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SEMICLASSICAL APPROXIMATION OF THE
DIRAC EQUATION WITH SUPERSYMMETRY

A. A. Shishmarev', M. A. Markova?, Yu. A. Markov >
Institute for System Dynamics and Control Theory, SB RAS, Irkutsk, Russia

The general scheme of the successive construction of semiclassical approximation for the classical
Dirac equation in a background Yang—Mills field, where the usual Dirac operator is replaced by that
with supersymmetry, is suggested. The first two terms of the semiclassical expansion in Planck’s
constant are derived in an explicit form. It is shown that supersymmetry of the initial Dirac operator
leads to appearance of new additional terms in the classical equation of motion for spin of a particle
and ipso facto requires appropriate modification for the Lagrangian of the spinning particle. The result
obtained is used for the construction of one-to-one mapping between two Lagrangians of a classical
color-charged spinning particle, one of which possesses local supersymmetry, and another one does
not. It is demonstrated that for recovery of the one-to-oneness the additional terms obtained above
in the semiclassical approximation of the Dirac operator with supersymmetry should be added to the
Lagrangian without supersymmetry.

Ipennoxen o6y s cxeM IOCIENOB TEIBHOTO MOCTPOEHNUS KB 3UKJI CCHYECKOTrO MPHOIIKEHHS IS
KJI CCHYecKoro yp BHeHUs [lup K Bo BHelIHeM roje SJur —Mmuwic , B KoTopoM oObI4HBIA orep Top Tu-
P K 3 MeHeH omep TopoM [lup K ¢ cynepcuMMmeTpHeil. SIBHBIM 0Op 30M BBIYHCIIEHBI B TIE€PBBIX WIEH
KB 3UKJI CCHMYECKOIo p 3710xeHHd o nocrosgHHoi IIn HK . ITok 3 HO, YTO H JiMuue CynepcUMMETPHUU B
UCXOOHOM onep Tope Jlup K IPUBOOUT K IOSABICHUIO HOBBIX NOIOJIHUTENIBHBIX WICHOB B KJI CCHYEC-
KOM yp BHEHUM H JBIKEHHE CIIMH Y CTHLBI M TeM C MbIM TpeOyeT COOTBETCTBYIOLIEH MOAM(UK LIUH
JI TP HXU H CIHMHOBOW 4 cTHLBL IlonydeHHbI pe3ynbT T UCIONB3YeTCd U MOCTPOEHHA B3 UMHO-
OIHO3H YHOTO OTOOp XEHHS MEXIy JABYMS J1 TP HXH H MH KJI CCHYECKO IIBETHOH CIIMHOBOH Y CTHIIPI,
OIMH U3 KOTOPBIX OOJ A €T JIOK JIBHOW cymepcummerpueit,  apyroii — Her. [Ilok 3 HO, 4TO mms
BOCCT HOBIIEHUS B3 MMHOW OIHO3H YHOCTH HEOOXOIWMO B JI Tp HXHU H 6e3 cymepcuMMeTpuu 100 BHTbH
H IIeHHbIE BbILIE JONOJHUTEIbHBIE WICHBl B KB 3UKJI CCUYECKOM IIIPOKCUM LMu onep top [up x ¢
CYIIEpCUMMETPUEI.

PACS: 12.38.Mh; 24.85.4+p; 11.15.Kc

1. STATEMENT OF PROBLEM

In our papers [1,2] it was suggested the following model Lagrangian describing the
interaction of a classical relativistic spinning color-charged particle with external non-Abelian

'E-mail: a.a.shishmarev@mail.ru
2E-mail: markova@icc.ru
3E-mail: markov@icc.ru



1016 Shishmarev A. A., Markova M. A., Markov Yu. A.

gauge A% (x) and fermion W, (z) fields:

B 1 (dx, dz¥ 1 (dy —dy
L=Lo+Lm+Lo+ L, Lo= 26(d7’ d7)+2i(d7w wdT ’

