IMucem B DUASL. 2014. T. 11, Ne3(187). C.401-411

OU3UKA BJIEMEHTAPHLIX YACTUIl 1 ATOMHOI'O AOPA. TEOPUA
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The ground-state binding energies of the light symmetric closed-shell nuclei, i.e., “He, '2C, 60
and “°Ca, and the heavy asymmetric ones, i.e., **Ca, °°Zr and '2°Sn, are calculated in the harmonic
oscillator (HOS) basis, by imposing the relative Fermi momentum cutoff of two point-like interacting
nucleons on the density-dependent average effective interactions (DDAEI). The DDAEI are generated
through the lowest order constrained variational (LOCV) method calculations for the asymmetric nuclear
matter with the operator and the channel-dependent-type bare nucleon—nucleon potentials, such as the
Argonne AV{‘S‘”"‘:2 and the Reid soft core, Reid68, interactions. In the framework of the harmonic
oscillator shell model, the cutoff is imposed by defining the maximum value of the relative quantum
numbers (RQNmax) in two ways: (1) the RQNmax of the last shell and (2) the RQNmax of each shell,
in the ground state of the nucleus. It is shown that present results on the binding energies and the
root-mean-square radius are closer to the corresponding experimental data than our previous works with
the same DDAEI potentials, but without the cutoff constraint. However, for the light symmetric nuclei,
the second scheme gives less binding energy and larger root-mean-square radius compared to the first
one, while the situation is reversed for the heavier nuclei.

B mnpencr BiaeHHOU p 6OTe ®HEPrHU CBSI3M OCHOBHOTO COCTOSIHUSI JIETKMX CUMMETPUYHBIX SIep
C 3 MKHYTBIMH OOOJOYK MH, HMEHHO: ‘He, 2C, %0 u °Ca, u Taxenbix CUMMETPUYHBIX, 18Ca,
907r u 12°Sn, BrrmcAIOTCS B IPHONMKEHHH I' pPMOHMYecKoro ocumwuiaTop (FO) ¢ H JoXeHHeM Tpebo-
B HUS OTHOCHUTEIBHOTO MMITYJIbCHOTO 00pe3 Hus PepMH OBYX TOUYEUHOMOAOOHBIX B3 MMOAEUCTBYIOIIUX
saiaep H cpenHue 9¢peKTUBHbIE B3 UMOAEHCTBUS, 3 BUcsAuMe OT wioTHocTH (COB3IT). COB3II renepu-
pyIoTCS B pH LIMOHHBIM METOIOM H uHu3miero nopsak (BMHII) nnsg cumMeTpuyHOH sSiiepHON M Tepuun
Y HYKJIOH-HYKJIOHHBIX ITOTEHIIU JIOB B3 MMOJIEHCTBUS «TOJIBIX» HYKJIOHOB, 3 BHCSIIUX OT K H JIOB, T KHX
K K ProHHCKHH Avl‘g;“":2 U peiiioBcKuil ¢ MArKuM KopoM Reid68. B p Mk x o6osoveuHoil Mopmenu
I' PMOHHYECKOTO OCHWIUIATOP 00Ope3 HHe H JI T eTCs ONpeleleHHeM M KCHUM JIbHOTO 3H YeHHs OTHO-
cutesibHbIX KB HTOBBIX YHCeN (RQNmax) omHUM U3 1BYX coco6oB: 1) RQN.x mocnenneit 060m09kH,
2) RQNmax K XJ10if 00GOJOYKH SIP B OCHOBHOM COCTOSHUM. [IOK 3 HO, YTO IMOJIydeHHbIC 3H YCHUS
SHEPTUH CBS3W M CPEIHEKB AP TUYHOTO p AUyCc Ommxe K COOTBETCTBYIOLIMM 3KCIIEPUMEHT JIbHBIM I H-
HBIM, YeM H IIu pe3ynbT Thl ¢ TeMu ke COB3II moteHnu 1 Mu, HO Ge3 o6pe3 Hus. OmH KO VIS JIETKHX
CUMMETPUYHBIX SEp BTOP 9 CXEM YMEHBILI €T DHEPrHi0 CBSI3U U YBEJMUYHB €T CPEIHEKB Op THYHBIN
p JHUYyC, €CIIM Cp BHUB Th €€ C MEpBOid. B TO Xe BpeMs I TSKeJbIX saep CUTy Iusl oOp TH .
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INTRODUCTION

