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QUANTUM-MECHANICAL DESCRIPTION
OF LENSE-THIRRING EFFECT
FOR RELATIVISTIC SCALAR PARTICLES
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Belarussian State University, Minsk

Exact expression for the Foldy—Wouthuysen Hamiltonian of scalar particles is used for a quantum-
mechanical description of the relativistic Lense-Thirring effect. The exact evolution of the angular
momentum operator in the Kerr field approximated by a spatially isotropic metric is found. The quantum-
mechanical description of the full Lense-Thirring effect based on the Laplace—Runge-Lenz vector is
given in the nonrelativistic and weak-field approximation. Relativistic quantum-mechanical equations
for the velocity and acceleration operators are obtained. The equation for the acceleration defines the
Coriolis-like and centrifugal-like accelerations and presents the quantum-mechanical description of the
frame-dragging effect.

To4Hoe BbIp XeHHe HJIsd I MIWIBTOHU H B InpencT BieHud Pongu-B yTxoii3eH HCIONB30B HO VI
KB HTOBO-M€X HHYECKOTO ONUC HHS pensdTuBHcTCKOro adexr Jlemse—Tuppunr . H iineno Tounoe
yp BHEHUE JJIS 3BOJIIOLMHM OIlep TOp YIJIOBOTO MOMEHT B moje Kepp , NIpokcumMupyeMoM IIpo-
CTp HCTBEHHO M30TPOIHOH MeTpukoil. KB HTOBO-Mex HHMYeckoe ommc HUe MmomHoro aggexr Jlense—
Tuppunr , 6 3upylomeecs H HCNOIb30B HUM BekTop JI mn ¢ —Pynre-JleHn , 1 HO B MpUOIHXEHUH
HEpEeTITHUBICTCKUX CKopocTedl U ci 6oro moms. IlomydeHsl pelsITHBUCTCKHE KB HTOBO-MeX HHMYECKHE
yp BHEHHUS IJI Ollep TOPOB CKOPOCTH U YCKOpeHHd. Yp BHEHHE I YCKOpPEeHHUs oIpelessderT H JIOrd
KOPHOJIMCOBOTO M LIEHTPOOEXKHOro yCKOPEHHUH U I €T KB HTOBO-MEX HHYecKoe omuc Hue apdekt ypie-
YEHHs] CUCTEMBI OTCUET .

PACS: 04.20.Jb; 11.10.Ef

INTRODUCTION

The well-known Lense-Thirring (LT) effect [1] is a gravitomagnetic effect of frame-
dragging predicted by general relativity. It consists in secular precessions of the longitude
of the ascending node and the argument of pericenter of a test particle freely orbiting a
central spinning mass endowed with angular momentum. This effect also manifests itself in
a precession of the orbit and in a Coriolis-like force acting on the moving particle.
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The description of a spinless particle in a Riemannian spacetime of general relativity is
based on the covariant Klein—-Gordon—Fock equation [2] added by an appropriate term describ-
ing a nonminimal coupling to the scalar curvature and conserving the conformal invariance
of the equation for a massless scalar particle [3,4]. The inclusion of the Penrose—Chernikov—
Tagirov term has been argued for both massive and massless particles [4].

Accioly and Blas [5] have brought the initial equation to the Hamiltonian form and have
performed the exact Foldy—Wouthuysen (FW) transformation of the Hamiltonian obtained.
They have considered a massive particle in a static isotropic metric. The transformation
method used in [5] is inapplicable to massless particles and does not cover nonstatic space-
times. As a result, an information about a specific manifestation of the conformal invariance
in the FW representation has not been obtained.

The generalized method of transformation of the Klein—-Gordon—Fock equation to the
Hamiltonian form useful for both massive and massless particles has been developed in [6].
Its application in [7] has allowed us to fulfill the FW transformation and to prove the conformal
invariance of the relativistic FW Hamiltonian for a wide class of inertial and gravitational
fields. General quantum-mechanical equations of motion have been derived and their classical
limit has been obtained.

In the present work, the exact FW Hamiltonian for a scalar particle in the Kerr field
approximated by a spatially isotropic metric [7] is used for a quantum-mechanical description
of the relativistic LT effect. We obtain the relativistic equation of motion for the angular
momentum operator, perform the quantum-mechanical description of the LT effect in the
nonrelativistic and weak-field approximation, and derive quantum-mechanical equations for
the velocity and acceleration operators. The results obtained are compared with the classical
description.

