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The formulae for m-order correlators K, of a given particle observable (e.g., energy, transverse
momentum or a conserved discrete quantum number) accounting for the track reconstruction efficiencies
in a real detector are presented. The calculation of second- to fourth-order correlators is considered in
some detail. Similar to the case of an ideal detector, the correlators can be expressed through the event-
by-event fluctuation measures of the observable single event mean, the pseudocorrelators (determined by
the pseudocentral moments of the observable distribution) and their cross terms. It allows one to avoid
the combinatorics and essentially reduce the computer time when calculating the higher-order correlators
in high multiplicity events. Compared with the case of ideal detector, this reduction is somewhat smaller
due to the increased number of pseudocorrelators and additional calculations of the moments of the
distribution of the track weights. For a constant track reconstruction efficiency, the correlator formulae
reduce to those for an ideal detector. However, in real experiments the efficiencies are usually essentially
dependent on particle momenta and may lead to substantial corrections of momentum correlators on the
level of tens of percent.

Ipencr BreHsl GopMyIBl IS KOPPEIATOPOB mM-TO MOpsaK K, H OMIOL eMBIX Wi Y CTHL BEJH-
yuH (T KX K K ®HEPrus, IONEepeyHblii UMIYIbC MM COXp HSIOLIMEeCs AUCKPETHbIe KB HTOBBIE YHCIH )
¢ yueToM 3(PpeKTHBHOCTH PEKOHCTPYKUNH TPeKoB. IIprBeneHB! HEKOTOpBIE IMOAPOOHOCTH BBHIYHCICHUIMA
KOpPEeIATOpPOB OT BTOPOTrO A0 4eTBepToro mopsak . ITogo6HO ciyd 10 Mae JBHOTO AETEKTOp Koppe-
JIITOPBI MOTYT OBITh BBIP XEHBI Yepe3 MOCOOBITHHHBIE X p KTEPHCTHKH (DIYKTY IIMM CPEIHEro 3H 4e-
HUS H OI0[ eMOil BeJTMYMHBI, IICEBIOKOPPETITOPH! (00YCIOBIEHHBIE NICEBIOLEHTP JTbHBIMA MOMEHT MU
p crpeneneHus H OO eMOH BEIWYMHBI) M MX IEPeKpecTHbIe WIEHbl. DTO MO3BOJNAET U30eX Th KOM-
OUH TOPUKHU M CYIIECTBEHHO yMEHBIINTh BPEMsl BBIYHMCICHUI KOPPEIATOpPOB OoJiee BHICOKHX IMOPSIKOB.
OnH KO B Cp BHEHHH C HJie JIbHBIM CIIyd €M 9TO YMEHbLIEHHe MeHee 3H YUTENIHO 13-3 OOJIbIIEro Yuci
IICEBIIOKOPPENIITOPOB U JOIOJHUTENbHBIX BbIYMCIEHUH MOMEHTOB p clpejeieHuil BecoB. IIpu mocro-
STHHOH 9(p(heKTHBHOCTH DPEKOHCTPYKIMH TPEKOB (hOPMYJIbl M KOPPEISTOpOB CBOmATCS K (hopMyn M,
HOJTy4EeHHBIM JUId Ujie JIbHOTO JeTeKTop . ONH KO B pe JIbHBIX ®KCIEepUMEHT X 3(pheKTUBHOCTb PEKOH-
CTPYKLIUH TPEKOB MOXKET CYLIECTBEHHO 3 BHCETh OT M3yd eMOW H ONfox eMOil BeJIMYMHBI U MPUBOIUTH K
3H YHUTENIbHBIM IIONP BK M K MMILYJIbCHBIM KOPPEJIITOP M H ypOBHE JECSITKOB IIPOLIEHTOB.
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916 Gusev A. A. et al.

INTRODUCTION

The investigation of correlations is very important for hadron physics [1-4]. The inte-
gral correlation characteristics — the correlators of particle energies, transverse momenta or
rapidities — have been suggested [5,6] to study the production mechanism of very high multi-
plicity events. It was shown [7] that the correlators are closely related with the event-by-event
fluctuations of the event mean particle observables.