Nowadays, as many decades ago, the main task in the nuclear structure physics is to
perform the microscopic many-body calculations to understand the properties, e.g., the binding
energies, the root-mean-square radius, etc., of nuclei with A interacting nucleons. It is well
known that there is a strong compensation between the nucleon—nucleon (VN) attraction at
the intermediate distances ~ 1.5 fm and the significantly stronger repulsion at short distances
< 0.5 fm, which leads to the binding energy per nucleon, that is much smaller than both the
average kinetic and potential energies [1]. However, the highly complicated nature of NN
force and, especially, the presence of a very strong repulsion force at the short distances have
made the solution of the nuclear structure problems a difficult task, for the nuclear physics
community. To overcome this complication, one of the successful approaches is to use
the traditional shell-model approximation with the two-nucleon effective interactions derived
from the bare NN potential as its input. However, the two-nucleon effective interaction
carries the high-momentum components associated with the strong short-range repulsion,
and this momentum is substantially larger than Fermi momentum characteristic of the given
nucleus [2,3]. In these regards, by using the lowest order constrained variational (LOCV)
method [4-6] and the basic local density Brueckner G-matrix idea [7-9], the density-dependent
average effective interaction (DDAEI) as well as the channel- and density-dependent effective
interaction (CDDEI) were generated with both the old phenomenological bare NN potentials,
i.e., Reid68, A—Reid68 and Reid68Day [10,11], and the modern ones, i.e., Av]z™>=>° [12],
and applied to the binding energy calculations of some light, moderate and heavy closed-shell
nuclei [13-17]. Although the results were not good in the DDAEI case, in particular for light
nuclei, they were good in the CDDEI approaches with respect to our past works as well as
others reports [18,19] (see Tables 5, 4 and 8 of references [13, 14] and [15], respectively).

Recently, starting from a realistic NN potential and integrating out, in the sense of
the renormalization group, the high-momentum components of NN, a low-momentum
potential, Viow.x, Was constructed which preserves the physics of the original NN potential
up to a certain cutoff momentum A [20,21]. To calculate the ground-state properties of some
light nuclei in the Vioy.; technique, the cutoff momentum is related to the dimension of the
configuration space in the coordinate representation [22]. It seems to be a good approximation
to consider a cutoff Fermi momentum of the two interacting nucleons through the value of
their shell quantum numbers corresponding to the nucleon configurations in each nucleus.
In this way, the relative Fermi momenta larger than the cutoff ones are removed from the
calculation of DDAEI according to their energy level in the shell model. As will be explained
in Sec.1 of this work, this can be done in two schemes: first, according to the maximum
value of relative quantum number (RQN) of the two nucleons in the last shell in the ground
state of the nucleus (k7"®* L8) and, second, in terms of the maximum value of RQN of two
nucleons in the each shell (K2*** ES) The harmonic oscillator (HOS) parameter is considered
as the varying parameter to calculate the ground-state nucleus binding energy. In Sec. 2, the
calculated results for symmetric light closed-shell nuclei and asymmetric moderate and heavy
ones are presented with DDAEI for both the Av]l’g;“":2 and the Reid68 potentials, which
are known as the modern and old phenomenological NN potentials. It is shown that the
present results are improved, with respect to our previous calculations [8—12] and regarding
the corresponding experimental data.
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1. THE BINDING ENERGY WITH THE CUTOFF FERMI MOMENTUM

