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BOUNDED COHERENT STATES
AND EXCITONIC SYSTEMS

D. J. Cirilo-Lombardo
Joint Institute for Nuclear Research, Dubna

New bounded coherent states construction, based on a Keldysh conjecture, is presented. The
particular group structure arising from the model leads to new symmetry transformations for the coherent
states system. The emergent new symmetry transformation is reminiscent of the Bogoliubov one.
This construction is applied to describe an excitonic system. We discuss how the symmetry of these
transformations is intrinsically related to the stability and the behavior of the physical systems as in the
excitonic case.
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INTRODUCTION

The idea of a possible BoseÄEinstein condensation (BEC) of excitons in semiconductors
has attracted the attention of both experimentalists and theoreticians for more than three
decades [1]. At different stages of this long history, the results of their efforts have been
described and discussed in several papers and review articles. As is usually very well
explained: if bosonic particles are cooled down below the temperature of quantum degeneracy,
they can spontaneously form a coherent state in which individual matter waves synchronize
and combine. Spontaneous coherence of matter waves forms the basis of a number of
fundamental phenomena in physics, including superconductivity, super
uidity and BoseÄ
Einstein condensation. Spontaneous coherence is the key characteristic of condensation in
momentum space. Excitons Å bound pairs of electrons and holes Å form a model system
to explore the quantum physics of cold bosons in solids. Cold exciton gases can be realized
in a system of indirect excitons, which can cool down below the temperature of quantum
degeneracy owing to their long lifetimes. Recently in [2] measurements of spontaneous
coherence in a gas of indirect excitons were reported and it was found that spontaneous
coherence of excitons emerges in the region of the macroscopically ordered exciton state and
in the region of vortices of linear polarization. The coherence length in these regions is
much larger than in a classical gas, indicating a coherent state with a much narrower than
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classical exciton distribution in momentum space, characteristic of a condensate. A pattern
of extended spontaneous coherence is correlated with a pattern of spontaneous polarization,
revealing the properties of a multicomponent coherent state. In this paper, we consider
the theoretical treatment of the excitonic behavior by means of a new bounded coherent
states construction in a quantum ˇeld theoretical context. The possibility to introduce the
coherent states in a physical system of excitons is mainly based on the idea of ®exciton state
splitting¯ and ®exciton wave function¯ introduced by L.V.Keldysh [3] earlier and will be the
scope of Introduction and Sec. 1. Section 2 is devoted to introduction of the new coherent
states by means of a speciˇc displacement operator. In Sec. 3, we show how new symmetry
transformations arise and how they are intrinsically related to the stability and general behavior
of the physical systems as in the excitonic case. Finally, in Sec. 4 the concluding remarks
and some comments on the metal-insulator transition in this new context are given.

1. THE EXCITON MODEL

Our starting point is based on the following splitting of the fermionic state in the material
to be considered:

ψα(x) ≡ ψ(e)
α (x) + ψ†(h)

α (x), (1)

ψ(e)
α (x) ≡

∑
j>j0

ajχ
j
α(x), ψ†(h)

α (x) ≡
∑
j�j0

ajχ
j
α(x), (2)

however
[a†

j , aj′ ]+ = δjj′ , [aj , aj′ ]+ = 0. (3)

Above we have deˇned χj
α(x) the basic functions of HartreeÄFock (HF) of the system, and

the indices j > j0 and j � j0 numerate the bounded states from the electronic zone and
the free states, respectively. Notice, that the above fermionic state considers effectively the
real situation where the holes and electrons are one entity: they are not independent; this
construction is far away to be trivial and will be one of the main cornerstones in the physical
phenomena arising of this coherent-exciton model.

It is very important to remark here, that deˇnition (1), presented for the ˇrst time by
Keldysh [1], is not the standard one given traditionally in the literature: deˇnition (1) describes
correctly the excitonic operator being the same operator acting in the characteristic zones.
Then, in sharp contrast with the traditionally accepted use of different operators for electron
and hole, respectively, construction (1) avoids all types of overcounting and spurious states
that are clearly nonphysical.

Let us consider, without loose generality and only to exemplify in concrete cases, the
symmetries of a periodic system (e.g., crystal) as the functions of HartreeÄFock (HF) take the
form of a Bloch state

χjα(x) = eiP·xuPlα, (4)

where P is the quasi-impulse and l is the number of zones, such that: j = {P, l}. If the case
is for a nonmetallic crystal, then the sum in j � j0 corresponds to the sum over all P that
live in the 1st Brillouin zone. The HF functions (4) obey the HF equation∫

hαβ (x,x′)χβ
j (x′) d3x′ = εjχjα(x) (5)
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with

hαβ(x,x′) = δαβδ(x,x′)
{
−�

2

2m0
∇2 −

∑ Zke2

|Rn,k − x| +
e2

2

∫
gββ(y,y) d3y

|x− y|

}
−

− e2 gαβ(x,x′)
|x − x′| (6)

being the HF operator, where we deˇne

gαβ (x,x′) ≡
∑
j�j0

χjα(x)χj
β(x′). (7)

The important observation here (in concordance with our remark about expression (1)) is that
the Hamiltonian is not the sum of several terms involving electrons, holes, etc., as separate
entities, as is currently taken in the literature: only the state deˇned in expression (1) is
involved into Hamiltonian (6).