It should be noted that the higher-order fluctuation measures or the higher, non-Gaussian,
moments of the event-by-event distribution of the observable mean (related with skewness
and kurtosis for the orders m = 3 and 4, respectively) are more sensitive signatures of the
critical phenomena in multiparticle production (e.g., in the case of particle freeze-out near the
critical endpoint) since they increase as powers £°/273 of the correlation length & [4].

In the case of an ideal 100% efficient detector, a fast and simple procedure to calculate the
correlators with the help of the fluctuation measures and so-called event-wise pseudocorrelators
has been suggested [7], exploiting the expressions of pseudocorrelators through the central
moments of the observable distribution [8]. Using the PYTHIA generator, the multiplicity
dependence of second- and third-order pseudocorrelators and their ratio have been studied
in [9]. The correction terms generated in the correlator analysis due to the multiplicity-
dependent observable mean have been investigated in [10]. The two-particle transverse
momentum correlators have been used as a correlation measure and studied as a function of
event centrality in Au+ Au collisions at RHIC [11]. Both the analyses in [10] and [11] are
valid on the assumption of a constant detector efficiency.

In this paper, we formulate a fast decomposition procedure to calculate the correla-
tors, avoiding the combinatorics in the case of observable-dependent track reconstruction
efficiencies.

1. PARTICLE CORRELATORS IN THE CASE OF IDEAL DETECTOR

In the case of an ideal detector, the mth order correlator in the events with a given charged
hadron multiplicity n is defined as

nf(M71) n
1
Km<”>=<@ )OS Ae£i>---Ae§fi>, (M)

i1=1 b =tm—1+1
M _ .0
Ag;l =¢;) — (e). 2)
n! . o L
Here C], = ———— is the normalization factor equal to the number of combinations;

m!(n —m)!
65? is the observable (e.g., energy, momentum, strangeness, electric or baryon charge) of the
ixth charged hadron (i; < ... < i,,) in the /th event; n is the charged hadron multiplicity in

an event. The observable mean

(e) = 1), (3)
where () is the observable average in the Ith event:
L5~ 0
=) _ = _l 4
g - ZE% , “4)

i=1
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and

(s 2
=1

stands for the averaging over the N(n) events with the charged hadron multiplicity n. Note
that the correlator formula (1), when formally applied to one particle, yields Ki(n) = 0
according to definition of the observable means in (3) and (4).
Defining
Az =20 — (e), (6)
AFD =D 20 @)
K]

i

and using the equality Aagl) = A?:{il) + A", one can decompose the correlator on the
event-by-event fluctuations of the event mean observable AE(Z), event-wise pseudocorrelators

k‘f\l)(n) and the corresponding cross terms [7]:

Kp(n) = < Z C;"’Ag(l)m_)‘k‘f\l)(n)>, (8)

A=0
where k(()l) = 1. The event-wise pseudocorrelators are defined similarly to (1) up to the
substitution Ael(-l) — Aéf.l):

1 n—(m—1) n
l l
EOn) =z D0 e > AR-AF) ©)
moog=1 i =tm—1+1

Similar to the correlator, the first-order pseudocorrelator also vanishes by definition: kil) =0.
It is remarkable that one can avoid the combinatorics in (9), expressing the pseudocorrelators
through the central moments of the observable distribution [7, 8] (see also Sec. 3).

2. ACCOUNTING FOR TRACK RECONSTRUCTION EFFICIENCIES

In the case of a nonideal detector, one has to account for the track reconstruction efficien-
cies with the help of the weighting function

1
o _ 1
O

%

w (10)

0
T l)
transverse momentum pr associated with ith track in /th event, and fi( is a function correcting
for fake tracks, secondary and out of kinematic region particles.