Similar to our previous works [13—17], the ground-state binding energy of a closed-shell
nucleus is calculated in the HOS basis, |n;,l;,j;,7), where n;, l;, and j; are the familiar,
principle and orbital and total angular momentum quantum numbers of the nucleons. Again,
the HOS parameter v = / Mw/ is left as a single variational parameter to fix the root-mean-
square (rms) radius of the specific nucleus. The nucleon configurations of the closed-shell
nuclei, i.e., *He, 12C, 160, 40Ca , 48Ca, 90Zr and 12Sn, are chosen similar to our past repots.
The calculations are done at the center of mass of the nuclei, and the (average) binding
energies per nucleon for the foregoing closed-shell nuclei are written as follows:

B—f =(T\ - T4) + B3, (1)
where
T1:Z(2n¢+li+g)% @
is the one-body kinetic energy per nucleon,
Tom = %fw 3)

is the energy contribution from the center-of-mass motion and, finally, E, is the energy
contribution from the DDAEI, as follows:

S 3 -
E; = B E (17:7Ver (1,2)i4;7)a = T2eft + V2est- “4)
ij

The two-body DDAEI operator, Vg(1,2) [8,10], has the following form:

2

Ver(1,2) = 50 (F(1,2),[V3, F(1,2)] + F(1,2)V (12)7(1,2), 0
where F(1,2) and V(12) are the two-body average correlation function [8,10] and the
phenomenological NN potential, respectively. As before, the DDAEIL, V .(1,2), are divided
into the two-body effective kinetic and potential portions to consider the behavior of DDAEI
in detail (see Egs.(4) and (5)). In order to speed up our numerical calculations, the local
density approximation (LDA) [7-9, 13-17] is assumed. According to Egs.(24) and (25) of
reference [13] or Egs. (A.33) and (A.34) of reference [15], both the effective state averaged
two-body potential and the correlation function depend on the relative distance of the two
nucleons and their density. Thus, our DDAEI depends through the well-known relation, to
the Fermi momentum, as follows: 5
G3kE (6)
where v, the spin and the isospin degeneracy of the nucleon, is equal to 4. Now, we are ready
to impose the cutoff constraint on the relative Fermi momentum of two nucleons, according
to their energy in the corresponding shell model:

R
==,

p:

E.

@)



404 Mariji H., Modarres M.

and then,

/ 3
kc = Nc + 577 (8)

where k. and NN, are the cutoff relative Fermi momentum and the cutoff RQN of the corre-
sponding shell. As mentioned before, k. can be fixed in two ways. First, E, is limited to the
maximum value of the RQN of the last shell in each nucleus, i.e., k*®* LS In this case, N,
is defined as

NcmaxLS = 2Nmax + lmaxa 9)

where npyax and l,x are the maximum values of the relative principle and the angular
momentum of the nucleons in the last shell of the specific nucleus. Thus, for the ground state
of each nucleus, NénaXLs can be calculated through its shell model structure, and one finds
only one value for N™axLS or gmaxLS for each nucleus. However, it should be noted that
for the asymmetric nuclei, N™#*LS ig different for the protons and the neutrons, and we find
two values, i.e., NJ'&% LS and N; maxLS (gee Sec.2 for their corresponding values).

In the second scheme E.is limited up to the maximum values of RQN in each shell, i.e.,
EmaxES p this case in each shell, due to energy conservation, the maximum value of n and
[ can be derived from the familiar relation: 2ny + 11 +2no + 1o = 2n+ 1+ 2N + L, in which
N and L are the center-of-mass principle and angular momentum quantum numbers of the
two nucleons, respectively. Thus, Eé“aXES is calculated in each shell as follows:

EénaXESZQ(nl—f—ng)—l-ll—f—lg. (10)

So, in this case, we find several k™**ES for each nucleus (see Sec.?2 for their values and the
related discussions).