LTYL - _g m2) LG = Z(e-“D”ej) —€ % QGAFSV(&O-UVw), (1)
__ € il T i
Lo = =75 o{ 01" (dah) + (Vowa)6' }+

e Cr a{ . L ) . L
—g| = 017 (%) (4ho, U N t* ”93},
+ oo )@ By ) + ()60
where e is the one-dimensional vierbein field (we put throughout ¢ = 1 for the speed of light)
and D = 670 /07 +igitA% (t*)V is the covariant derivative along the direction of motion.
The spin degree of freedom of the particle is represented here by a commuting ¢ — number

Dirac spinor ¢ = (¢4), @« = 1,...,4. The equation of motion for this spinor is
d .
i qfl(:) = —% o QUF, (x)Y(T) + (terms with fermion field W/, (). 2)

By virtue of the fact that the background fermion field V¢ (x) (which within the classical
description is considered as the Grassmann-odd one) has, by definition, spinor index, a
description of the spin degree of freedom of the particle in terms of the spinor 1, is very
natural and simplest in technical respect. There is some vagueness with respect to Grassmann
evenness of this spinor. In our papers [1,3] in application to analysis of dynamics of a
spinning color particle moving in a hot quark—gluon plasma, the spinor 1), was thought as the
Grassmann-even one (although it is not improbable that the using simultaneously of spinors
of the different Grassmann evenness may be required for a complete classical description
of the spin dynamics in external fields of different statistics, i.e., it requires introducing a
superspinor, see Summary).

An alternative approach most generally employed for the description of a spin for a
massive particle is connected with introduction into consideration of the real pseudovector
and pseudoscalar dynamical variables &, p = 1,...,4, and &5 that are elements of the
Grassmann algebra [4-7]. For these variables an appropriate Lagrangian of the first-order
time derivative was defined as follows:

1 . . 7 . ) .
L=Lo+ Ly, + Le, L0:—2—e$ x“—iﬁuf“-i-z—ex%fua

Lyp=—5m’+ 3686+ zmx&,  Lo=i0""DI07 + ZegQ"Fy, €€,

3)

where x is the one-dimensional gravitino field. This field (as well as e) is not dynamical one.
It is well known [5-7] that the Lagrangian possesses local supersymmetry. The description of
the spin degree of freedom in terms of the odd pseudovector and pseudoscalar quantities is to
some extent a more fundamental one in comparison with the description in terms of the even
spinor . For this reason the interesting question arises as to whether it is possible to define
relation (mapping) between these variables, and, finally, to construct a mapping between
Lagrangian (1) (without the interaction term L) and Lagrangian (3). The construction of
such a mapping in an explicit form is very important. The reason is that counterpart of the
interaction term Ly in Lagrangian (3) is unknown. Thus, having understood a connection
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between the Lagrangians without an external fermion field, one can define an explicit form of
the interaction terms with the background W-fields in terms of the Grassmann pseudovector
and pseudoscalar variables £, and {5 merely by means of an appropriate replacement of the
1o spinor by the mapping ¥, = 1o (£, &) in (1). In works [8,9] it was shown that such
a map can in principle be obtained if preliminarily to exclude the auxiliary variable y in
Lagrangian (3) with the help of the equation of motion

255—7’71)(:0.

In this case, instead of Ly and L,, in (3) we will have

L0:—2—e$u$“_§fufu_ﬁxugu&n Lm:_im _55555'

The map linear in ¢ and ¢ has the following form:

(00) ¢ = k& (V' y50) + as(v50), (00) Y = —r*(Oy57")Eu — o (075)6. (4)

Here, x and « are unknown coefficient functions, 6 = (6,) is an auxiliary Grassmann-odd
Dirac spinor and the symbol * is a complex conjugation sign. Inverse mapping has the
following form:

§u = % {5(9%75@ - B (1#75%9)}, & = % {5(975¢) - B (¢759)} ; (5)
where 3 and  are some new unknown coefficient functions. The explicit form of the
coefficient functions was considered in [8,9].