1. FOLDY-WOUTHUYSEN HAMILTONIAN AND EQUATIONS OF MOTION

The initial covariant Klein—Gordon—Fock equation with the additional term [3,4] describes
a scalar particle in a Riemannian spacetime and is given by

1
(O+m? = ARy =0, O= ﬁauﬁg“"au. (1
The Penrose—Chernikov-Tagirov coupling is defined by A = 1/6. This choice of A has been
unambiguously confirmed in [5,7]. Sign of A\ depends on the definition of R. In the present
work, the signature is (+ — ——) and the Ricci scalar curvature is defined by R = g"YR,,,, =
9" Ry, Where R5 = 0gl'j), — ... is the Riemann curvature tensor.
The generalized Feshbach—Villars transformation [6] and the subsequent nonunitary one
make it possible to represent Eq. (1) in the Hamiltonian form describing both massive and
massless particles [7]:

N2+T’+, —N24+ T

H = p3 5N T i,
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where the nabla operators act only on the operators in brackets and the primes denote nonuni-
tary transformed operators. Equation (2) is exact and covers any inertial and gravitational
fields.

The sufficient condition of the exact FW transformation [6,8,9] applied to scalar particles
equivalently, 9yT”" — [T’, T'] = 0. When this condition is satisfied, the exact FW Hamiltonian
reads [7]

Hew = psVT! — X', 3)

This equation covers all static spacetimes (Y’ = 0) and some important cases of station-
ary ones.

The metric of the rotating Kerr source has been reduced to the Arnowitt—-Deser—Misner
form [10] by Hergt and Schéifer [11]. This form reproduces the Kerr solution only approx-
imately. The form of the metric can be additionally simplified due to an introduction of
spatially isotropic coordinates and dropping terms violating the isotropy [12]:

ds? = V*(dz®)? — W25, (dz* — K'dx®)(d2? — K7dx"), K=w xr. ()]

The use of the approximate Kerr metric allows us to fulfill the exact FW transformation
when V, W, and w depend only on the isotropic radial coordinate r. In this approximation,
the metric is defined by

Vo=t o (5) wor=(+4) ro (55),

2puc 3 21p? a?
w(’l”):r—33|:1—7+4r2 +O 7“_2 .

(5)

Here a = J/(Mc), p = GM/c?; the total mass M and the total angular momentum J (directed
along the z axis) define the Kerr source uniquely. The leading term in the expression for
w(r) = w(r)e, corresponds to the LT approximation.

We can pass on from the Kerr field approximated by Eqgs. (4), (5) to a frame rotating in
this field with the angular velocity o after the transformation dz* — dX* = da’ + (o x r) da°.
The stationary metric of this frame can be obtained from Eqgs. (4), (5) with the replacement
w — Q = w — o. In particular, it covers an observer on the ground of a rotating source like
the Earth or on a satellite. In this case, o = J/I, where [ is the moment of inertia. It should
be taken into account that frames rotating in the isotropic and Cartesian coordinates are not
equivalent. The exact FW Hamiltonian is given by Eq.(3). When A = 1/6, the operators T”



1050 Silenko A. J.

and Y/ are defined by [7]

T = m2V? 4+ FpF — V}' VF + }'A]-"Jr - A EPOICAR

2
(6)
—iY' =Q-(r x p) f:Z
p ) W’
and derivatives with respect to r are denoted by indexes. In particular, for the LT metric
2GJ GM GM
Q(r) = Viry)=1-——, W({r)=1+—. @)

273’ 27
The quantum-mechanical equations of motion in the FW representation defining the force,

velocity, and acceleration read (po = pr)

' _ o'

i

= ' i
= dt ot [HFW7p] 2 8t {g 7pu} + [HFW7 {9 apu}] )
i dl’t o 7 i i avl E i

Any commutation adds the factor i as compared with the product of operators.

It has been proved in [13] that satisfying the condition of the Wentzel-Kramers—Brillouin
approximation allows us to use this approximation in the relativistic case and to obtain a
classical limit of the relativistic quantum mechanics. Determination of the classical limit
reduces to the replacement of operators in the FW Hamiltonian and quantum-mechanical
equations of motion in the FW representation by respective classical quantities. The classical
limit of the general FW Hamiltonian is given by [7]

_(m? =G\ g%
H= 00 - g0 ®)
It coincides with the classical Hamiltonian derived in [14].
The classical limit of Eq. (8) reads
Giip, g%
00 (17,2 ; 7 T 0
V9% (m? — Glipip;) 9
89“‘ 0; 0H
“Puer T
It coincides with the corresponding classical equations which follow from the Hamiltonian (9)
and the Hamilton equations. Thus, the quantum-mechanical and classical equations are in the
best compliance.
For example, the exact metric of a general noninertial frame characterized by the acceler-
ation a and the rotation o of an observer is defined by V =14a-r, W =1, Q2 = —o [15].
In this case, the classical limit of the Hamiltonian and equations of motion is given by [7]

p
H=(14a-r)y/m?2+p?2—-0-(rxp), V=(1+a-r)——— —o0Xr,
/m2+p2

2a-V +a-(oxr)
l+a-r

V=

(10)
+g”8 H+p,V’ 8jg

(1)
(V+oxr),

W=-a(l+a-r)—20xV—-ox(oxr)+
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where p = (—p1, —p2, —ps3). Leading terms in Eq.(11) reproduce well-known classical
results [16].

