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New short baseline neutrino experiments open new possibilities of high-precision study of different
neutrino processes. We present here results of the calculation of the polarization of ˇnal nucleon in NC
elastic νμ(ν̄μ)Änucleon scattering. In a numerical analysis the sensitivity to the different choices of the
axial and axial strange form factors is examined. Measurements of the polarization of the ˇnal proton
in elastic e−p scattering drastically changed our knowledge about the electromagnetic form factors of
the proton. From measurement of the nucleon polarization in the NC elastic scattering, new additional
information about the axial GA(Q2) and the strange axial Gs

A(Q2) form factors of the nucleon could
be inferred.
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INTRODUCTION

The study of the Neutral Current (NC) elastic scattering of neutrino and antineutrino on
the nucleon,

νμ + N → νμ + N, (1)

ν̄μ + N → ν̄μ + N, (2)

is an important source of information on weak form factors of the nucleon. The effective
Standard Model (SM) Lagrangian of these processes has the form

LI = −GF√
2

ν̄μγα(1 − γ5)νμ jNC
α . (3)
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Here
jNC
α = 2j3

α − 2 sin2 θW jem
α (4)

is the NC of quarks. In Eq. (4), θW is the weak angle, jem
α is the electromagnetic current of

quarks and

j3
α =

3∑
a=1

ψ̄aLγα
1
2
τ3ψaL (5)

is the third component of the isovector current (ψaL(a = 1, 2, 3) is the left-handed quark
doublet).

For the matrix element of the process (1) we have

〈f |(S − 1)|i〉 = −i
GF√

2
Nk′Nkū(k′) γα(1 − γ5)u(k)p〈p′|JNC

α |p〉p(2π)4 δ(p′ − p − q). (6)

Here k(p) and k′(p′) are momenta of the initial and ˇnal neutrinos (nucleons); q = k − k′ =
p′ − p is the momentum transfer; JNC

α is the hadronic neutral current in the Heisenberg

representation and Nk =
(

1
(2π)32k0

)1/2

is the standard normalization factor.

We will take into account the light u, d, s quarks. In this case, for the SM neutral current
we have

JNC
α = (V 3

α − A3
α) − 1

2
(V s

α − As
α) − 2 sin2 θW Jem

α . (7)

Here V 3
α and A3

α are third components of isovector currents V i
α and Ai

α, V s
α and As

α are
strange vector and axial currents. The electromagnetic current is connected with V 3

α by the
relation

Jem
α = V 3

α + V 0
α , (8)

where V 0
α is the isoscalar current.

Using isospin symmetry from (8) for the one-nucleon matrix elements, we ˇnd

p,n〈p′|V 3
α |p〉p,n = ±1

2
[p〈p′|Jem

α |p〉p − n〈p′|Jem
α |p〉n] . (9)

The isovector Ai
α satisˇes the relation

[Ai
α, Tk] = ieiklA

k
α, (10)

where Tk is the operator of the total isotopic spin. From this relation we ˇnd

p,n〈p′|A3
α|p〉p,n = ±1

2p〈p′|A1+i2
α |p〉n. (11)

The one-nucleon matrix elements of the electromagnetic current are given by the relations

p,n〈p′|Jem
α |p〉p,n = Np′Npū(p′)

[
γαF p,n

1 (Q2) +
i

2M
σαβqβF p,n

2 (Q2)
]

u(p), (12)

where F p,n
1 (Q2) and F p,n

2 (Q2) are the Dirac and Pauli form factors of the proton (neutron)
and Q2 = −q2.
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For the matrix element of the CC axial current A1+i2
α we have

p〈p′|A1+i2
α |p〉n = Np′Npū(p′)

[
γαγ5GA(Q2) +

1
2M

γ5q
αGP (Q2)

]
u(p), (13)

where GA(Q2) and GP (Q2) are the axial and pseudoscalar form factors of the nucleon.
From time reversal invariance of strong interactions it follows that the matrix elements of

the strange vector and axial currents have the same form as the matrix elements of Jem
α and

A1+i2
α , respectively (see [1]).

