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ON THE SHAPE DEPENDENCE
OF THE TANGENTIAL CASIMIR FORCE

Yu. S. Voronina 1, P. K. Silaev
Physics Department, Moscow State University, Moscow

The normal and tangential Casimir force for the rack gear is calculated numerically in the case of
ideal boundary conditions for the electromagnetic ˇeld Å perfect re	ection on the boundaries. The re-
sulting tangential force appears to be essentially shape-dependent. Relatively small shape variations lead
to the essential changes in tangential force, whereas normal force remains almost unchanged.
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INTRODUCTION

During the last two decades a large number of studies, both theoretical and experimental,
deal with the Casimir effect [1]. The growing interest in this problem is motivated by
experimental results [2Ä5] that provide relatively precise conˇrmation of QFT predictions
which lies out of the bounds of particle physics. On the other hand, the Casimir effect leads
to the possibility of friction-free nanomechanical devices. Recent studies have aimed to ˇnd
conˇguration with the repulsive Casimir force without dielectric 	uid. So the Casimir force
was calculated for different geometry conˇgurations, especially for the conˇgurations with
repulsive and tangential forces. Some conˇgurations are smooth (sphere, cylinder, parabolic
cylinder, plate [6Ä8]), whereas some conˇgurations are sharp (wedge, cone, knife, needle [8Ä
11]) or simply rectangle (	at metallic surfaces with π/2 angles between them).

It is well known that in classical electrodynamics the precise shape of bodies (sharp edges,
needles, etc.) has a signiˇcant in	uence on the corresponding electromagnetic solutions. So
the question arises as to whether the small changes of shape can change the results for the
Casimir force? From [11] one can conclude that it is quite possible. For instance, even
for a cone with ˇnite angle we observe additional singularity, caused by the vertex of the
cone. It should be stressed that in [8] the case of sharp knife edge is considered as a limiting
case of parabolic cylinder, with the smooth dependence on the parameter of parabolic curve.
Our approach is quite different: we preserve the ®global¯ shape properties, and change the
geometry only in the nearest vicinity of the edges.
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Fig. 1. System parameters and shape of edges:
a Å period, h Å depth of proˇle, s Å shift,

b Å width of the gap. Dotted line W denotes the
surface in the gap between proˇled plates. Case

A Å 	at edge; case B Å smooth edge

Let us consider the rack gear (see Fig. 1
for geometry details). We have two proˇled
plates, parallel to y axis; the period of proˇles
is a; the distance between plates is b, and the
relative shift of plates is s. This geometry is
translational invariant along z axis (z axis is
orthogonal to picture plane). For simplicity
we consider the ideal case: the material of
plates is perfect metal (perfect boundary re-
	ection), without any realistic frequency de-
pendence. We will also ignore the temper-
ature dependence. So we consider the fol-
lowing question: what happens if we change
all π/2 angles of this rectangular geometry
by the edges? We will investigate two cases:
case A Å 	at edge, where the π/2 angle is
replaced by two 3π/4 angles, and case B Å
smooth edge, where the π/2 angle is replaced
by cylinder of appropriate radius (see Fig. 1).

From the standard explanation of the tan-
gential Casimir force for this geometry, one
can conclude that there should not be any de-
pendence on the edge shape. Indeed, for ˇxed
gap width b in the case of zero shift (s = 0) the average distance between our bodies (plates)
is less than in the case of half-period shift (s = a/2). So we should obtain the tangential
force that cannot depend on the shape details. However, this conclusion is correct only if we
can neglect side effects at the edges of proˇle wells, but for the system considered the side
effects are signiˇcant (see Sec. 1). Side effects can essentially depend on the shape details, so
it is possible to observe shape dependence of the tangential Casimir force for our geometry.

1. CALCULATION METHOD

One of the most efˇcient ways to estimate a force between two isolated bodies is to
calculate energy-momentum tensor for the vacuum state on the surface W enclosing one of
the bodies:

Fi =
∮
W

〈0|Tij|0〉 dSj .

Vacuum expectation value of the energy-momentum tensor can be expressed in terms of
Euclidean Green function via integral over pure imaginary frequency ω(μ) = iμ. Originally,
such an approach was suggested in [12] for evaluation of Van der Waals forces between two
bodies. Recently this method has been advanced for numerical calculation of the Casimir
force [13,14]. It is interesting to note that the selection of the integration contour ω(μ) = iμ
is not unique. The employment of different variant of the frequency contour was considered
in [14]. Here the problem is formulated at real ®frequency¯ μ and effective complex dielectric
permittivity.
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For the problem in question, the surface W separating two plates can be chosen as y − z
plane (see Fig. 1). After integration on y

Fn =

y0+a∫
y0

〈0|T11|0〉 dy, Fτ =

y0+a∫
y0

〈0|T12|0〉 dy (1)

for arbitrary y0 we obtain the normal and tangential force, corresponding to one period a in
y-direction and unit length in z-direction. Then we divide these values (for one period) by
the period length, and so we get the ®density¯ of both forces.

