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Ds0 DK VERTEX IN QCD SUM RULES
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We calculate the form factors and the coupling constant in the Ds0DK vertex in the framework of
QCD sum rules. We evaluate the three-point correlation functions of the vertex, considering both D and
K mesons off-shell. The form factors obtained are very different but give the same coupling constant.
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INTRODUCTION

The meson Ds0 with the spinÄparity (JP = 0+) is one of the famous heavy 	avor hadrons.
Determination of the Ds0 meson width is limited by experimental resolution to a value of
less than 4.6 MeV/c2. The small width of Ds0 meson is not surprising as its mass is below
the threshold of DK system [1, 11].

There are various applications for the strong form factors and coupling constants associ-
ated with vertices involving mesons in QCD. The standard procedure of QCDSR is followed
in this work. We calculate the Operator Product Expansion (OPE) and the phenomenological
contributions for the correlation function of Ds0DK vertex and equate both contributions, fol-
lowing the principle of quarkÄhadron duality. In order to suppress higher order contributions
from the OPE side as well as higher resonances (and continuum) from the phenomenological
side, we use the Borel transform in both sides of the equation, obtaining the sum rule. The
numerical integration of the sum rule, to estimate the coupling constant, is performed. This
coupling constant is a function not only of the transferred momentum Q2 but also of the
Borel masses. In general one considers the dependence of decay constants (fD and fK) with
Borel mass to improve the stability of the coupling constant with respect to the variation
of the Borel masses [2, 12]. The outline of this paper is as follows: in Sec. 1, the general
formalism of QCD sum rules is presented for Ds0DK vertex [10]. Numerical calculations
and discussions are given in Sec. 2. Finally, conclusion is presented.
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1. THE SUM RULE FOR THE Ds0 DK VERTEX

The coupling at the Ds0DK vertex can be evaluated by using the three-point function
QCDSR. The three-point function associated with the Ds0DK vertex, for an off-shell D me-
son, is given by

Π(D)
μ (p, p′) = i2

∫
d4xd4y ei(p′·x−py)〈0|T {jk

μ(x)jDt

(y)jDt
s0 (0)}|0〉. (1)

And for an off-shell K meson:

Π(k)
μ (p, p′) = i2

∫
d4xd4y eip′·xe−i(p′·x)·y〈0|T {jD(x)jkt

μ (y)jDt
s0 (0)}|0〉, (2)

where the interpolating currents are jK
μ = uγμγ5s, jD = icγ5u, jDS0 = cs, with u, s, c being

up, strange, charm quark ˇelds, respectively. In both cases, each one of these currents has
the same quantum numbers as the corresponding mesons.

We can write each Πμ in terms of the invariant amplitudes associated with each one of
these structures in the following form:

Πμ(p, p′) = F1(p2, p′2, q2)pμ + F2(p2, p′2, q2)p′μ, (3)

where q = p′ − p.
Equations (1) and (2) can be calculated in two different ways: using quark degrees of

freedom Å the theoretical or OPE side Å or using hadronic degree of freedom Å the
phenomenological side.

Using the above currents to evaluate the correlation functions (1) and (2), the theoretical
or QCD side is obtained.

The framework to calculate the correlators in the QCD side is the Wilson operator product
expansion (OPE):

Π(D)
μ (x, y) = 〈0|T {jk

μ(x)jDt

(y)jDt
s0 (0)}|0〉, (4)

Π(D)
μ (x, y) = Aμ · 1 + Bμ 〈qq〉 + . . . , (5)

where 1 is the identity operator, Aμ(x, y) is the perturbative contribution, 〈qq〉 is the quark
condensate and Bμ(x, y) is the respective coefˇcient.

For each one of the invariant amplitudes appearing in Eq. (3), we can write a double
dispersion relation over the virtualities p2 and p′2, holding Q2 = −q2 ˇxed:

Π(per)
μ (p2, p′2, Q2) = − 1

4π2

∫
ds

∫
ds′

ρμ(p2, p′2, Q2)
(s − p2)(s′ − p′2)

+ subtraction terms, (6)

where ρμ(s, s′, Q2) equals the double discontinuity of the amplitude Πμ(p2, p′2, Q2), and is
calculated using Cutkosky's rules. The invariant amplitudes receive contributions from all
terms in the OPE. The ˇrst one of those contributions comes from the perturbative term and
it is represented in Fig. 1.