Finally, for the one-nucleon matrix element of the neutral current we ˇnd 1

p,n〈p′|JNC
α |p〉p,n = Np′Npū(p′)JNC(p,n)

α u(p). (14)

Here
JNC(p,n)

α = V NC(p,n)
α − ANC(p,n)

α , (15)

where

V NC(p,n)
α = γαF

NC(p,n)
1 (Q2) +

i

2M
σαβqβF

NC(p,n)
2 (Q2),

ANC(p,n)
α = γαγ5G

NC(p,n)
A (Q2).

(16)

In this relation we have

F
NC(p,n)
1,2 (Q2) = ±1

2
(F p

1,2(Q
2) − Fn

1,2(Q
2)) − 1

2
F s

1,2(Q
2) − 2 sin2 θW F p,n

1,2 (Q2) (17)

and

G
NC(p,n)
A (Q2) = ±1

2
GA(Q2) − 1

2
Gs

A(Q2), (18)

where F s
1,2(Q

2) and Gs
A(Q2) are vector and axial strange form factors of the nucleon.

Thus, the matrix elements of the processes (1) and (2) are determined by the known
electromagnetic form factors of the proton and the neutron, the axial form factor of the
nucleon GA(Q2) and the strange form factors of the nucleon.

Information on the axial form factor GA(Q2) is inferred from study of the CC quasi-elastic
(CCQE) processes:

νμ + n → μ− + p, ν̄μ + p → μ+ + n. (19)

The axial form factor is usually parameterized by the dipole formula

GA(Q2) =
gA(

1 +
Q2

M2
A

)2 . (20)

Here gA � 1.27 is the axial constant, and MA is a parameter (the ®axial mass¯).

1It is obvious that pseudoscalar form factors do not make contribution to the matrix element of the processes (1)
and (2).
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The values of the parameter MA determined from the data of different experiments
under the assumption that impulse approximation is valid (neutrino interacts with a quasi-free
nucleon in a nucleus and other nucleons are spectators) are quite different.

From analysis of the old bubble chamber data on measurements of the cross section of
the process νμ + n → μ− + p on deuterium target and of the process ν̄μ + p → μ+ + n on
proton target it was found [2] that

MA = (1.016 ± 0.026) GeV. (21)

The value of the parameter MA obtained from the measurement of the CCQE cross section
in the NOMAD experiment (carbon target) [3]

MA = (1.05 ± 0.02 ± 0.06) GeV (22)

is in agreement with (21).
However, from ˇt of the data of more recent experiments larger average values of the

parameter MA were obtained. From the data of the MINOS experiment (iron target) it was
found [4] that

MA = 1.26+0.12
−0.10

+0.08
−0.12 GeV. (23)

The K2K experiment (H2O target) obtained [5]

MA = (1.20 ± 0.12) GeV. (24)

The high-statistics MiniBooNE experiment (carbon target) inferred [6]

MA = (1.35 ± 0.17) GeV. (25)

There could be many different reasons for such a disagreement. It could be a problem of
systematics and normalization. Target nuclei in the different experiments are different. The
difference of the values of MA obtained from the data of different experiments could be due
to various nuclei effects (see [7, 8]).

The axial form factor GA(Q2) is a fundamental characteristic of the nucleon. It is
of a great theoretical interest. CCQE processes (19) are the dominant neutrino processes
in the GeV energy range. The modern high-precision neutrino oscillation experiments re-
quire a percentage-level knowledge of the axial form factor and cross sections of CCQE
processes (19). In several dedicated neutrino experiments (T2K [9], MINERVA [10], Ar-
goNeuT [11]), new measurements of CCQE cross section will be performed.

In [12] we proposed a measurement of the polarization of the recoil nucleon in CCQE
processes (19) for a determination of the axial form factor.

A measurement of the polarization of the recoil protons in the elastic e−p scattering
drastically changed our understanding of the electromagnetic form factors of the proton
(see [13, 14]). Before these measurements were done the results of the analysis of the data
of the numerous experiments on measurements of the cross section of elastic scattering of
unpolarized electrons on unpolarized protons indicated that the ratio R(Q2) of the electric and
magnetic form factors of the proton does not depend on Q2 and is close to one. A measurement
of the ratio of the transverse and longitudinal polarizations of the proton allows one to
determine the ratio of the electric and magnetic form factors in a direct model independent
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way. After these measurements were done, it was established that the ratio R(Q2) decreased
linearly with Q2 (R � 1 at Q2 � 1 GeV2 and R = 0.28 ± 0.09 at Q2 = 5.6 GeV2). The
measurement of the polarization signiˇcantly changed the theoretical models for the structure
of the nucleon.