The efficiency corrected average observable in the [th event is

where w, "’ is the track reconstruction efficiency depending on particle pseudorapidity n and

=) _ i=1 _ (11)
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For the efficiency corrected m-particle correlator, we have

n—(m—1)

n
421 S +1w§f’~~w§f3Ae§?~'A€§Q
1= Tm=tm—1
Km<n>=< ST > 12
S $ w§f>...w§l>
=1 b =im—1+1 "

The decomposition similar to (8) now takes the form
Kp(n) = <Z oAz ’”Akgl””’)(n)> , (13)
A=0

where k;(()l’m) = 1. Note that now the pseudocorrelators kf\l’m) depend also on the correlator
order m:

n—(m—1) n
42_1 o _Z 1“’2) wz(,ln)Agﬁ)Agﬁ)
kg\hm) (n) _ _a= n_(mzjl—)zm_l-Q- | .
. S i w(l)'”w(z)
i1=1 i =fm—1+1 “ bm

Obviously, such a pseudocorrelator coincides with the true one for A = m only: kT(,l,,’m) = kg\l).

Again, K} = kil) = 0 by definition. Note, however, that the pseudocorrelators kil’m) do not
vanish for m > 1.
Particularly, the second-order correlator can be decomposed as

Ko(n) = (Az02 + 2A0 D) (n) + k82 (). (15)

Here the first term <AE(Z)2> is a quadratic measure of the fluctuation of the observable event-

wise mean around the sample mean. The second term is a cross term which vanishes in the
O]

ideal case of unit reconstruction weights w;’ since the first-order event-wise pseudocorrelator

for ideal detector kgl) vanishes by definition.
Similarly, the three-particle correlator is decomposed into four terms:

Ks(n) = (A3 4 3AFO259) () + 3AEO D) (n) + B8P (n). (16)

Here the first term (AZ()3) is a cubic measure of the fluctuation of the observable event-wise
mean around the sample mean. The second and third terms are cross terms, the first of
them vanishing in the case of an ideal detector due to vanishing of the first-order event-wise

pseudocorrelator k:y).

3. CALCULATING EVENT-WISE PSEUDOCORRELATORS THROUGH
PSEUDOCENTRAL MOMENTS OF OBSERVABLE DISTRIBUTION

We will describe in some detail the calculation of the event-wise second- and third-order
pseudocorrelators with the help of pseudocentral moments of the observable distribution.
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In the case of an ideal detector, one may use the identity

Az — (17)

n
7
=1

(2

and its powers to express the event-wise pseudocorrelators kﬁf} (n) through the central moments
S/(\l), A < m, of the single-particle observable distribution,

1 1< DA
S§>(n)=EZAE§> . (18)
=1
Thus, for the second- and third-order pseudocorrelator, we have [7, 8]:
1
By (n) = —— 5y, (19)
kY (n) = —————8{. (20)

Using the identity
H. l l l
o> w el =3 wl (Yl fiy - w | @n
i=1 j=1,%i i=1 j=1

where f;; are arbitrary functions. After generalizing identity (17) and its second power for
the case of a nonideal detector:

n
S wlas! =0, (22)
i=1
n n n
ST Aag? +37 3T wlwlAs A = o, (23)
i=1 i=1 j=1,#i
and substituting the sums over the ordered m-plets {i; < ... < i,,} in the pseudocorrelator

definitions by the sums over the m-plets {iy # ... # i,,}, one gets for the first- and second-
order pseudocorrelators contributing to the second-order correlator:

n
w0z
kP (n) = — =L : (24)
1 ( ) n nw(l)Q _ w(z)z)
5 wlgz)zAg{iz)z
i=1

k2 (n) = kP (n) = - —, 25
> (n) = ky'(n) 2 ) (25)

where
n

— 1
W = ~ S w (26)

i=1
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Formula (25) shows that the pseudocorrelator kél) is negatively defined and does not explicitly
depend on correlations of the observables of different particles.
Note that it can be rewritten as

—() S/(l72)
k() = —— @7)
w2 — (02
where Sé(l’z) is the event-wise second pseudocentral moment:
n w2 A2
. (2 7
Ay ==L (28)
3 w®
i=1