Our initial Lagrangian (1) written down in terms of the commutative variable v, is devoid
of any supersymmetry. Therefore, it can be only mapped into the other nonsupersymmetric
Lagrangian. The terms containing the fermion counterpart x to the vierbein field e, namely

1 m

I i 6
%2¢ Xmuf ) 2 X€5a ( )
cannot appear under any map. These terms are important for the local supersymmetry of
Lagrangian (3) and its counterparts a priori must be contained in the initial Lagrangian (1).
In this notice we would like to show how the terms of this kind may really appear in (1).

2. SEMICLASSICAL APPROXIMATION

The main idea in determining such terms is to use an extended Hamiltonian or super-
Hamiltonian in the construction of the «spinning» equation (2). Hamiltonians of this type
have been considered in a few papers for different reasons. Thus, in the papers by Borisov,
Kulish [10] and Fradkin, Gitman [11] they were used in the construction of the Green’s
function of a Dirac particle in background non-Abelian gauge field. Within the framework of
operator formalism this superHamiltonian has the form

~ A o~ 1 ~ ~
~2mflsusy = (DuD* + 590, P T* = m?) + ix(3, D" + m). (7)
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All quantities with hats above represent operators acting in appropriate spaces of representa-
tions of the spinor, color and coordinate algebras; x is an odd variable. Analog of introducing
such a superHamiltonian in the massless limit can be also found in the work by Friedan and
Windey [12] in the construction of the superheat kernel. The latter has been used in calculating
the chiral anomaly. In the monograph by Thaller [13] within the supersymmetric quantum
mechanics a notion of the Dirac operator with supersymmetry has been defined in the most
general abstract form. The expression (7) is just its special case.

Before studying the general case of the Dirac operator with supersymmetry it is necessary
to recall briefly the fundamental points of deriving the equation of motion for the commuting
spinor ¥4, Eq.(2). In quantum electrodynamics this equation arises when we analyze the
connection of the relativistic quantum mechanics with the relativistic classical mechanics first
performed by W. Pauli [14] within the so-called first-order formalism for fermions. In the
book by Akhiezer and Beresteskii [15] this analysis has been performed on the basis of the
second-order formalism [16]. Here, we will follow the second line.

In the second-order formalism the initial QCD Dirac equation for the wave function V¥ is
replaced by its quadratic form

. 1
—2mA® = (D,D" + 5 90w " = m?)@ =0, )

where a new spinor ® is connected with the initial one by the relation

1

m

v ('yuD“’ + m)(b.

In what follows we restore Planck’s constant % in all formulae. Since we are interested in
the interaction of the spin degree of freedom of a particle with an external gauge field most,
then for the sake of simplicity we will consider Eq. (8) for the case of the interaction with an
Abelian background field (with the replacement of the strong coupling g by electric charge ¢).
The presence of the color degree of freedom can result in qualitatively new features, one of
them is appearing a mixed spin—color degree of freedom [17]. In this respect our initial model
Lagrangian (1) is the simplified one and it corresponds to perfect factorization of the spin
and color degrees of freedom of the particle. The non-Abelian case also requires appreciable
complication of the usual WKB-method in the analysis of Eq. (8) that is beyond the scope of
our work (see, for example, [18, 19]).

A solution of Eq.(8) in the semiclassical limit is defined as a series in powers of A:

& =" (fo+hfi + W fa+...), ©)

where S, fy, f1, ... are some functions of coordinates and time. Substituting this series
into (8) and collecting the terms of the same power of /i, we obtain the following equations
correct to the first order in A:

a8 2

floi (87+qu1> _m2:07 (10)
n

1|1 90 (95 2( 05 Ofo a4 puwp _

" '[iaxu gan T WA ) | Tt G Gan T 1) g, T g oweE o =0 AD
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Furthermore, we introduce into consideration a flux fermion density
Sy = \Tlofyu\llo, (12)

where as Uy we take the following expression:

1 , 1 .
Vo = — (yuD* —m) foe'" = — &5/ w4 —m] fo,
m m
0S(z, )

Here, o designates three arbitrary constants defining a solution for the action .S, Eq. (10). In
terms of the spinor fy the flux density (12) has the form

Sp = % Wu[fo('yuﬂ'y - m)fo}

and by virtue of Egs. (10) and (11) it satisfies the equation of continuity

s _y
Oz,

Equation (2) (without the terms with the external fermion field) arises from an analysis of
the equation for the spinor fo (11). The latter in terms of the function 7, can be written in a
more compact form

dfo | iq

O ¢+ om + 5 o F*fo = 0. (13)

ox, " 0z,

At this point we introduce a new variable

1= g Lfolowr® —m)fo),

such that s, = 7,n. Owing to the continuity equation we have an important relation for the
7n function
o, on
oz, | " 0m,
At the final stage we substitute fo = ,/f@o into Eq.(13). With allowance for (14) this
equation takes the following form for a new spinor function :

(14)

8900 Zq v
Wua—x“ = —Z O'NVFM ©®o-
In book [15] a solution of the equation derived just above was expressed in terms of the
solution of the Schrodinger equation for the wave function ¥, (7), Eq. (2). The latter describes
the motion of a spin in a given gauge field F),, (x). This field is defined along the trajectory
of the particle =, = z,(7, a, 3) which in turn is defined from a solution of the equation

dx,,
™

with the initial value given by a vector 3.

=7, (z, )
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3. EXTENSION OF THE SEMICLASSICAL APPROXIMATION

Let us now consider the question of a modification of the expressions obtained above in
the case when instead of the usual Hamilton operator in Eq. (8) one takes its supersymmetric
extension

. h
—2mHsysy® = {(D“D” + q? o FHY — m2) + ix('y“'yg;D“ + m'y5)}¢ =0. (15)

Here, in the second expression following [11] in parentheses we have introduced the 5
matrix into the definition of the linear Dirac operator. This operator ('y,fyg,D“ + m'yg,) should
be believed as an odd function. We will seek a solution of Eq.(15) also in the form of a
power series (9) only on condition that the function S is considered as a usual commuting
function, whereas the spinor functions fy, f1,... should be considered as those containing
both Grassmann even and odd parts. Equations (10) and (11) are modified as follows:

R (w? = m®) fo+ ix(my"ys + mos) fo =0,
ate (7= m?) i+ ix(muytys + mas) i+
{1 omy 2 9fo 4«

afo
— — — = VFH’V — = 0.
i Oxy fot ) T oz, 2 Tu Jo| + X7 Oz, 0

The next step is to present the spinors fy and f; as a sum of even and odd parts

{fo = £+ x 15V,

fr=1"+ x5, e

In the decomposition of (16) we believe the functions ( féo), fl(o)) to be the even ones, and

( él), 1(1)) to be the odd ones. The opposite case of partition into Grassmann evenness will
be mentioned at the end of the paper. By using (16) the equation of the zeroth order in £ is
decomposed into two equations

(2 = ) =0
(m* — mz)fél) + i(mur* s + m’75)f(§0) =0,
the first of which defines the Hamilton—Jacobi equation for the action S, Eq.(10), and the
second one is reduced to the matrix algebraic equation for the spinor féo)
(mu73s + mys) f5” = 0

Furthermore, the equation of the first order in % is also decomposed into two equations
which with the use of (10) take the form

0
l<%> (0)_’_2 3f(§ : q Fp,uféo) =0

i\ dx, )"° e Ox,, * 2 T an
1 % f(1)+27r 8f(§1) + q o Fuuf(l) + 8f(§0) _ (7T Foe 4+ m )f(o)
i\ 0z, 0 ;T oz, 9 Tnv 0 Yu5 Dz, =T 5 Y5)J1 -
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Notice that the term on the right-hand side of Eq. (17) represents the contribution of a quantum

correction in contrast to the other terms. The first equation for the even spinor féo) is analyzed
similar to Eq. (13) by the replacement