In this paper, we present the results of calculation of the polarization of the recoil nucleon
in the elastic NC processes (1) and (2). It is natural to expect that measurements of the
polarization of the nucleon in CCQE scattering and NC elastic scattering could provide
important information about the axial form factor of the nucleon. From our point of view, it
is worthwhile to consider a possibility of such measurements in modern high-statistics short
baseline neutrino experiments in which hundreds of thousands of neutrino events are observed.

Here we present the results of the calculation of the the polarization of the ˇnal nucleon
in the case of the deˇnite neutrino energy and free nucleon target. In order to obtain the
polarization in a realistic neutrino experiment with a spectrum of initial neutrinos (antineutri-
nos), one needs to average the expressions presented below over the spectrum. Let us notice
that the numerator and the denominator in the expressions (28) and (32) must be averaged
separately. In modern neutrino experiments, nuclear targets such as carbon, oxygen, iron or
argon are used. It was shown in many papers (see, for example, [7, 8]) that nuclear effects
are important and must be taken into account. We do not consider nuclear effects here.

Investigation of the NC processes (1) and (2) allows one to obtain an information about
strange form factors of the proton (see, for example, [1]). Strange vector form factors can
be inferred from experiments on the study of the P -odd asymmetry in the elastic scattering
of longitudinally polarized electrons on unpolarized proton and other targets. From many
experiments performed at different values of Q2, it follows that strange vector form factors
are small, compatible with zero. For example, from analysis of the data of the recent HAPPEX
experiment at JLab [15], it was found that at Q2 � 0.62 GeV2 the charge and magnetic strange
form factors are

Gs
E = 0.047± 0.034, Gs

M = 0.070± 0.067. (26)

Information about Gs
A was obtained from the data of the BNL experiment on the measurement

of the cross sections of the NC processes (1) and (2) [16]. From analysis of the data it was
found that

Gs
A(0) = −0.21± 0.10. (27)

There exists, however, a strong correlation between the values of the parameters Gs
A(0) and

MA. Taking into account this correlation, we can conclude that −0.25 < Gs
A(0) < 0 (see [1]).

1. POLARIZATION OF THE FINAL NUCLEON
IN NC ELASTIC SCATTERING

We will present here the result of the calculation of the polarization of the ˇnal nucleon
in NC processes (1) and (2). In the covariant density matrix formalism the 4-vector of the
polarization of the ˇnal nucleon produced in (1) and (2) is given by the expression

ξτ =
Tr [γτγ5 ρf ]

Tr [ρf ]
. (28)
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Here the ˇnal density matrix ρf is determined by the expression

ρf = LαβΛ(p′)JNC(p,n)
α Λ(p)JNC(p,n)

β Λ(p′), (29)

where
Lαβ = Tr

[
γα(1 − γ5)/kγβ(1 − γ5)/k′] , (30)

J
NC(p,n)
β is given by (15) and Λ(p) = /p + M . Taking into account the relation

Λ(p′)γτγ5Λ(p′) = 2M

(
gτσ − p′τp′σ

M2

)
Λ(p′)γσγ5, (31)

we can rewrite the expression for the 4-vector of the polarization in the form

ξτ =
(

gτσ − (p′)τ (p′)σ

M2

) Lαβ Tr
[
γσγ5Λ(p′)JNC(p,n)

α Λ(p)JNC(p,n)
β

]
Lαβ Tr

[
Λ(p′)JNC(p,n)

α Λ(p)JNC(p,n)
β

] . (32)

After lengthy calculations for the vector of polarization in the rest frame of the initial nucleon
we will ˇnd the following expression:

ξ =
1

J0 E

{
(k + k′)P+ + q

[
−E + E′

M
P+ +

(
1 +

E − E′

M

)
(P− − Pp)

]}
. (33)

Here
P+ = [y GNC

M + (2 − y)GNC
A ] GNC

E , (34)

P− − Pp = −[(2 − y)GNC
A + yGNC

M ]
[
GNC

A +
τ

y
(2 − y)FNC

2

]
(35)

and

Jν, ν̄
0 = 2(1 − y)

[
(GNC

A )2 +
τ(GNC

M )2 + (GNC
E )2

1 + τ

]
+

+
My

E

[
(GNC

A )2 − τ(GNC
M )2 + (GNC

E )2

1 + τ

]
+ y2 (GNC

M ∓ GNC
A )2 ± 4y GNC

M GNC
A . (36)