2. RESULTS AND DISCUSSION

Table 1 shows the values of N max LS for the different closed-shell nuclei, considered in this
work. The corresponding kmaXLS for each nucleus and the AvI3*=2 (A) and Reid68 (R)
potentials are given in the second column of Table 2. As one expects, the k7**S are
increasing as the atomic mass number is increased. On the other hand, their values are

different for each potential, since the calculated
Table 1. The maximum values of RQN of saturation points are different for the two poten-
two nucleons in the last shell, N™*xLS  of tials in each nucleus (see Eq.(8)). The k7*** LS
some closed-shell symmetric and asymmetric  values of the asymmetric nuclei are written in the
nuclei (see the text for more explanations) parenthesis for the neutron and the proton con-
figurations, respectively. Obviously, the kmaxLS

Symmetric
- > m o values for neutrons are larger than for protons
NlircxiiuLss He ¢ 0 Ca | in the case of asymmetric nuclei. In the third
Ne 0 2 2 4 column the values of k7"®* ES are glven for vari-
Asymmetric ous nuclei, but only for the AVI"‘ax ? interaction.
Nucleus | **Ca | °Zr | '*°Sn Since there is not much difference between the
NpaxLS g 6 8 k2exES and k22ES values, the latter are given.
Ne,, e L3 6 8 8 For “He there is not any difference between the
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Table 2. The Fermi momenta cutoff of the “*He, *2C, 160, *°Ca, *®Ca, °°Zr and '?°Sn nuclei. Note
that the values of k™**™ (fm~!) and £™**®S (fm~') are calculated in the saturation points of each
nucleus, according to Avjlv‘gﬁ“‘:2 and Reid68 potentials which are assigned «A» and «R», respectively.
The values of k2> F5 are sorted by increasing the amounts of N.. The values of asymmetric
nuclei are written in parenthesis for neutron and proton configurations. Since there is not much
difference between k" ™S and k& S in each shell, the values of k2**™5 are presented

k:;nax LS

Nucleus fraxLs fmax ES

“He(A) 0.75 0.75

‘He(R) 0.72 0.72

120(4) 1.03 0.66, 0.85, 1.01

12¢(R) 1.03 0.64, 0.82, 0.97

150(4) 1.14 0.70, 0.90, 1.07

SO(R) 1.12 0.68, 0.88, 1.05

10Ca(A) 1.36 0.71, 0.92, 1.08, 1.23, 1.36

“0Ca(R) 1.31 0.68, 0.88, 1.05, 1.19, 1.31

BCa(A) | (1.424,1.219) 0.698, 0.901, 1.067, 1.209, 1.337, 1.454, 1.561

BCa(R) | (1.452, 1.242) 0.686, 0.886, 1.048, 1.188, 1.314, 1.428, 1.534

907r(A) (1.573, 1.395) | 0.674, 0.870, 1.029, 1.167, 1.290, 1.403, 1.507, 1.604, 1.696

07r(R) (1.541, 1.368) | 0.649, 0.838, 0.992, 1.124, 1.243, 1.351, 1.452, 1.547, 1.634
1208n(A, R) | (1.449, 1.448) | 0.576, 0.743, 0.879, 0.997, 1.102, 1.198, 1.287, 1.370, 1.449

kmaxLS and gmaxES yalues, so their numerical values are the same. As the atomic mass
increases, the number of shells also increases, and we get more numeric values for k"®* ES,
On the other hand, the k;naXES values increase as one moves to the higher shells in each
nucleus. Note that these cutoff values are calculated at the saturation point of each nucleus
(7y) and the values of  are different in the two schemes, although the potential is the same.