We can work with any structure appearing in Eq. (3), but those which have less ambi-
guities in the QCD sum rules approach are selected, which means less in	uence from the
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Fig. 1. Perturbative diagrams for the D off-shell (a) and K off-shell (b) correlators

higher-dimension condensates and a better stability as a function of the Borel mass and any
structure, appearing in phenomenological side. Because only the p′μ structure appears in
phenomenological side, the p′μ structure is chosen. In this structure, the quark condensate
(the condensate of lower dimension) contributes in the case of D meson off-shell. Using the
following relations:

B1 =
1

λ(s, s′, q2)
[2s′Δ − Δ′u],

B2 =
1

λ(s, s′, q2)
[2sΔ′ − Δu]

and

I0(s, s′, q2) =
1

4λ1/2(s, s′, q2)
,

Δ = (s + m2
3 − m2

1), Δ′ = (s′ + m2
3 − m2

2), u = s + s′ − q2,

λ(s, s′, q2) = s2 + s′2 + q4 − 2sq2 − 2s′q
2 − 2ss′,

the corresponding perturbative spectral densities which enter in Eq. (6) are

ρ(D)(s, s′, Q2) =
3

2[λ(s, s′, Q2)]1/2
(m2

c + 2mcms − s +

+ [(2m2
c + 2mcms − s + Q2 + s′)(m2

c(s + Q2 + s′) + s(s′ − Q2 − s))][λ(s, s′, Q2)]−1)
(7)

for D off-shell, and

ρ(K)(s, s′, Q2) =
3

[λ(s, s′, Q2)]3/2
[m4

c(s + Q2 + 3s′) + s′(mcms(s − Q2 − s′)+

+ s(−s − Q2 + s′)) + m2
c(−2s′(s + Q2 + s′) + mcms(s + Q2 + 3s′))] (8)

for K off-shell. Here s = p2, s′ = p′2, t = −Q2, λ(s, s′, t) = s2+s′
2+Q2−2st−2ss′−2ts′.

2. NUMERICAL CALCULATIONS AND DISCUSSIONS

The non-perturbative contributions in the QCD side containing the quarkÄquark and
quarkÄgluon condensate are calculated. The quarkÄquark condensate is considered for light
quarks u, d and s. Contributions of the quarkÄgluon condensate are zero after applying
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the double Borel transformation with respect to both variables p2 and p′2, because only one
variable appears in the calculations. Contributions of the quarkÄquark condensate are given by

Π(ss)D(q) = −〈ss〉
{

1
4
Tr [F (a)

μ (p, p′)] − ms

16
Tr

[(
∂

∂pα

∂

∂p′α

)
F (a)

μ (p, p′)γα

]
+

+
1
32

(m2
s − m2

0)Tr
[(

∂2

∂p∝∂p′∝
+

∂2

(∂p∝)2
+

∂2

(∂p′∝)2

)
F (a)

μ (p, p′)
]}

, (9)

where 〈ss〉 = 0.8〈qq〉, 〈qq〉 = (−0.245)3 [6], and

F ij(α)
μ (p, p′) = γμγ5is

ik
u (p)γ5is

kj
c (−p′). (10)

For the K off-shell, there is no quarkÄquark and quarkÄgluon condensate contribution. Our
calculations show that for two cases D and K off-shell, the gluon condensate contributions
are very small and we can easily ignore them in our calculations. The phenomenological side
of the vertex functions are obtained considering the contributions of the D and Ds0 mesons
to the matrix element in Eq. (1) and the D and K mesons to the matrix element in Eq. (2).
The meson decay constants fK , fDs0 and fD, which are deˇned by the following matrix
elements, are introduced:

〈Ds0(p)|K(p′)D(q) 〉 = g
(D)
Ds0Dk(q2),

〈Ds0(p)|D(p′)K(q) 〉 = g
(K)
Ds0Dk(q2),

〈0|jDs0 |Ds0(p)〉 = mDs0DkfDs0
, 〈0|jD|D(q)〉 =

m2
D

mC
fD,

〈
0

∣∣jk
μ

∣∣ k(p′)
〉

= ip′μfk.

The corresponding phenomenological amplitudes in these structures are

Π(D)phen
μ (p, p′) = g

(D)
Ds0Dk(q2)

fDs0
fkfD

m2
D

mC
mDs0

mk

(p2 − m2
Ds0

) (q2 − m2
D) (p′2 − m2

k)
p′μ (11)

for D off-shell, and

Π(k)phen
μ (p, p′) = g

(k)
Ds0Dk(q2)

fDs0
fDfk

m2
D

mC
mDs0

mk

(p2 − m2
Ds0

) (q2 − m2
k) (p′2 − m2

D)
qμ (12)

for K off-shell.
After performing the Borel transformation [7] with respect to the variables p2 and p′2 on

the physical (phenomenological) and QCD parts and equating these two representations of the
correlations, the equation for the strong form factors is obtained as follows:

g
(D)
Ds0DK(Q2) = (Q2 + m2

D)
mc

mDs0m
2
DfKfDfDs0

exp
(

m2
Ds0

M2

)
exp

(
m2

K

M ′2

)
×

×

⎡
⎣mc〈ss〉 e−m2

c/M2
− 1

4π2

smax∫
s0

ds

s′∫
0

ds′ exp
(
− s

M2

)
exp

(
− s′

M ′2

)
f(s, s′, Q2)

⎤
⎦ , (13)
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where

f(s, s′, Q2) =
3

2[λ(s, s′, Q2)]1/2

(
m2

c + 2mcms − s +
[
(2m2

c + 2mcms−

− s + Q2 + s′)(m2
c(s + Q2 + s′) + s(s′ − Q2 − s))