The quantities Jν,ν̄
0 are connected to the cross sections of the processes (1) and (2) by the

relations

Jν,ν̄
0 =

4π

G2
F

dσν,ν̄

dQ2
. (37)

In Eqs. (33)Ä(35) E and E′ are the energies of the initial and ˇnal neutrinos in the lab. frame

y =
pq

pk
, τ =

Q2

4M2
, GNC

M = FNC
1 + FNC

2 , GNC
E = FNC

1 − τFNC
2 . (38)

From (33) it follows that the polarization vector lays in the scattering plane. We expand
this vector along the two orthogonal unit vectors eL and eT determined as follows:

eL =
p′

|p′| =
q
|q| , eT = eL × n, n =

q × k
|q × k| . (39)
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We have
ξ = ξT eT + ξLeL, (40)

where ξT and ξL are the transverse and longitudinal polarizations. From (33)Ä(35) for the
transverse polarization we obtain the expression

ξν,ν̄
T = −2 sin θN

Jν,ν̄
0

[
± y GNC

M + (2 − y)GNC
A

]
GNC

E , (41)

where θN is the angle between momenta of the initial neutrino and the ˇnal nucleon.
It is obvious that ξT = sT , where sT is the transverse polarization in the rest frame of

the recoil nucleon. For the longitudinal polarization in the rest frame of the recoil nucleon
we ˇnd

sν,ν̄
L =

q0

|q|Jν,ν̄
0

[
±y GNC

M + (2 − y)GNC
A

] [
(2 − y)GNC

M ± y

(
1 + τ

τ

)
GNC

A

]
. (42)

In the case of the NC processes (1) and (2) only the energy E′
N of the ˇnal nucleon and

the scattering angle θN can be measured. In terms of these quantities we have

Q2 = 2M(E′
N − M), y =

(E′
N − M)

E
, q0 = E′

N − M, |q| =
√

E
′ 2
N − M2. (43)

The neutrino energy E is determined by the relation

E =
M(E′

N − M)
M − E′

N + p′N cos θN
, p′N =

√
E

′ 2
N − M2. (44)

2. COMMENTS

Our comments are based on the following two characteristic features of the NC neutrino
processes.

i) From (18) it follows that the axial form factor appears only in the combinations
GA − Gs

A Å if measurements are on protons, and GA + Gs
A Å if measurements are on

neutrons.
ii) From (17) and (38) we ˇnd the following expressions for the the NC magnetic and

electric form factors of the proton and the neutron:

G
NC(p)
M,E =

1
2
(1 − 4 sin2 θW ) Gp

M,E − 1
2

Gn
M,E − 1

2
Gs

M,E (45)

and

G
NC(n)
M,E =

1
2
(1 − 4 sin2 θW ) Gn

M,E − 1
2

Gp
M,E − 1

2
Gs

M,E , (46)

in which sin2 θW enters in the combination (1 − 4 sin2 θW ). From analysis of the existing
experimental data it follows that [17]

sin2 θW = 0.23116± 0.00012. (47)
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This implies that (1 − 4 sin2 θW ) � 0.075 and, consequently, the NC charge form factor of
the proton is very small:

GNC
E p � 1

2
[0.075 Gp

E − Gn
E − Gs

E ] � 0. (48)

• The transverse polarizations of the ˇnal protons and nucleons are determined in (41)
and are directly proportional to the NC charge form factors GNC

E .
Equation (48) implies that the transverse polarization of the proton is strongly suppressed,

which makes its measurement a very difˇcult task.
Of interest could be the transverse polarization of the ˇnal neutron. It exhibits a simple

linear dependence on GA + Gs
A:

GA + Gs
A =

2
2 − y

[
1

2 sin θN

(J0 sT )ν, ν̄
n

GNC
E,n

± y GNC
M,n

]
, (49)

� −1
2 − y

[
− 1

sin θN

(J0 sT )ν, ν̄
n

Gp
E + Gs

E

± y GNC
M,n

]
. (50)

In the last line we have used

GNC
E n =

1
2

[0.075Gn
E − Gp

E − Gs
E ] � −1

2
(Gp

E + Gs
E) . (51)

• The longitudinal polarization is determined in (42). Note that the electric form factors
do not enter this expression and the longitudinal polarization is expressed only in terms of
GNC

M and the axial form factors. From (45) and (46) it follows that for both protons and
neutrons it is expressed entirely in terms of the best measured magnetic form factors Gp,n

M ,
the small strange vector form factor Gs

M and the axial form factors (GA ± Gs
A).