2. THE EXCITON WAVE EQUATION

Due to the composite characteristic of the excitonic state, ˇrstly, we have particular interest
in the two-time two-particle Green functions

G
(2)
αβ,γδ(x,y, t;x′,y′, t′) = − i

�

〈
Tψ†

α(x, t)ψβ(y, t)ψ†
γ(x′, t′)ψδ(y′, t′)

〉
0
, (8)

where ψβ(y, t) are Heisenberg operators and 〈T . . .〉0 is a chronological product. The second
important point in the CS (Coherent States) excitonic formulation is due to the observation

pointed out in [2], that G
(2)
αβ,γδ(x,y, t;x′,y′, t′) can be written as

i�G
(2)
αβ,γδ(x,y, t;x′,y′, t′) =

= −
∑
PJ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕJP
αβ (x,y)ϕJP�

γδ (x′,y′) exp
[

i

�

(
P · (x+y−x′−y′)

2
− EJP(t−t′)

)]
, t > t′,

ϕJP�
αβ (x,y)ϕJP

γδ (x′,y′) exp
[
−i

�

(
P · (x+y−x′−y′)

2
− EJP(t−t′)

)]
, t < t′.

(9)

Here it is easily seen that

exp
[

i

�

P · (x + y)
2

]
ϕJP

αβ (x,y) =
〈
0

∣∣ψ†
α(x)ψβ(y)

∣∣ JP
〉
. (10)

Then, the above expression can be assumed as the basic wave function of the exciton1. Taking
into account the symmetries involved, the von Karman periodic conditions are

ϕJP
αβ (x + Rn,y + Rn) = ϕJP

αβ (x,y), (11)

1Notice, that from Eq. (8) the factorization in pairs of the two-time/two-ˇeld Green's functions is automatically
assumed.
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with Rn being a characteristic vector of the crystal lattice. Applying the Fourier transform
to (9) in the time, we obtain

G
(2)
αβ,γδ(x,y;x′,y′;PE) =

∑
J

2EJP

E2 − (EJP − iδ)2
ϕJP�

αβ (x,y)ϕJP
γδ (x′,y′), δ → + 0. (12)

Notice, that due to the free ˇeld form, these formulas are independent of the speciˇc form of
the Hamiltonian considered.

3. EXCITONIC COHERENT STATES CONSTRUCTION

It is well known that CS provide naturally a close connection between classical and
quantum formulations of a given system [6]. The importance of coherent states in physics,
and particularly in condensed matter physics, is huge. All the physical processes, where the
quantum world is macroscopically manifested (as in BEC or laser physics), can be faithfully
described by coherent states due to the semiclassical behavior, temporal stability and other
mathematical requisites needed in the quantum ˇeld theoretical framework. There exist three
standard deˇnitions in the construction of coherent states. The most suitable for us is proposed
here by means of a ®displacing operator¯ acting over the vacuum (speciˇc ˇducial vector).
The unitary operators

BJP =
1
V

∫
ψα†(x)ϕJP

αβ (x,y) exp
[

i

�

P · (x + y)
2

]
ψβ(y) d3x d3y,

(13)

B†
JP =

1
V

∫
exp

[
−i

�

P · (x + y)
2

]
ψα†(x)ϕ†JP

αβ (x,y)ψβ(y) d3x d3y,

where
ϕ†JP

αβ (x,y) =
[
ϕJP

βα (y,x)
]�

(V = normalized volume), (14)

and the commutation relations take the following form:

[BJP, B†
J′P′ ] = δJJ′δPP′−

−
{

1
V

∫
ψα†(e)(x) exp

(
i

2�
P · x

)
ϕJP

αγ (x, z) exp
[
−i

2�
(P − P′) · z

]
×

×ϕ†J′P′

γβ (z,y) exp
(
−i

2�
P′ · y

)
ψβ(e)(y) +

1
V

∫
ψα†(h)(x) exp

(
−i

2�
P′ · y

)
×

×ϕ†J′P′

γβ (y, z) exp
[
−i

2�
(P − P′) · z

]
ϕJP

αγ (z,x) exp
(

i

2�
P · x

)
ψβ(h)(y)

}
d3x d3y d3z,

(15)

indicating exactly the intrincated interplay in the electronÄhole system (notice the lack of
canonicity). In spite of the complexity of expression (15), we take advantage of the unitarity
of BJP (13) constructing the coherent states as

|β, JP〉 = exp
{
βB†

JP eiEJPt/� − β�BJP e−iEJPt/�

}
|0〉 ≡ |ϕ〉 , (16)
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where, after the use of Eq. (1), the explicit form of the displacement operator is as follows:

Dϕ = exp
[∫

ψα†(e)(x)ϕαβ(x,y) exp
[
−i

�

(
P · (x + y)

2
− μt

)]
ψβ†(h)(x)−

−ψα(h)(x)ϕ�
αβ(x,y) exp

[
−i

�

(
P · (x + y)

2
− μt

)]
ψβ(e)(x)

]
d3x d3y. (17)

Expression (17) is the theoretical basis of our model and will be speciˇcally proved and
compared with other approaches in future works. As before, we remark that this construction is
absolutely general and does not depend, in principle, on the Hamiltonian under consideration.
This fact is very important because the model presented here is not restricted to a speciˇc
physical system or physical problem [5].