For further computation the Euclidean Green function Gij(μ, u, v) should be constructed,
which is transversal:

∂uiGij(μ,u,v) = 0, ∂vj Gij(μ,u,v) = 0; (2)

it also satisˇes boundary conditions

τiGij(μ, s,v) = 0 = τjGij(μ,u, s), (3)

where τ is tangent vector to the boundary surface at a point s, and, ˇnally, there should be
solution to the equation

�Gij(μ,u,v) − μ2Gij(μ,u,v) = δij(u − v), (4)

where

δij(u − v) =

∞∫
−∞

dk
(

δij −
kikj

k2

)
eik(u−v)

(2π)3

is transversal delta function. One can easily verify that

〈0|Ai(u)Aj(v)|0〉 = − 1
π

∞∫
0

dμ Gij(μ,u,v). (5)

The energy-momentum tensor is constructed of the derivatives of the left-hand side on uα

and vβ for v = u, so we can estimate the force, provided we solve equations for the
Euclidean Green function. Now we should take into account the translational invariance on z.
We perform Fourier transformation along z axis.

Deˇnitely, one can also construct the series along y axis, because our geometry is periodic
in y-direction, but the straightforward solution of the two-dimensional equation appears to be
more simple and effective. After Fourier transformation along z axis we get

Gij(μ,u,v) =
1
2π

∫
dq exp (iq(u3 − v3))Gij(q, μ,u2,v2), (6)

where u2 and v2 are two-dimensional vectors, constructed from the ˇrst two components of u
and v, respectively. Finally, for the arbitrary term in the expression of energy-momentum
tensor for vacuum state we obtain

〈0|∂uαAi(u)∂vβ
Aj(v)|0〉|u=v = − 1

2π2

∫
dq ∂uα∂vβ

∞∫
0

dμ Gij(q, μ,u2,v2)|u2=v2 . (7)



On the Shape Dependence of the Tangential Casimir Force 877

Here ∂u3 ≡ iq and ∂v3 ≡ −iq. For distant bodies, renormalization of this expression is
trivial Å subtraction of the Green function G0

ij(q, μ,u2,v2) for Minkowski space yields a
ˇnite expression.

Therefore, the renormalized vacuum expectation values (5), (7) are expressed through
the difference Gren

ij (q, μ,u2,v2) = Gij(q, μ,u2,v2)−G0
ij(q, μ,u2,v2), which is the solution

of the homogeneous Helmholtz equation with the boundary condition τjG
ren
ij (q, μ,u2, s2) =

−τjG
0
ij(q, μ,u2, s2), where s2 lies on the plate surface. One of the most effective approaches

to solving the problem for Gren
ij (q, μ,u2,v2) is the boundary-element method (BEM) [15Ä17].

In the present work we apply a slightly modiˇed BEM: instead of the standard spline approach
for the given boundary element we use polynomial approximation, based on surrounding ele-
ments. It is similar, but not precisely equal to spline. Additionally, we impose more conditions
than the number of elements and just minimize a discrepancy in the resulting overdetermined
linear system. Both modiˇcations increase precision for the given number of elements.

To estimate errors of this computation scheme, we perform calculations for the trivial
case h = 0, with well-known explicit analytical result. In further calculations we use the
number of points per unit length of the boundary that in this trivial case yields relative error
about 10−4. We also estimate error for our nontrivial boundary by increasing points density
and subsequent comparison of results. It appears that the nontrivial boundary form increases
relative error up to 10−3.