2 —
= Vs n= Rt —m "), 1o

For the odd spinor fél) we define a similar replacement introducing a new odd spinor 9(()1)
by the rule

=Y, (19)

with the same scalar function 7 as it was defined in (18). Taking into account the continuity
equation in the form (14) and the replacement (19), we obtain instead of (17)

NG
2,/n Oz,

0 _
0 =

5‘9(()1) iq

7r — O
" oz, 4 "

v . ]' L
Fr g 4 iy = 5 (s + mas)el”™, (20)

where on the right-hand side we also have set f \/ﬁcp(lo). The equation obtained can
be connected with the equation of motion for a spin in external gauge field in the form (2),
but instead of the even spinor t,(7), here we have the odd spinor 65" (7). The latter can be
identified with the auxiliary Grassmann spinor 6, (7) we have introduced into mapping (4).
Further, the spinor wgo) on the left-hand side of (20) is the even one and it can be related to
our commuting spinor v, by setting

@%0) = ma.

The expression in parentheses on the right-hand side of (20) should be considered as the
Grassmann odd one by virtue of oddness of the initial operator expression which correlates
with it (see the text after formula (15)). The oddness of this expression can be displayed
explicitly if we reintroduce the Grassmann scalar y as a multiplier. Taking into account all
the above-mentioned and also the relation %, = m, /m, we obtain the final expression of
equation for the odd spinor 6,;:

1 do q m
—— 4+ — o0 FM+ ... = —
i dr + am 7" + 2
Here, the dots denote the contribution of the last term on the left-hand side of Eq. (20). Its
physical meaning is not clear. The terms on the right-hand side of (21) can be obtained by
varying with respect to € from the following terms, which must be added to Lagrangian (1):

X (Y59 + 2% x(5%). 1)

L=...+ { (% Xy (09" y510) + % X(9’75’¢)) + (Conj.part)} . (22)

Finally, in turn, under the mapping of Lagrangian (1) into (3) the expressions in braces in (22)
should be identified with the Grassmann pseudovector §,, and pseudoscalar {5 by the rule (the
inverse mapping (5))

&~ (é’y,;yg/)) + (conj. part),
s ~ (9_757,/}) + (conj. part),
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and, thereby, we can obtain the missing terms (6) in our map. Although we have obtained
here, the equation of motion for the odd spinor 6,,, Eq.(21), a similar equation can be obtained

for the even spinor 1), by changing the Grassmann evenness of the spinors ( féo), 1(0)) and
( él), 1(1)) in the decomposition of (16) to the opposite one.

4. SUMMARY

In this notice it was shown that to construct the map into a complete supersymmetric
Lagrangian (3), the initial Lagrangian (1) also has to possess a supersymmetry. To accomplish
these ends, we must add the terms (22) in an explicit form containing auxiliary anticommuting
classical spinor 6, to the initial expression (1). Furthermore, the obtained Eq.(21) for the
odd spinor serves as a hint that the spinor should generally be considered as an independent
dynamical variable subject to own dynamical equation similar to the equation for v,. This
odd spinor 6, should be related to its superpartner: the even spinor 9, and thus we have to
consider a single superspinor

eoz = 904 + 77¢m
as was done, for instance, in paper [20]. Here, 7 is a real odd scalar.

Acknowledgements. This work was supported by the Russian Foundation for Basic
Research (project No.09-02-00749) and «Research and Training Specialists in Innovative
Russia, 2009-2013», contracts 14.B37.21.0910, 16.740.11.0154.

REFERENCES

1. Markov Yu. A., Markova M. A. Nonlinear Dynamics of Soft Fermion Excitations in Hot QCD
Plasma II: Soft-Quark-Hard Particle Scattering and Energy Losses // Nucl. Phys. A. 2007. V.784.
P.443.

2. Markov Yu. A., Markova M. A., Shishmarev A. A. The Equations of Motion for a Classical Color
Particle in Background Non-Abelian Bosonic and Fermionic Fields // J. Phys. G. 2010. V.37.
P. 105001(25).

