data for construction of empirical formula of the PECs obtained from
constrained HFB calculations with SLy4 Skyrme force for Ti isotopes was taken from [19].
In this reference, HFB equations have been solved by expanding quasi-particle wave functions
on a harmonic oscillator basis expressed in coordinate space. For pairing, the LipkinÄNogami
method was implemented by performing the HFB calculations with an additional term included
in the HF Hamiltonian. Further details on choosing of oscillator bases and parameters can be
found in [19].

2. ARTIFICIAL NEURAL NETWORKS

Artiˇcial neural networks (ANNs) are known to be very powerful multivariate tools that
are used when standard techniques fail to properly take account of the correlation between
these variables. The typical goal of the ANN is to get a fast function, which models well
the output of complicated and CPU consuming data. Since trained network is very fast and
uses neither much memory nor CPU, ANN is well suited for this task. ANNs offer several
advantages, requiring less formal statistical training, ability to detect complex highly nonlinear
relationships between input and output variables, ability to detect all possible interactions
between predictor variables. Another beneˇt of the ANNs appears in case of existing dataset
with a high percentage of missing data.

ANNs are mathematical models that mimic the human brain. They consist of several
processing units called neurons which have adaptive synaptic weights [35]. ANNs are also
effective tools for pattern recognition. The LFNN which is particular kind of ANN consists
of three layers: input, hidden and output (Fig. 1). The number of hidden layers can differ, but
a single hidden layer is enough for efˇcient nonlinear function approximation [36]. In this
study, one input layer with one neuron (p = 1), one hidden layer with many (h) neurons and
one output layer with one neuron (r = 1) LFNN topology was used for accurate and reliable
prediction of the binding energies for evenÄeven 38−66Ti isotopes. Analyses were performed
for different hidden neuron numbers.
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Fig. 1. Fully connected one inputÄone
hiddenÄone output layer LFNN. xi(i =

1, . . . , p) and yi(i = 1, . . . , r) are input
and output vector components, respectively.

wi
jk is weight vector component, where i is

a layer index, jk weight component from
the jth neuron of ith layer and kth neuron

of (i + 1)th layer

The neuron in the input layer collects the data
from environment and transmits via weighted con-
nections to the neurons of hidden layer which is
needed to approximate any nonlinear function. The
hidden neuron activation function can be theoreti-
cally any well-behaved nonlinear function. In this
work, the type of activation function was chosen hy-
perbolic tangent for hidden layer. Finally, the out-
put layer neuron returns the signal after the analysis.
Note that an input layer with single neuron is ˇrmly
equivalent to one neuron LFNN with an appropriate
activation function. As far as the activation func-
tion is analytical, the output is also an analytical
function of the input.

Neural network software NeuroSolutions v6.02
was used [37]. The LFNN inputs were quadru-
pole deformation parameters (β2) for 38−66Ti iso-
topes and the desired outputs were binding ener-
gies. As mentioned before, these data for both
training and test phases were borrowed from our
previous work [19]. For all LFNN processing case,
whole data were divided into two separate sets,
75% for the training phase and 25% for the test
phase. In the training phase, LevenbergÄMarquardt
back-propagation algorithm [38, 39] was used for
the training of the LFNN. By convenient modiˇca-

tions, LFNN modiˇes its weights until an acceptable error level between predicted and desired
outputs is attained. The error function which measures the difference between outputs was
mean square error (MSE) given as

MSE =

[
r∑

k=1

N∑
i=1

(yki − fki)2
]/

N, (1)

where N is the number of training and test samples, whichever applies.
Then by using LFNN with ˇnal weights, the performance of the network is tested over an

unseen data. If the predictions of the test dataset are good enough, the LFNN is considered
to have consistently learned the functional relationship between input and output data [40].
In this study, for different h numbers, the minimum MSE values were given in Subsec. 3.2.

2.1. The Concrete Algorithm for Detector Response LFNNÄEPF Construction. Due to
the well-established fact that a single hidden layer LFNN is enough for efˇcient nonlinear
function approximation [36], in this paper single hidden layer LFNNs were used. For sim-
plicity, only the single hidden layer LFNN functionality is explained. Borrowing from [36],
for a single hidden layer LFNN, in Fig. 1, the desired output vector y is approximated by a
network multioutput vector f which is deˇned as

f : Rp → Rr : fk(x) =
h1∑

j=1

βjkG(Aj(x)), xεRp, βjkεR, AjεA
p, and k = 1, . . . , r, (2)
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where x is the LFNN input vector in Fig. 1; Ap is the set of all functions of Rp → Rr deˇned
by A(x) = w · x + b; w is input to hidden layer weight vector and b is the bias weight.
In Fig. 1, the columns of the weight matrices w1 and w2 correspond to weight vectors deˇned
in A(x) and β in Eq. (2). However, as can be seen in Fig. 1 and Eq. (2), the correspondences
w1 → A(x) and w2 → β are valid only for single hidden layer LFNN. Another point is
that, in Eq. (2), the hidden neuron activation function G : R → R can be theoretically any
well-behaved nonlinear function, proving that an LFNN is a universal nonlinear function
approximator. In applications, G is often chosen as a kind of nonlinear sigmoid function.