2. RESULTS AND DISCUSSION

We use the natural system of units � = c = 1 and choose the geometry parameters a = 2,
h = 0.5, b = 1. This choice provides us with comparable order of magnitude for the tangential
and normal force density. For the trivial case h = 0, the density of the normal force will be
equal to π2/240 = 0.0411, and this value will be used as a reference point. For plates with
proˇle A, the edge lengh is

√
2L =

√
2 · 0.08 and in case B the radius of the corresponding

cylinder is R = 0.08.
From Fig. 2 one can easily ˇnd that the value of the normal force density fn (it should

be stressed that here ®density¯ means the value calculated for one period, divided by the
length of period) for zero shift s = 0 (fn = 0.0124) essentially differs from the half of our
reference value (0.0411/2 = 0.0205). So side effects are signiˇcant. At the same time, the
shape effects for zero shift can be neglected, because they are even smaller than the trivial
estimation of these effects calculated with the proximity force approximation (PFA). Let us
notice that we do not use the PFA directly because of its low accuracy. Instead, we multiply
the normal force density for plates with edge calculated with the PFA by the normalization
constant deˇned as the ratio of forces for rectangular geometry N = fn/fPFA

n , where fPFA
n =

π2

480a

(
1
b4

+
1

(b + 2h)4

)
and the value fn was calculated with the use of the method described

in the previous section. For both the 	at and the smooth edge we get approximately fn =
0.0121, whereas PFA estimation yields NfPFA

n ≈ 0.0119 in case A, where

fPFA
n =

π2

720a

(
1

(b + 2h − 2L)3
− 1

(b + 2h)3
+

+3
a/2 − 2L

b4

(
1 +

b4

(b + 2h)4

)
+

2L

b2(b + 2L)2

(
4

(b + L)2

b(b + 2L)
− 1

))
,
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Fig. 2. Density of the normal force as a function of shift s. Solid line Å rectangle case; dashed line Å

	at edge; dotted line Å smooth edge

and NfPFA
n ≈ 0.0122 in case B, where

fPFA
n =

π2

240a

⎛
⎝(a/2 − 2R)

b4
+ 2

R∫
0

dy

(b + 2(R −
√

R2 − (R − y)2))4
+

+
(a/2 − 2R)
(b + 2h)4

+ 2

R∫
0

dy

(b + 2h − 2(R −
√

R2 − (R − y)2))4

⎞
⎠.

For the half-period shift s = 1, we obtain almost identical behavior. Side effects are
signiˇcant, whereas shape effects are relatively small. The difference between the 	at edge
on the one side, and the smooth edge and rectangle case on the other side can be ex-
plained, if we take into account that the average distance between the bodies is deˇnitely
greater for the 	at edge (in the case of half-period shift). So we can conclude that for
the normal force the shape effects can be neglected, the change in force density appears
to be about 2Ä3%.

On the contrary, for the density of the tangential force we obtain essential shape depen-
dence (see Fig. 3). Even the absolute value of the difference of tangential forces among the
rectangle case, 	at edge case and smooth edge case is much greater than for the normal force.
Let us remind that for the 	at edge we just change one π/2 angle to two 3π/4 angles, whereas
for the smooth edge we have no angles at all. So the dependence on the shape of edge seems
to be quite reasonable.

It should be noted that the different dependence on the edge shape for the normal and
tangential force is quite reconcilable with energy reasons. Different energy functions for
different shapes can have almost identical derivatives on the variable x (normal force), and
quite different derivatives on the variable y (tangential force). Even for the normal force we
observe different dependence on the shift s for different edge shapes (see Fig. 2).
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Fig. 3. Density of the tangential force as a function of shift s. Solid line Å rectangle case; dashed
line Å 	at edge; dotted line Å smooth edge

For both the normal and the tangential force we obtain the regular dependence on the edge
size. For example, in the case of 	at edge and shift s = 0.6 we get

Edge size 0 0.04 0.08 0.12
Density of tangential force 0.00178 0.00153 0.00129 0.00110

For other values of the shift s we observe the same type of dependence. And for the case
of smooth edge we also obtain this regular dependence.

CONCLUSION

Direct numerical computations lead us to the conclusion that (at least for the geometry
considered) there is an essential dependence of the Casimir force on the details of geometry.
If we change rectangle structures by the structure with edges (	at or smooth), it leads to
essential variation of the tangential force. It should be noted that variation of the force value
is not proportional to the relative size of edges: the maximum edge size we used was 0.14 Å
about 15% of typical length in our geometry, whereas the tangential force for smooth edge
appears to be 8 times smaller than in rectangular case.

The result observed is deˇnitely pure side effect, but sometimes side effects play a
signiˇcant role. It should also be mentioned that we consider the case of perfect metallic
surface (perfect mirror). The in	uence of realistic frequency dependence on the shape effects
is not obvious. Probably, it can mask all these effects, but this can be speciˇed only by the
direct calculations. As for temperature dependence, from [11] we can conclude that nonzero
temperature can only amplify the effect observed, because for 	at surface and sharp edges
the temperature dependence appears to be quite different.
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