3. Markov Yu. A., Markova M. A., Vall A. N. Nonlinear Dynamics of Soft Fermion Excitations in Hot
QCD Plasma: Soft-Quark Bremsstrahlung and Energy Losses // Intern. J. Mod. Phys. A. 2010.
V.25. P.685.

4. Berezin F. A., Marinov M. S. Classical Spin and Grassmann Algebra // JETP Lett. 1975. V.21.
P.678;
Berezin F. A., Marinov M. S. Particle Spin Dynamics as the Grassmann Variant of Classical
Mechanics // Ann. Phys. (NY). 1977. V. 104. P.336.

5. Barducci A., Casalbuoni R., Lusanna L. Supersymmetries and the Pseudoclassical Relativistic
Electron // Nuovo Cim. A. 1976. V.35. P.377,
Barducci A., Casalbuoni R., Lusanna L. Classical Scalar and Spinning Particles Interacting with
External Yang-Mills Fields // Nucl. Phys. B. 1977. V.124. P.93.

6. Brink L. et al. Local Supersymmetry for Spinning Particles // Phys. Lett. B. 1976. V. 64. P.435;
Brink L., Di Vecchia P., Howe P. S. A Lagrangian Formulation of the Classical and Quantum
Dynamics of Spinning Particles // Nucl. Phys. B. 1977. V.118. P.76.



20.

Semiclassical Approximation of the Dirac Equation with Supersymmetry 1023

. Balachandran A. P. et al. Classical Description of a Particle Interacting with a Non-Abelian Gauge

Field // Phys. Rev. D. 1977. V. 15. P.2308.

. Markov Yu. A. et al. Equations of Motion for a Classical Color Particle in Background Non-Abelian

Fermionic and Bosonic Fields: Inclusion of Pseudoclassical Spin. hep-th/1112.2056.

. Markov Yu. A. et al. Correspondence between Classical and Pseudoclassical Descriptions of Spin

Degree of Freedom of Relativistic Particle in External Fields // Russ. Phys. J. 2012. V. 55.

. Borisov N. V., Kulish P. P. Path Integral in Superspace for a Relativistic Spinor Particle in an

External Gauge Field // Theor. Math. Phys. 1982. V.51. P.535.

. Fradkin E. S., Gitman D. M. Path-Integral Representation for the Relativistic Particle Propagators

and BFV Quantization // Phys. Rev. D. 1991. V.44, P. 3230.

. Friedan D., Windey P. Supersymmetric Derivation of the Atiyah—Singer Index and the Chiral

Anomaly // Nucl. Phys. B. 1984. V.235. P.395.

. Thaller B. The Dirac Equation. Berlin; Heidelberg: Springer-Verlag, 1992.
. Pauli W. Diracs Wellengleichung des Elektrons und geometrische Optik // Helv. Phys. Acta. 1932.

V.5.P.179.

. Akhiezer A. L, Beresteskii V. B. Quantum Electrodynamics. M.: Nauka, 1969.
. Morgan A. G. Second-Order Femions in Gauge Theories // Phys. Lett. B. 1995. V.351. P.249.
. Arodz H. Colored, Spinning Classical Particle in an External Non-Abelian Gauge Field // Phys.

Lett. B. 1982. V.116. P.251.

. Arodz H. A Remark on the Classical Mechanics of Colored Particles // Ibid. P.255;

Arodz H. Limitation of the Concept of the Classical Colored Particle // Acta Phys. Polonica B.
1983. V. 14. P.13.

. Belov V. V., Kondrat’eva M. F. «Classical» Equations of Motion in Quantum Mechanics with Gauge

Fields // Theor. Math. Phys. 1992. V.92. P.722.

Sorokin D. P. et al. From the Superparticle Siegel Symmetry to the Spinning Particle Proper-Time
Supersymmetry // Phys. Lett. B. 1989. V.216. P.302.

Received on December 14, 2012.