4. COHERENT STATES IN ACTION: NEW SYMMETRIES
AND EMERGENT BOGOLIUBOV-LIKE TRANSFORMATIONS

To begin with and only in order to make a concise analysis of the construction given
before, let us consider a Wannier excitonic system. As is well known, such a system of
excitons is characterized by the screening of the crystal structure being well described by the
following Schroedinger equation:

(
i�

∂

∂t
− h

)
|ϕ〉 = 0. (18)

Expression (18) can be written (using operators D) as

Dϕ†

(
i�

∂

∂t
− h

)
Dϕ |0〉 = 0. (19)

The next, and very important step, is to see the action of the displacement operator over the
states:

ψα(x) ≡ ψ(e)
α (x) + ψ†(h)

α (x) ⇒ ψ̃α(x) ≡ ψ̃(e)
α (x) + ψ̃†(h)

α (x), (20)

D†
ϕψ(e)

α (x)Dϕ → ψ̃(e)
α (x) ≡ ψ(e)

α (x) cos ϕ + ϕαβψ†β(h)(x)
sin ϕ

ϕ
exp

[
i

�
(P · x − μt)

]
,

(21)

D†
ϕψ†(h)

α (x)Dϕ → ψ̃†(h)
α (x) ≡ ψ†(h)

α (x) cos ϕ − ψβ(e)(x)ϕαβψ†β(h)(x)
sin ϕ

ϕ
×

× exp
[
−i

�
(P · x − μt)

]
.
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This transformation shows speciˇcally the group structure, namely, the fundamental symme-
tries underlying the physics of the system. Clearly a Bogoliubov-like transformation arises

(
ψ̃

(e)
α (x)

ψ̃
†(h)
α (x)

)
=

⎛
⎜⎜⎝

cos ϕ
ϕαβ

ϕ
sin ϕ exp

[
i

�
(P · x− μt)

]

−ϕαβ

ϕ
sin ϕ exp

[
−i

�
(P · x − μt)

]
cosϕ

⎞
⎟⎟⎠×

×
(

ψ
(e)
α (x)

ψ
†(h)
α (x)

)
. (22)

The structure of the above transformation is regulated (see expression (10)) by the same Green
function that deˇnes the exciton wave function, given precisely in the speciˇc form of the
electronÄhole interaction. Introducing the transformed ˇelds via the displacement operator
into the Schroedinger equation, we obtain schematically[

ψ†(e)h̃(e)ψ(e) + ψ†(h)h̃(h)ψ(h) + ψ†(e)Qψ†(h) + ψ(h)Q†ψ(e)
]
|0〉 , (23)

where

h̃
(e)
αβ ≡ μδαβ sin2 ϕ − hαβ cos 2ϕ

and

Qαβ ≡ exp
[

i

�
(P · x − μt)

]
(μδγ

α − 2hγ
α)

sin (2ϕ)
ϕ

ϕγβ (24)

(and analogically for h̃
(h)
αβ and Q†

αβ). We see that expression (24) must be zero if the number
of particles is conserved. It is not difˇcult to see that one condition is μ/2 = nfh: the
chemical potential is proportional to the energy times of the fermionic number of the system
(the total energy considering the binding). This is an equilibrium condition. The other
one gives a condition over the speciˇc strength of the electronÄhole interaction, namely:
sin (2ϕ) = 0 with ϕ being the norm of the exciton wave function deˇned by expression (10).
And this fact is far to be trivial due to the behavior of transformations (21). The concrete
explanation of these conditions from the physical and mathematical points of view will be
a part of separate publications, and will not be discussed here [4, 5]. But the main points
arising from expressions (20)Ä(22) are:

i) transformations (22) control the general behavior of the physical system;
ii) the group dependence of the transformation changes due to the basic wave function of

exciton expression (11), that contains intrinsically the electronÄhole interaction. Notice, that
this interaction is precisely the building block of the Green function (9) and (12);

iii) facts i) and ii) re
ect the conductance properties of the material under consideration.
From points iÄiii) above, the model presented here can help to understand the metal

insulator transition. The transition from the excitonic phase of the electronÄhole system to
the conducting situation must be characterized by the breaking of the pair, then, this fact is
immediately re
ected in the changing of transformations (22). We believe that this effect
is promising to be the key to the interpretation and understanding of the metal-insulator
transition.
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