In this work, the type of activation function G in Eq. (2) was hyperbolic tangent (tanh =
(ex − e−x)/(ex + e−x)) for hidden layer and linear for output layer. For LFNN ˇtting of
the binding energy (output) versus input, one input layer neuron (p = 1), one output layer
neuron (r = 1) and one hidden layer of h1 = 4, 9, and 14 hidden neurons were used. The
total number of adjustable weights (p × h1 + h1 × r = h1 × (p + r) = h1 × (1 + 1) = 2h1)
was 8, 18, and 28.

2.2. Final fmin Details. In this paper, LFNN input vector x was the quadrupole deformation
parameters and desired vector y was binding energies. fmin totally depends on the structure
of the network output vector function f and the ˇnal weight vector wf . In (2), components
of the weight are embedded in A(x) and β. The f depends on the explicit forms of G and
A functions in (2). In this paper, setting β = w1 in Fig. 1, G is nonlinear tangent hyperbolic
and A is the dot product of w1 and x in Fig. 1. So, we can construct explicit form of f .
Afterwards, by minimization of MSE values of Eq. (1), we ˇnally obtain fmin = f(wf ).
Now, the concrete LFNNÄEPF construction algorithm for nonlinear PECs is completed. Final
details for fmin of this paper are given in Sec. 3.

3. RESULTS AND DISCUSSIONS

In ˇgures and text where it suitably applies, the abbreviation calc is used for the calculated
data obtained by HFB theory. As mentioned in Sec. 2, the LFNN training and test set data
used in this paper were borrowed from [19]. Note that the LFNN inputs and outputs used in
this paper were explicitly deˇned in (2). Inputs were quadrupole deformation parameters (β2)
and the corresponding outputs were binding energies of the Ti isotopes. The abbreviation
neural network output (nno) is for both training or test set results.

3.1. Training. For the PECs, the training set nno ˇttings were given in terms of quadrupole
deformation parameters (β2) versus binding energies of the Ti isotopes obtained from SLy4
Skyrme force (Fig. 2). The LFNN had a single hidden layer with h = 4, 9, 14. The number
of data points belonging to the training phase was 30, which is 75% of overall data. It can
be clearly seen in Fig. 2 that 42,50,62Ti isotopes which have shell closure with magic neutron
numbers (N = 20, N = 28) and semi-magic number (N = 40) were found to be spherical.
Also 40Ti was found to be spherical, while 38Ti has prolate shape. The PECs of 44Ti
seem relatively 
at with a small bump which means that it is a possible example of β-soft
nucleus. The PEC of 46Ti and 48Ti is 
at from β2 = −0.2 to β2 = 0.35 and β2 = −0.2 to
β2 = 0.2, respectively. In both of the PECs, the variations of the total binding energies are less
than 2 MeV through these β2 intervals, which implies that the barriers against deformation are
so weak. However, the PECs of 46Ti are much 
atter than those of 48Ti and the PECs of 48Ti
have a small bump in Fig. 2. This means that 46Ti should be an example of critical-point
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Fig. 2. HFB calculation (calc) with SLy4 Skyrme force and neural network output (nno) training set

ˇttings for PECs of different Ti isotopes
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nuclei with E(5) symmetry, while 48Ti can be thought as an example of candidate critical-
point nuclei with X(5) symmetry. In addition, 54−58Ti nuclei have 
at PECs with a very
small bump, while 52Ti and 60Ti have 
at PECs. It is possible to argue that 54−58Ti can be
an example of possible critical-point nuclei with X(5) symmetry, while 52Ti and 60Ti should
be candidate for E(5) symmetry. Further details and additional evidence for suggestion of
46Ti nucleus as an example of critical-point nuclei with E(5) symmetry can be found in [19].

Moreover, in the same ˇgures, one would also concentrate only on comparing speciˇc nno
ˇttings with its corresponding calc values. In Fig. 2, the nno ˇttings agree exceptionally well
with highly nonlinear calc values. Particularly note that, as principally aimed in this paper,
the obtainment of PECs had been successfully made by the LFNNÄEPFs.