We use the prefix «pseudo» because of the quadratic weights in (28) for S;(M) contrary to
the linear weights in the true efficiency corrected Ath central moment:

w A

n

SV (n) = =2 (29)

Generally, the A-order pseudocorrelators contributing to m-order correlator (A < m) can be
expressed through the Ath pseudocentral moments calculated with the powers p < m of the
weights:

n
wz(l)p,Ag{il))\
S;(l’“) (n) = i=1

(30)

Of course, S;(l’“ ) = 5 in case of an ideal detector.
Thus, the first-order pseudocorrelator in (24) can be rewritten as

_(l)S/(l,Q)

w

kP (n) = - — e 31)
w2 — (12

As for the pseudocorrelators contributing to the the third-order correlator, using in addition
the identity valid for arbitrary functions f;;:

T3 T el = 3w
i=1 j=1,7i k=1, i=1
X lz wy) <Z w](cl)fijk - wgl)fiji - w§-l)fijj> -
j=1 k=1

- wfl) <Z w}il)fiik* - 2w§l)fm'>] (32)

k=1
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and the third power of identity (22):

En:(w(”A““) +3Z Z w® AED W0 D)2

i=1 i=1 j=1,7#1¢
+3 Y Y el el asV ARV Az =0, (33)
i=1 j=1,%i k=1,%i,j

one gets

3w ® - wf) Az

kP (n) = —2—=1 34
1 n(n2wh?3 — 3nwWw®2 +2w(l)3) G

> (nw® — 20 ") Az

B = ——, 35
2 (1) n(n2w®3 — 3nwWw®? + 2D3) 39)

3 w3 Az
3 ) = 10 () = 2 i=1 . 36
3 (n) = kg’ (n) (n2008 _ 3nm O w02 4 2005) 30

Obviously, the pseudocorrelators in Eqgs. (34), (35) and (36) can be expressed through the
pseudocentral moments of the observable distribution as

— — 1(1,2) 1(1,3)
k(l,?’) (n) = _9 w(l) (nw(l)sl — Sl )— (37)
! n2w 03 — 3nmDw®2 4 203’

k(l’?’) (n) _ w(l)(nw(l)‘s‘;(l:Q) _ 23;(113)) 38)
? n2w M3 — 3w w®2 + 2®3’

_(l)S/ 1,3)

=2 39
203 — 3pmW w2 4 23 %)

The generalization of the expressions for the efficiency corrected pseudocorrelators kg\l’m) (n)
for m > 3 is straightforward. To perform the corresponding rather lengthy analytical calcu-
lations, we have written a Maple [12] code, which is available under the request. Here we
present only the results for m = 4:

RGO 3w (n? @(1)25’(1’2) — nw(l)QS’(l’Q) — 2n@(l)5'§l’3) +2 S/EIA))
) = _

1 —, (40)
3wt — 62O w02 4+ 35 w02 +8nw(l)w(l)3—6w(l)4

2 —
k(lA) B wu)(4nw(z)slél,B)an(Z)S/(llﬂ) nw(l)QS’(Ql’Q) _n? w(l)QS’(Ql’Q) _ 63’(21’4)) “n
2 - )

n3 w(l)4 — 6n2 w(l)Qw(z)z + 3nw(l)22 + 8nwDw®3 — 64




922 Gusev A. A. et al.

o 2nwh s + 3pwh g(h2) grlhd) _ g grld)y

(14) _
ks = 1 —— — — : (42)
n3w®” — 6n2wW w02 4+ 3nw®2” 4+ 8nwHw®3 — 6wb4
_ _ 1,2)2 1,4
kY = 3O (nw05y ™ —25%57) L @)

3T0* — 6n2m0 002 4 30 w02 + 8n w0 WDB — 6 w03

It should be noted that all the formulae used to calculate correlators of a given observ-
able ¢ reduce to those for an ideal detector in the case of e-independent track reconstruction
efficiencies.