In order to measure the longitudinal polarization, the neutrino detector must be placed in
a magnetic ˇeld.

These expressions considerably simplify forming the sum of the longitudinal polarizations
of ν and ν̄. Then measurements on protons and neutrons provide two linear equations for
(GA ± Gs

A):

GA − Gs
A =

√
τ(1 + τ)

[y2(1 + τ) + τ(2 − y)2]
(J0 sL)ν+ ν̄

p

GNC
M,p

, (52)

GA + Gs
A = −

√
τ(1 + τ)

[y2(1 + t) + τ(2 − y)2]
(J0 sL)ν+ ν̄

n

GNC
M,n

. (53)

• If both the transverse and longitudinal polarizations can be measured, then we can
determine their ratio (like in the case of elastic e−p scattering):(

sL

sT

)ν,ν̄

=
−M

|q| sin θN

[
τ(2 − y)GNC

M ± y (1 + τ)GNC
A

]
GNC

E

. (54)

As the transverse polarization of the proton is strongly suppresses, we consider the polar-
ization of the ˇnal neutron only. From (54), for GA + Gs

A we obtain

GA + Gs
A =

± 2
y

√
τ

1 + τ

[
2 sin θN

GNC
E,n

(
sL

sT

)ν,ν̄

+
√

τ

1 + τ
(2 − y)GNC

M,n

]
. (55)

An advantage of the ratio sL/sT is that many of the systematic uncertainties cancel.
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3. NUMERICAL ANALYSIS

Here we present the results of the study of the sensitivity of the transverse and longitudinal
polarizations to the different choices of the axial form factors GA and Gs

A. For comparison,
we present also the cross sections for the same values of GA and Gs

A.
We use the following commonly used parameterizations for the form factors, summarized

in [13]:

GD =
1(

1 +
Q2

M2
V

)2 , M2
V = 0.71, GM,p = μp GD, GM,n = μn GD,

GE,p = (1.06 − 0.14 Q2)GD, GE,n = −a
μnτ

1 + bτ
GD, a = 1.25, b = 18.3,

Gs
A =

gs
a(

1 +
Q2

M2
A

)2 , Gs
M = Gs

E = 0,

(56)

where μp = 2.79 and μn = −1.91 are the magnetic moments of the proton and neutron. Our
free parameters are MA and gs

a. We have calculated the effect of the different axial form
factors on the polarizations, considering the following choices of MA and gs

a:
1) MA = 1.016, gs

a = 0 Å full line;
2) MA = 1.016, gs

a = −0.21 Å dashed line;

Fig. 1. The dependence of the longitudinal polarization of protons sp
L (left) and neutrons sn

L (right) in
ν̄−N scattering on the different choices of MA and gs

A, given in Eq. (56). The polarizations are shown

for two neutrino energies: E = 1 GeV (top) and E = 5 GeV (bottom)
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3) MA = 1.35, gs
a = 0 Å dotted line;

4) MA = 1.35, gs
a = −0.21 Å dash-dotted line.

Note that we assume the same Q2-dipole form for the axial and strange axial form factors.
We present the polarizations for two values of the neutrino energy: E = 1 GeV and

E = 5 GeV. The plots are given as functions of Q2 in the interval Q2
min � Q2 � Q2

max,
where Q2

min is determined from E′
N � M , and Q2

max Å by the condition cos θN � 1. Once
we ˇx E and Q2, the scattering angle θN is determined via (44). We have

cos θN =
√

τ

1 + τ

(
1 +

M

E

)
� 1, (57)

which implies Q2
max = 4ME2/(2E + M) and

sin θN =

√
Q2

Q2 + 4M2

(
4M2

Q2
− 2M

E
− M2

E2

)
. (58)

We examine separately ν−N and ν̄−N elastic scattering.
• First we show the polarizations in ν̄−N elastic scattering.
The plots in Fig. 1 show the longitudinal polarization. It is clearly seen that for both the

protons and the neutrons it exhibits a strong sensitivity to the choice of MA. This sensitivity
becomes very clearly pronounced for higher energies, at Q2 � 1 GeV2 (E = 5 GeV). For
example, at Q2 = 3 GeV2 the proton polarization changes from sp

