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ROBUST FITTING FOR THE ESTIMATION
OF HIDDEN PARAMETERS IN EXPERIMENTAL

DISTRIBUTIONS ON THE PLANE
V. B. Zlokazov 1, V. A. Morozov 2

Joint Institute for Nuclear Research, Dubna

The registration of two event characteristics, for example, e (energy) and t (time), gives us a
two-dimensional experimental distribution A(e, t), where the extraction of the information of interest
stumbles upon the absense of the appropriate parametrical model. A signiˇcant advantage of using
the autocorrelation spectrometer of delayed coincidences is the possibility to determine the scintillator
decay time τ from an energy dependence E = g(t, τ ), which, unlike the classical time decay model
N(t) = f(t, τ ), allows us to establish its parametrical correspondence to some elements of the two-
dimensional data and so to estimate τ by a procedure of the robust ˇtting, which automatically suppresses
the impact of parts of data not adequate to the model.

�¥£¨¸É· Í¨Ö ¤¢ÊÌ Ì · ±É¥·¨¸É¨± ¸μ¡ÒÉ¨°, ´ ¶·¨³¥·, e (Ô´¥·£¨Ö) ¨ t (¢·¥³Ö), ¤ ¥É ¤¢Ê³¥·´μ¥
Ô±¸¶¥·¨³¥´É ²Ó´μ¥ · ¸¶·¥¤¥²¥´¨¥ A(e, t), £¤¥ ¨§¢²¥Î¥´¨¥ ¨´É¥·¥¸ÊÕÐ¥° ´ ¸ ¨´Ëμ·³ Í¨¨ ´ É ²-
±¨¢ ¥É¸Ö ´  μÉ¸ÊÉ¸É¢¨¥ ¸μμÉ¢¥É¸É¢ÊÕÐ¥° ¶ · ³¥É·¨Î¥¸±μ° ³μ¤¥²¨. ‘ÊÐ¥¸É¢¥´´Ò³ ¶·¥¨³ÊÐ¥¸É¢μ³
¨¸¶μ²Ó§μ¢ ´¨Ö  ¢Éμ±μ··¥²ÖÍ¨μ´´μ£μ ¸¶¥±É·μ³¥É·  § ¤¥·¦ ´´ÒÌ ¸μ¢¶ ¤¥´¨° Ö¢²Ö¥É¸Ö ¢μ§³μ¦´μ¸ÉÓ
μ¶·¥¤¥²ÖÉÓ ¢·¥³Ö ¢Ò¸¢¥Î¨¢ ´¨Ö ¸Í¨´É¨²²ÖÉμ·  τ ¨§ Ô´¥·£¥É¨Î¥¸±μ° § ¢¨¸¨³μ¸É¨ E = g(t, τ ), ±μÉμ-
· Ö, ¢ μÉ²¨Î¨¥ μÉ ±² ¸¸¨Î¥¸±μ° ³μ¤¥²¨ N(t) = f(t, τ ), ¶μ§¢μ²Ö¥É Ê¸É ´μ¢¨ÉÓ ¥£μ ¶ · ³¥É·¨Î¥¸±μ¥
¸μμÉ¢¥É¸É¢¨¥ ´¥±μÉμ·Ò³ Ô²¥³¥´É ³ ¤¢Ê³¥·´ÒÌ ¤ ´´ÒÌ ¨ μÍ¥´¨ÉÓ τ ¸ ¶μ³μÐÓÕ ¶·μÍ¥¤Ê·Ò ·μ-
¡ ¸É´μ° ¶μ¤£μ´±¨, ±μÉμ· Ö  ¢Éμ³ É¨Î¥¸±¨ ¶μ¤ ¢²Ö¥É ¤¥°¸É¢¨¥ É¥Ì Î ¸É¥° ¤ ´´ÒÌ, ±μÉμ·Ò¥ ´¥  ¤¥-
±¢ É´Ò ³μ¤¥²¨.

PACS: 29.85.-c; 29.40.Mc

INTRODUCTION

The registration of two event characteristics, for example, e (energy) and t (time), gives us
a two-dimensional experimental distribution A(e, t), where the extraction of the information
of interest stumbles upon the absense of the appropriate parametrical model. Let us consider
an experimental distribution A(e, t), where e (energy) and t (time) Å coordinates from the
axes [0, E) and [0, T ) Å are connected by a parametric dependence

f(e, t, P ) = 0. (1)
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Typical objectives of the analysis of this distribution are as follows:
1) to estimate the vector of the parameters P from the experimental values of A(i, j)

and to determine the precision of such estimates; here i, j are channels, corresponding to the
physical values of e, t.

2) to test the hypothesis of P = P0, where P0 is an a priori estimate of the vector P .
However, the solution of these tasks meets serious difˇculties. The dependence (1) in the

experimental data A(e, t) is not always visible directly. The parameters P can be deˇned, if
one could select (or build) a component fexp(e, t) of A(e, t), which would approximate the
function f(e, t, P ) with an acceptable accuracy, and on the basis of this approximation one
would build an estimate of the parameters P . But this is not a very simple case Å in such
a function fexp(e, t) there will be a lot of elements, which are not adequate to the model
f(e, t, P ).

Let us assume that we can consider (1) as the relation between the variables e and t, that
will allow us to transform f(e, t, P ) to the function f(e(t), t, P ), i.e., in the function of one
variable g(t, P ). Similarly, instead of fexp(e, t) we will obtain the function uexp(t).