4. CALCULATING CORRELATORS FOR MONTE-CARLO EVENTS

To estimate the computing time of the correlator calculations as well as the corrections
of momentum correlators due to realistic momentum dependence of the track reconstruction
efficiency, we have used the Monte-Carlo generator PYTHIA [13] to simulate events of pp
interactions at 7 TeV with charged hadron multiplicity n > 5. The reconstructed tracks
have been simulated with the help of the rejection method [14] assuming a similar pp- and
n-dependence of the track reconstruction efficiency as in the ATLAS experiment [15]: it
depends only weakly on 71 and rapidly increases with py from ~ 10% at pr = 0.1 GeV/c and
achieves a level of ~ 80% at pr = 0.8 GeV/e. Such a dependence is typical for high-energy
multiparticle production experiments [16—19].

To estimate the acceleration of the correlator calculations, when substituting the direct for-
mula (12) by the decomposition formula (13), we have used the Processor AMD Phenom(tm)
IT X6 1100T with CPU 3.3 GHz. We have found that the computation time of the correlator
K,, according to (12) behaves in accordance with the corresponding combinatorics:

m
n

Tm(n,N)=1.9

- N(n) [ps], (44)
while the computation time according to the decomposition formula (13) is strongly reduced
and depends on the multiplicity only linearly:

T! (n,N) = {0.5 [m+ %m(m+ 1)] n+300}N(n) [ps]. (45)

The m-dependence in square brackets corresponds to the calculation of m averages w,
w2,...,w™ and 14+2+...4+m terms €, 51(2), Sé(z), o Si(m), S;(m), ., S%™) This reduc-
tion is somewhat smaller than in the case of a constant track reconstruction efficiency, when
the square bracket in (45) reduces to [m + 1] in correspondence with the calculation of m + 1
terms €,.51,S52,...,5m.

The reduction of the computation time is not critical for moderate multiplicities and not
too high orders of the correlators. Thus, for the multiplicity » = 100, the computation
time according to the direct formula (12) is reasonable even for the fifth-order correlator and
for N = 10° events it composes about 160 s. The decomposition formula (13) becomes of
principle importance for calculation of higher-order correlators in central heavy-ion collisions
at high energies. Thus, for a typical charged hadron multiplicity n = 1000 the computation
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time of the fifth-order correlator in N = 10° events comprises half a year according to the
direct formula (12), compared with 10 ms when using the decomposition formula (13).

As for the corrections of the momentum correlators K, or the fluctuation measures (A€™)
due to a typical momentum-dependent track reconstruction efficiency, for m < 4 they amount
up to several tens of percent.

We have not considered here the corrections due to possible multiplicity dependence of
the observable mean which may be on the level of several tens of percent [10].

CONCLUSIONS

The formulae for the m-order correlators K, of a given particle observable ¢ (e.g., energy,
transverse momentum, rapidity or a conserved discrete quantum number) accounting for the
track reconstruction efficiencies are presented with some calculation details for m = 2,3, 4.
Similar to the case of an ideal detector, one can reduce the computation time by avoiding the
combinatorics and expressing the correlators through the event-by-event fluctuation measures
of the observable single event mean, the pseudocorrelators (determined by the pseudocentral
moments of the observable distribution) and their cross terms. The number of the terms
to be calculated is however higher due to increased number of pseudocorrelators and addi-
tional calculations of the moments of the distribution of the track weights. The correlators
are affected by detector inefficiency in the case of substantial e-dependence of track recon-
struction efficiencies. The reduction of the correlator computation time with the help of the
decomposition formula as well as the corrections of momentum correlators due to a typical
momentum-dependent track reconstruction efficiency have been estimated with the help of
Monte-Carlo events of pp collisions at 7 TeV for particles with pr > 0.1 GeV/c. It was
found that the reduction of the computation time is of principle importance for calculation of
the higher-order (m > 4) correlators in the events with charged hadron multiplicities of the
order of several hundreds or higher. The estimated corrections of the momentum correlators
K,, or the fluctuation measures (A€™) for m < 4 are up to several tens of percent and should
be taken into account.
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