3.2. Test Dataset Predictions: Consistency of the EPFs Constructed. Unless the training
set LFNNÄEPFs are further tested over the data, these ˇtted EPFs cannot be used consistently
over a desired range of the data. In other words, if the training sets LFNNs well predict
previously unseen test dataset, then the LFNNs are regarded to have successfully generalized
the data, proving consistent estimations. If the estimations are consistent with the test data
values, then the LFNNs can be taken as appropriate LFNNÄEPFs. The number of data points
belonging to the training phase was 10, which is 25% of overall data. For the PECs, the
corresponding test set nno predictions in Fig. 2 were given in Fig. 3. As a global criterion of
approximation quality of the predictions, the maximum absolute errors (MAE) and the MSE
values were given in table for h = 4, 9, 14. Naturally, the single hidden layer training set
LFNNs with h = 4, 9, 14 which led to Fig. 2 were also used for nno test set predictions. As
can be seen in Fig. 3, the nno predictions agree exceptionally well with highly nonlinear calc
values. This clearly shows that the test set LFNNs of the quadrupole deformation parameters
(β2) versus binding energies of the Ti isotopes have consistently generalized the training
LFNN ˇttings. Therefore, LFNNs obtained can be safely used as LFNNÄEPFs because the
physical law embedded in the β2 versus binding energies of the Ti isotopes data has been

MSE and MAE values of test set predictions for h = 4, 9, and 14

Isotope
h = 4 h = 9 h = 14

MSE MAE MSE MAE MSE MAE
38Ti 0.0091 0.20 0.0020 0.10 0.0001 0.05
40Ti 0.0260 0.44 0.0028 0.09 0.0061 0.15
42Ti 0.0260 0.34 0.0120 0.23 0.0069 0.15
44Ti 0.0040 0.11 0.0810 0.41 0.1500 0.72
46Ti 0.0072 0.13 0.0037 0.12 0.0036 0.13
48Ti 0.0093 0.17 0.0190 0.27 0.0058 0.15
50Ti 0.0171 0.26 0.0113 0.17 0.0025 0.09
52Ti 0.0151 0.19 0.0774 0.57 0.0042 0.14
54Ti 0.0170 0.23 0.0105 0.19 0.0110 0.20
56Ti 0.0195 0.29 0.0069 0.18 0.0035 0.15
58Ti 0.0470 0.51 0.0260 0.39 0.0073 0.23
60Ti 0.0164 0.23 0.0367 0.38 0.0220 0.30
62Ti 0.0685 0.53 0.1692 0.73 0.0210 0.34
64Ti 0.1330 0.70 0.0152 0.28 0.0075 0.21
66Ti 0.0489 0.44 0.0197 0.27 0.0300 0.42
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Fig. 3. HFB calculation (calc) with SLy4 Skyrme force and neural network output (nno) test set

predictions for PECs of different Ti isotopes
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successfully extracted by the LFNN constructed. Particularly note that, as principally aimed
in this paper, the PECs have been successfully made by the LFNNÄEPFs.

A caution for choosing the optimal h value: for a speciˇed physical application, a speciˇc
number of h of LFNNÄEPF must be chosen so that the physicist-users can appropriately use
the ˇnal LFNNÄEPF. However, in our paper, for a given potential energy curve, the LFNNÄ
EPF estimation has been done by various values of h (h = 4, 9, 14). Still, as explained in detail
in [40], there is actually no optimal h for a speciˇc problem. However, as a general rule, as
the number of input-output data increases, the number h must be appropriately increased. But,
again there is no well-deˇned h number for the given physical problem which is under study
by the LFNNÄEPF. In this paper, we have simply chosen relatively low (h = 4), medium-size
(h = 9) and relatively high (h = 14) h numbers to make consistent LFNN estimations of the
EPFs. As can be seen from Figs. 2, 3 and table, as the number of h increases, the estimations
get generally better. However, the estimation improvements with increasing h are rather
limited. Therefore, any of h values can be chosen for the ˇnal LFNNÄEPF, depending on
the accuracy level with which the physicist-users are satisˇed. But to be more decisive in
this issue, we may recommend that the physicist-users should prefer the consistent estimation
with the highest h value (h = 14) for the sake of improved consistency.

4. CONCLUSIONS AND POTENTIAL APPLICATIONS

In this paper, based on inputs of the PECs obtained from constrained HFB calculations with
SLy4 Skyrme force for 38−66Ti isotopes, we generated PECs distributions by using artiˇcial
neural networks. The PECs of nuclei can provide knowledge for qualitative understanding
of QPTs in nuclei. These distributions can help determination of the nuclear shapes. It is
clearly seen that the neural network method, which can be applied very fast, was consistent
with the calculated results. The advantage of the ANN method is that it does not need
any relationship between input and output data. For highly nonlinear binding energies for
quadrupole deformation parameters (β2), we have novelly constructed consistent empirical
physical formula (EPFs) by appropriate LFNNs. The test set LFNNs of the quadrupole
deformation parameters (β2) versus binding energies of the Ti isotopes have generalized the
training LFNN ˇttings. Therefore, the test set LFNNs can be conˇdently used as LFNNÄEPFs.
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