2. QUANTUM-MECHANICAL DESCRIPTION OF THE LENSE-THIRRING EFFECT

The results obtained allow us to derive quantum-mechanical equations describing the LT
effect. When a metric depends only on r, it is convenient to consider the evolution of the
angular momentum operator 1 = r X p. Dynamics of this operator in a frame rotating in the
Kerr field approximated by a spatially isotropic metric is defined by

dl
dt

Since the operators {2 and 1 commute, this equation is exact for the chosen metric.
The quantity w characterizes an evolution of the longitude of the ascending node, Y:

T = Ty + wt. Equations (5), (12) provide for a relativistic post-Newtonian description of
this evolution:

:%[HFW,I]:QXI, Q=w-—o. (12)

Y= c2r 4ctr? r2 (13)
This is a part of the LT effect. The longitude of the ascending node can be measured and its
measurement is important for astrophysics.

A transition to the classical limit [13] and a calculation of the period average in the
nonrelativistic and weak-field approximation results in

1 1 2GJ
<r_3> TRI—e2)p T 2RI =2 (1

where b is the semimajor axis and e is the eccentricity.

The quantum-mechanical description of the full LT effect is based on the Laplace—Runge—
Lenz vector. In this case, we confine ourselves by the nonrelativistic and weak-field approxi-
mation. The operator form of the Laplace—Runge—Lenz vector is given by

c2r3

2GJ[ 3GM  21G2M? (GQH
= 1— + .

1 o A
A= S(px1-1xp)—mht, t=1 k=cMm. (15)
r
The nonrelativistic FW Hamiltonian for the Kerr field in the LT approximation reads
k 2
HFw:pg(mCQ———F—p )+Q-1, (16)
r o 2m

where € is defined by Eq.(7). The precession of pericenter of the orbit is defined by the
commutator of the operators Hpw and A:
dA i 1 3G (J-1
— == Al=-(AXA-AXQ)+—<¢—
ot h[HFW’ ] 2( )+ 262{ rd
The transition to the classical limit and the calculation of the period average leads to the
LT equation:

,(rxl—lxr)}. 17)

dA 2G ~
E:QLTXA7 QLT:W[J_?’(J' ], (18)

where 1 = 1/1.
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The existence of the frame dragging can also be shown. If we hold only main terms in
the relativistic FW Hamiltonian presented by Egs. (3), (6), the velocity operator in the field
defined by the LT metric (7) is given by

P3 c
V=— ,FPF p + Q2 xr. (19)
2 { \/m202v2 + Fp2F p }

In the weak-field approximation, the part of the acceleration operator defined only by the
rotation of the source is equal to

W=QxV-VxQ-02x(Qxr). (20)

This equation defines the Coriolis-like and centrifugal-like accelerations and therefore de-
scribes the quantum-mechanical frame-dragging effect.

It is important that the classical limit of all obtained quantum-mechanical equations coin-
cides with the corresponding classical equations.

CONCLUSIONS

The use of the exact FW Hamiltonian for scalar particles in the frame rotating in the Kerr
field approximated by a spatially isotropic metric [7] has allowed us to fulfill the detailed
quantum-mechanical description of the relativistic LT effect. The exact evolution of the
angular momentum operator in the Kerr field approximated by a spatially isotropic metric is
found. The quantum-mechanical equation defining the precession of pericenter of the orbit
(full LT effect) is based on the Laplace-Runge—Lenz vector and derived in the nonrelativistic
and weak-field approximation. Relativistic quantum-mechanical equations for the velocity and
acceleration operators are obtained. The equation for the acceleration defines the Coriolis-
like and centrifugal-like accelerations and presents the quantum-mechanical description of the
frame-dragging effect.

The classical limit of the derived quantum-mechanical equations coincides with corre-
sponding classical ones. This important conclusion confirms the general statement made
in [4,7,17] and unambiguously shows a deep connection between the relativistic quantum
mechanics of scalar particles in Riemannian spacetimes and the classical general relativity.
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