L � 0 at MA = 1.0 to

Fig. 2. The dependence of the transverse polarization of the neutron sn
T (left) and the ratio sn

L/sn
T

(right) in ν̄−n scattering on the different choices of MA and gs
A, given in Eq. (56). The polarizations

are shown for two neutrino energies: E = 1 GeV (top) and E = 5 GeV (bottom)
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sp
L � 0.7 at MA = 1.35 with almost no sensitivity to gs

A, the neutron polarization exhibits
similar behaviour at high energies (the lower plots in Fig. 1). A sensitivity to both the axial
and strange axial form factors we ˇnd at lower energies in the neutron polarization. For
example, at Q2 � 0.8 GeV2 (E = 1 GeV), sn

L varies from −0.4 to +0.4 depending on the
choices 1)Ä4) (the upper plots in Fig. 1).

Fig. 3. The longitudinal polarization in ν−N scattering at E = 5 GeV of protons (left) and neutrons

(right) for the different choices of MA and gs
A as shown in Eq. (56)

Fig. 4. The dependence of dσν
p/dQ2 (left) and dσν̄

p/dQ2 (right) (multiplied by 4π/G2
F ) on the different

choices of MA and gs
A, given in Eq. (56), at E = 5 GeV for protons (top) and neutrons (bottom)
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In Fig. 2 we show the transverse polarization sn
T of the neutron and the ratio sn

L/sn
T ,

Eq. (54). At lower energies, sn
T exhibits a sensitivity to both the axial and strange axial form

factors, and almost no sensitivity at E = 5 GeV (the left plots in Fig. 2). At lower energies
the Q2-dependence of sn

L/sn
T distinguishes all four choices (56) and becomes sensitive only

to MA at higher energies Q2 � 3 GeV2.

As our estimates showed, the transverse polarization of the proton is very small,
sp

T � 0.02−0.06.
• The polarization in ν−N scattering is big, but shows much weaker sensitivity to the axial

form factors. For illustration, in Fig. 3 we show the longitudinal polarizations at E = 5 GeV,
where the sensitivity is the biggest one.

• In Fig. 4, we show the differential cross sections (multiplied by 4π/G2
F ) for ν−p and

ν̄−p elastic scatterings at E = 5 GeV2 for the same MA and gs
A, Eq. (56). As compared to

the polarization, the sensitivity to the axial form factors is much weaker.

CONCLUSIONS

In a recent paper [12] we suggested that measurements of the polarization of the ˇnal
nucleon in quasi-elastic ν−N scattering could provide additional information about the axial
form factor GA. Here we present the results of the calculations of the polarization of the ˇnal
nucleons in elastic νμ(ν̄μ)−N scattering.

The NC form factors, which determine the process, are expressed in terms of the electro-
magnetic, axial and strange vector and axial form factors of the nucleon. We have examined
numerically the sensitivity of the ˇnal nucleon polarization to the axial and strange axial form
factors.

Most sensitive to the axial form factors are the longitudinal polarizations of the proton
and neutron in antineutrino nucleon scattering. This sensitivity increases for higher energies.
Also the value of the polarizations is large. In order to measure the longitudinal polarization,
like in the case of e−p scattering, a magnetic ˇeld must be applied.

The transverse polarization of the proton is extremely small and thus, very difˇcult to
be measured. This is a consequence of the smallness of the NC electric form factor of the
proton. On the other hand, the transverse polarization of the neutron is unsuppressed and can
be large. Big and most sensitive to the axial and strange axial form factors is the transverse
polarization in ν̄−n scattering at small Q2 � 1 GeV2. Its determination, however, requires
difˇcult measurement of left-right asymmetry in the scattering of the ˇnal neutron.

The measurement of the polarization of the ˇnal nucleons in NC elastic neutrinoÄnucleon
scattering is a challenge. However, such measurements could be an important source of
information about axial and strange form factors of nucleon in the same way as measurement
of the polarization of the ˇnal proton in elastic e−p scattering were very important for the
electromagnetic form factors of the proton. From our point of view, it is worthwhile to
consider a possibility for such measurements short-baseline neutrino experiments.
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