In Fig. 1, the DDAEI of LOCV calculations, with the Avjl"g"a":2 (Reid68) potential, are
plotted for three different values of cutoff Fermi momenta: k™**S = 0.75 (0.72), 1.14 (1.12)
and 1.34 (1.31) fm~?, corresponding to the maximum values of the RQN of two nucleons
in the last shell for the ground state of “He, '°0 and “°Ca nuclei, respectively. The larger
variations with respect to k7<L5 are observed in the case of Reid68. Similarly, in Fig. 2, the
same comparisons have been made for one of the asymmetric nuclei for different proton and
neutron cutoff Fermi momenta, i.e., 8Ca, with the magnitudes of k?;ax LS — 1.22 (1.24) fm—1
and k215 =142 (1.45) fm™!, respectively. As in our previous works [14,16], the data
of figures come from the LOCV code for the asymmetric nuclear matter with the asymmetric
parameter (R = p,/prn), which is R = 1.00 for the symmetric nuclei, in Fig. 1, and & = 0.71
for the asymmetric nuclei, in Fig.2, corresponding to the proton-to-neutron ratio of *8Ca and
1208 (see also Table 2). The DDAEI are more repulsive for Reid68 potential with respect
to the Avjl‘g‘“‘:2 interaction. But the cutoff Fermi momentum values are approximately the
same (see Table 2 for their values which correspond to the above figures). On the other
hand, according to Fig. 1, the repulsive part of the potential of the two nucleons decreases as
the cutoff Fermi momentum is increased for both of the phenomenological interactions. This
situation is reversed in the attraction portion of DDAEI potentials. Therefore, it is expected
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Fig. 1. The DDAEI (MeV) versus the NN relative distance (fm) for the different cutoff Fermi
momentum. The heavy solid (solid) curves are for the Avig‘a":2 (Reid68). The results are produced
by using the asymmetric nuclear matter LOCV code with asymmetric parameters equal to 1

that two nucleons repulse each other in light nuclei much more than in heavier ones. Unlike,
the two nucleons are a little more repulsive (attractive) through Reid68 (Av;g) interaction
than through Av;g (Reid68) potential. Although the asymmetric parameter is reduced about
thirty percent with respect to the symmetric ones, Fig.2 shows the same situation as Fig. 1
and differences are not very significant. Thus, it seems that the interaction energies of the
heavier asymmetric nuclei are not different from those of the symmetric ones with respect to
the DDAEI graphs.

The variational binding energies per nucleon (MeV) of the symmetric closed-shell nuclei
by using the DDAEI with the Avjl‘g‘“‘:2 and the Reid68 potentials are given in Table 3.
The first column shows the different nuclei in which the letters «A» and «R» stand for the
Avjfga":2 and the Reid68 potentials, respectively. The next two columns show the values
of the saturation oscillator parameter v (fm~') and the calculated saturation rms radius (fm).
The forth up to seventh columns stand for the differences between the single particle and
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Fig. 2. The same as Fig.1, but with different proton and neutron cutoff Fermi momenta and the
asymmetric parameters equal to 0.71

the center-of-mass kinetic energies, the two-body effective kinetic and two-body effective
potential energies and the saturation binding energies (MeV). The columns labeled by stars
present the binding energy and rms radius of the symmetric nuclei from our previous works,
references [15] and [13], respectively, without the inclusion of the cutoff. Finally, the last two
columns show the experimental binding energy (MeV) and the rms radius (fm). This table
demonstrates that the momentum cutoff increases (decreases) the binding energies (rms) of
light closed-shell symmetric nuclei by about 2 MeV (10%) with respect to the same calculation
but without the cutoff constraint (the star numbers). Especially, we get very good agreement
with the experimental data for the 40Ca nucleus. In the present calculation, while the addition
of the one- (especially because of the reduction of the rms radius) and two-body kinetic
energies increases by about 20%, there is more than 35% increase in the two-body potential
energy (e.g., see Table 1 of reference [15]). So, as one would expect, on average the cutoff
constraint forces the nucleons to attract each other more than in the unconstrained case.
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Table 3. The variational binding energies (MeV) from the first consideration for the symmetric
closed-shell nuclei by using the DDAEI with Avis(jmax = 2) (specified by «A») and Reid68 (specified
by «R»). Data characterized by * comes from [15] and [13] corresponding to the Avfé‘a":2 and
Reid68 potentials, respectively. See the text for explanation for different columns