1. THE SOLUTION

Methods of semimanual recognition of functional dependences that would allow us to
identify and delete (or suppress) the disturbing elements in uexp(t), are very time- and effort-
consuming and are not suitable for a mass analysis of spectra.

We use the following approach:
• A formal deˇnition of the background object of a one-dimensional distribution (taking

into account that e = e(t)) is formulated; this function err (t) will be later either suppressed or
signiˇcantly diminished. In the general case err (t) contains both deterministic and stochastic
components.

• A function uexp(t) is found, which within the accuracy deˇned by the disturbing
elements orr (t), is close to the desired u(t, P ). We can denote the sum of both errors as
d(t) = err (t) + orr (t) and consider it as a total error of the approximating function g(t, P ).

• The robust approximation (stable to various inadequacies between the data and its model)
of the experimental function uexp(t) = u(t) + d(t) by the model g(t, P ) is used.

2. THE FITTING

The robust approximation (ˇtting) in the quadratic metric [2] is the most natural when
the deformed data are ˇtted. The idea of the method used can be illustrated by an example
of a variational task: to ˇnd a function, which is the closest to a given one in terms of the
quadratic metric.

So, we have a function uexp(t) and the class of functions G = (g(t)), where we look
for an element g0(t) such that it is the most close to uexp(t) in the sense of some weighted
quadratic metric on a set of points T = t1, t2, t3, . . . , tm:

g0(t) = ARG min
m∑

i=1

w(ti)(uexp(ti) − g(ti))2, (2)
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where the minimum is sought in the class G, and w(t) is a weight function, taking into
account d(t), i.e., the fact that in the class G there is no function exactly coinciding with
uexp(t) at all points of the T set.

It is obvious that the function g0(t) satisfying (2) should also satisfy the condition
m∑

i=1

w(ti)(uexp(ti) − g0(ti)) = 0. (3)

This shows that our task is to build such a weight function w(ti), which would have the
following property:

w(ti) =
{

1 if uexp(ti) = u(ti),
0 otherwise.

(4)

The equality to zero or the unit in the case of perturbed data will naturally hold only
approximately and, therefore, the solution of the problem will also be approximate. To ˇnd
such a weight function, we can use different algorithms of pattern recognition, but if the class
G is parameterized, i.e., G = g(t, P ) and all its functions differ only by the values of the
parameters P , then the idea of generalized weight function (4) can be the basis of the method
of robust ˇtting [1].

Let us consider this question in detail. In the ˇtting procedure the solution g(t, P0) will
fulˇll the requirement: in the space of the parameter values (P ) minimize the expression

S(P ) =
m∑

i=1

w(ti)(uexp(ti) − g(ti, P ))2. (5)

A necessary condition of this minimum is

∂S

∂pj
=

m∑
i=1

w(ti)(uexp(ti) − g(ti, P ))
∂g(ti, P0)

∂pi
) = 0, i = 1, 2, . . . , n, (6)

where pi are components of the vector P , and the function

w(t, Pa) =

⎧⎪⎨
⎪⎩

1
‖d(t)‖2

if | h(t) |< c,

(1 + β)
‖e(t)‖2(h(t)/c)2 + β

otherwise,
(7)

is taken as such a weight function. Here h(t) = uexp(t) − g(t, P ), Pa is an a priori estimate
of P0 (in particular, the value at the previous iteration in a nonlinear process), c and β are
constants determining the strategy of the robust ˇtting.

The weights (7) suppress a substantial part of the noise automatically, i.e., at those points
of t, where the function uexp(t) obviously cannot be ˇtted by the function g(t, P ); its impact
on the process of minimization is diminished so that there is a chance to approximate the
function u(t, P ) correctly, at least, on a part of the T set.

The ˇltering mechanism for the correct decision in this approach, unlike the method
of penalty functions, where large deviations from the true functions are punished, here is
encouraged but at the same time neutralized.

Additionally, the formalism of the quadratic ˇtting allows us to estimate at least a part of
the statistical accuracy of the obtained parameters.

The described method was implemented as part of the DELPHI program suite VMRIA [3].
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3. EXAMPLES

In the autocorrelation method using the delayed coincidences for the determination of the
decay constants by different scintillators [1] we register the distribution A(e, t) as a function of
the two variables e and t, where the exponentials from which these constants may be derived
are not presented explicitly; they may be obtained from A(e, t) by different smoothing and
averaging procedures, but the obtained functions are not pure exponentials Å they contain a
lot of ®interfering¯ elements. And here the use of robust ˇtting was the only effective and at
the same time an automatic means to obtain the estimates of parameters with an acceptable
accuracy. (See also Figs. 1 and 2.)

Fig. 1. A two-dimensional distribution A(e, t)

Fig. 2. The ˇtting function goes correctly through the points where it is adequate to the model, and
ignores those where it is not (on the left side and at the bottom). The obtained result is in agreement

with the known data (τ = 230 ns) [4]
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CONCLUSION

This is an approach which allows us to perform a mass analysis of two-dimensional
spectra from the scintillator detectors with a satisfactory accuracy in an automatic mode. Its
methodical advantage consists in the possibility to determine the scintillator decay time τ from
an energy dependence E = g(t, τ), which, unlike the classical time model N(t) = f(t, τ),
allows us to establish its parametrical correspondence to informative elements of the two-
dimensional data and so to estimate τ by a procedure of the robust ˇtting.
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