]
[λ(s, s′, Q2)]−1

)
(14)

for D off-shell. And

g
(K)
Ds0DK(Q2) = (Q2 + m2

K)
mc

mDs0m
2
DfKfDfDs0

exp
(

m2
Ds0

M2

)
exp

(
m2

D

M ′2

)
×

×

⎡
⎢⎣− 1

4π2

smax∫
s0

ds

s′
max∫

s′
min

ds′ exp
(
− s

M2

)
exp

(
− s′

M ′2

)
g(s, s′, Q2)

⎤
⎥⎦ , (15)

where

g(s, s′, Q2) =
3

[λ(s, s′, Q2)]3/2

[
m4

c(s + Q2 + 3s′) + s′(mcms(s − Q2 − s′)+

+ s(−s − Q2 + s′)) + m2
c(−2s′(s + Q2 + s′) + mcms(s + Q2 + 3s′))

]
(16)

for K off-shell, where Q2 = −q2, smax and s′max are the continuum thresholds and s0 = m2
c ,

s′min = m2
c +

m2
ct

s − m2
c

, s′1 = s + t − m2
c − st/m2

c and ms = 0.13, mc = 1.2, mDs0 =

2.317, mK = 0.498, mD = 2.01 [4, 5, 13]. The following relations between the Borel
masses: M2/M ′2 = m2

Ds0
/m2

D for K off-shell and M2/M ′2 = m2
Ds0

/m2
K for D off-shell,

are used [9].

Table 1 shows the values of the parameters used in the present calculation. The expressions
for the strong form factors and coupling constants contain also four auxiliary parameters,

Table 1. The leptonic de-
cay constants (in GeV) [5]

fK fD fDs0

0.160 0.240 0.225

namely, Borel mass parameters M and M ′ and continuum thresh-
olds smax and s′max. These are mathematical objects, so the phys-
ical quantities, i.e., strong form factors and coupling constants,
should be independent of them. The values of the continuum
thresholds are smax = (mDs0 + Δs)

2 and s′max = (mK + Δs′)2,
for D off-shell, and s′max = (mD + Δs′)2, for K off-shell.

Using Δs = Δs′ = 0.5 GeV [8] for the continuum thresholds and ˇxing Q2 = 1 GeV2, we

found a good stability of the sum rule for g
(K)
Ds0DK(Q2), as a function of the Borel mass M2,

in the interval 15 < M2 < 30 GeV2, as can be seen in Fig. 3.

In the case of g
(D)
Ds0DK(Q2), the interval for stability is also 20 < M2 < 40 GeV2, as can

be seen in Fig. 2.
Fixing Δs = Δs′ = 0.5 GeV and M2 = 3 GeV2 in both cases, we calculate the momentum

dependence of the form factors which are shown in Fig. 4. The squares correspond to the

g
(K)
Ds0DK(Q2) form factor in the interval where the sum rule is valid. The triangles are the

result of the sum rule for the g
(D)
Ds0DK(Q2) form factor. In the case when the K meson is

off-shell, our numerical results can be parameterized by an exponential function

g
(K)
Ds0DK(Q2) = 6.56 e−Q2/7. (17)
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Fig. 2. g
(D)
Ds0DK(Q2 = 1 GeV2) as a function of

the Borel mass M2

Fig. 3. g
(K)
Ds0DK(Q2 = 1 GeV2) as a function of

the Borel mass M2

Fig. 4. g
(D)
Ds0DK (circles) and g

(K)
Ds0DK (squares) QCDSR form factors as a function of Q2

The coupling constant was obtained as the value of the form factor at Q2 = −m2
K . In this

case the resulting coupling constant is

g
(K)
Ds0DK(Q2 = −m2

K) = 6.8 ± 0.4. (18)

In the case when the D meson is off-shell, the sum rule result is represented by the circles
in Fig. 4, and they can be parameterized by a monopole formula:

g
(D)
Ds0DK(Q2) =

46.6
Q2 + 11.43

, (19)

giving the following coupling constant, obtained at the D pole:

g
(D)
Ds0DK(Q2 = −m2

D) = 6.2 ± 0.6. (20)

Table 2. Value of our obtained and previously found [5] coupling constant

LCQCD This work (3PQCD)

gDs0DK 5.9±1.7 6.5±0.5
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We can see that the two cases considered here, off-shell D or K , give compatible results for
the coupling constant. Considering the uncertainties in the continuum thresholds and taking
the average between the obtained values, we have

gDs0DK = (6.5 ± 0.5) GeV−1, (21)

which is given in Table 2.

CONCLUSIONS

From Table 2, we see that our result is in a fair agreement with the LCSR calculation in [5].
Determination of this strong form factors and the coupling constants and their comparison
with the phenomenological models like QCD sum rules could provide useful information
about the structure of the Ds0(2317) meson.
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