Nucleus | 4 | rom | D0 — T | Toeff | Vaeeff | BE | BE o | BETP |
A A A A A | A
"He(A) | 061 | 2.01 8.68 6.02 | -17.30 | -2.60 [ 0.71 | 2.66 | -7.08 | 1.63
"He(R) | 059 | 2.08 8.12 6.76 | —17.30 | -2.42 | -0.79 | 2.66
120(A) | 055|315 | 1280 735 | -22.34 | -2.19 | -1.03 | 2.94 | —7.68 | 2.47
2C(R) | 0.55|3.15 | 1280 8.89 | -23.79 | —2.09 | —0.98 | 2.94
80(A) | 0.62 | 242 | 1719 | 1236 | -3547 | -5.92 | 2.80 | 2.73 | -7.98 | 2.65
BO(R) | 0.61 | 246 | 16.64 | 1437 | -36.69 | -5.69 | —2.77 | 2.83
0Ca(A) | 058 [ 299 | 2066 | 15.72 | —45.10 | -8.71 | -5.96 | 3.21 | -8.55 |3.39
0Ca(R) | 056 | 3.09 | 1926 | 17.40 | —45.06 | -8.39 | -5.77 | 3.33

Table 4. The same as Table 3, but for the asymmetric closed-shell nuclei. The binding energies
accounting for the cutoff are characterized by «cut». See the text for more explanation

Nucleus v | rP T1 —Tan | Taeff | Vaeff @ BE™®

rms | Trms A A A A A
“BCa(A) | 0.54 | 3.43 | 3.21 19.46 13.30 | -38.34 | -5.59 | -8.67 | 3.53
BCacut(A) | 0.52 | 3.56 | 3.27 18.04 12.34 | =36.71 | -6.32
BCa(R) | 0.51|3.63 | 3.40 17.36 13.94 | =36.73 | -5.44
“BCacut(R) | 0.53 | 3.49 | 3.21 18.75 15.52 | —40.55 | -6.29
O7r(A) 052389370 | 22.02 16.17 | —46.43 | -8.24 | -8.71 | 4.27
OFrcat(A) | 0.51 | 3.96 | 3.77 21.18 15.65 | —45.78 | —8.95
PZr(R) | 0.48 | 420 | 4.02 18.76 16.09 | —42.75 | -7.89
OZrcus(R) | 0.50 | 4.04 | 3.84 | 20.36 17.93 | —47.01 | -8.71
1208n(A) | 0.47 | 4.43 | 4.28 19.79 14.37 | 42.97 | -8.82 | —-8.50 | 4.65
1208ncue(A) | 0.47 | 4.43 | 4.28 19.79 14.54 | —43.87 | -9.54
1208n(R) | 047 | 443 | 4.28 19.79 17.25 | -45.79 | -8.74
1208ncut(R) | 0.47 | 4.43 | 4.28 19.79 17.46 | —46.77 | -9.52

exp

Table 4 is the same as Table 3, but for the asymmetric closed-shell nuclei. The third
and the fourth columns show the calculated saturation points of the proton and the neutron
rms radius (fm), respectively. Since we have not calculated the binding energies of the
asymmetric nuclei with DDAEI in our previous works, these results are presented for both
cases, i.e., with (labeled by «cut») and without the cutoff. This table shows that, while for the
closed-shell asymmetric nuclei the imposition of the momentum cutoff increases the binding
energy of each nucleus by less than an MeV, the rms radius approximately remains the same
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Table 5. The same as Table 3 but corresponding to the second consideration. See the text for more
explanation

Nucleus v | Tems T = T | Toeff | Vaeff @ BE®® oxP
: A A A A A
“He(4) | 0.61 | 2.01 8.68 6.02 | -17.30 | -2.60 | -7.08 | 1.63
‘He(R) | 0.59 | 2.08 8.12 6.76 | —-17.30 | —2.42
12C(A) | 054 | 3.21 12.34 691 | -20.96 | -1.70 | -7.68 | 2.47
2C(R) | 052 | 3.33 11.45 7.62 | -20.67 | -1.60
0(A) | 0.57 | 2.63 14.53 9.75 | —28.51 | 424 | -7.98 | 2.65
5O(R) | 0.56 | 2.68 14.02 1130 | —29.41 | —4.10
40Ca(A) | 0.58 | 2.99 |  20.66 1575 | 4533 | 891 | -8.55 | 3.39
0Ca(R) | 0.56 | 3.09 19.26 17.44 | -45.28 | -8.57

Table 6. The same as Table 3 but corresponding to the second consideration. See the text for more
explanation

exp

Ty — T4 | Teeff | Vaeff | BE | BE®P

A A A A A
4BCa(A) | 057 | 3.25 | 3.04 | 21.68 15.80 | -45.81 | -8.33 | -8.67 | 3.53
48Ca(R) | 0.56 | 3.31 | 3.09 | 2093 18.23 | -47.24 | -8.08

Nucleus 5 Trms | TPms

207r(A) | 055 | 3.68 | 3.52 24.63 19.46 | -56.35 | -12.25 | -8.71 | 4.27
207r(R) | 0.53 | 3.81 | 3.65 22.87 2145 | -56.11 | -11.78
1208n(A) | 0.47 | 4.43 | 4.28 19.79 15.13 | -46.93 | -12.02 | -850 | 4.65

(
1208n(R) | 0.47 | 4.43 | 4.28 19.79 18.18 | =50.09 | —12.13

as in the un-cutoff case and on average the new results are in better agreement with the
experimental data.

Tables 5 and 6 are similar to the previous tables, 3 and 4, but by imposing the second
scheme, i.e., the k™3 ES cutoff values from Table 2. The binding energies increase more
than in the first scheme and especially for the asymmetric closed-shell nuclei such as ?°Zr
and 12°Sn and we get up to 3 MeV over binding. On the other hand, the rms radii do not
approximately change.

In conclusion, the ground-state binding energies of the light symmetric and the heavy
asymmetric closed-shell nuclei, such as 1He, 12C, 160, 40Ca 48Ca, 99Zr and 20Sn, were
calculated in the harmonic oscillator basis, by imposing the relative Fermi momentum cutoff
of the two interacting nucleons on the density-dependent average effective interactions. The
density-dependent average effective interactions were generated through the lowest order
constrained variational (LOCV) method calculations for the asymmetric nuclear matter with
the operator and the channel-dependent type bare nucleon—nucleon potentials, such as the
Argonne Avjl‘s“a":2 and the Reid soft core, Reid68, interactions. In the framework of the
harmonic oscillator shell model, the cutoff was imposed by defining the maximum value of
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the relative quantum numbers in two ways: (i) the maximum value of the relative quantum
numbers of the last shell and (ii) the maximum value of the relative quantum numbers of each
shell, in the ground state of the nucleus. It was shown that on average the present results
on the binding energies, and approximately the root-mean-square radius, are closer to the
corresponding experimental data with respect to our previous works with the same DDAEI
potentials, but without imposing the cutoff constraint. However, for the light symmetric
nuclei, the second scheme gives less binding energy and larger root-means-square radius
compared to the first one, while the situation is reversed for the heavier nuclei. As one should
expect, it seems that the first scheme is more sensible and suitable, since it is the «last shell»
that dictates the «Fermi momentums».

It is expected that one can achieve better results for lighter nuclei, if (1) the truncation
on the channel- and density-dependent effective nucleon—nucleon potential is made instead of
the average one and (2) all of the interactions Hamiltonian matrix elements [12] are taken
into account. On the other hand, one should not ignore the effect of three-body interactions,
especially for the light nuclei.
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