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ON THE GRIBOV PROBLEM IN YANGÄMILLS THEORY

O. Lechtenfeld 1

Institut féur Theoretische Physik and Riemann Center for Geometry and Physics,

Leibniz Universitéat Hannover, Hannover, Germany

I brie	y review the Gribov ambiguity of YangÄMills theory, some of its features and attempts
to control it, in particular, the GribovÄZwanziger proposal to restrict the functional integration in the
Landau gauge to the Gribov region. This proposal is extended to an arbitrary gauge in such a way as to
guarantee BRST invariance. The key insight is that any gauge change in the generating functional can
be effected by a suitable ˇeld-dependent BRST transformation. I derive a simple analytic formula for
the Jacobian of such a transformation, which yields an explicit recipe for the required transformation-
parameter functional and allows for the computation of the Gribov horizon functional in any gauge, as
I illustrate for the class of Rξ gauges.

PACS: 12.10.-g; 12.15.-y

1. WHAT IS THE GRIBOV AMBIGUITY?

Gauge theories are systems with redundant ˇeld variables. The simplest prototype is elec-
trodynamics in d space-time dimensions, described by gauge potentials A(x) = Aμ(x) dxμ,
with μ = 0, 1, . . . , d−1, subject to gauge transformations

A �→ UA = U(d + A)U † with U(x) = eiξ(x). (1)

The conˇgurations gauge equivalent to a given A form the gauge orbit OA = {A′| ∃U :
A′ = UA}, and the physical conˇguration space P is the space of gauge orbits or, equivalently,
the quotient space P = {A}/{U}, which is a topologically and geometrically complicated
inˇnite-dimensional orbifold. The gauge redundancy is already relevant perturbatively, for
the kinetic operator in the action possesses zero modes,

(S(2))μν ∂νf ≡ (ημν� − ∂μ∂ν) ∂νf = 0, (2)

hence S(2) is not invertible on {A}. To proceed computationally, one needs to ˇx a gauge,
which is a prescription of picking a representative A from each gauge orbit, uniquely
and completely, by a (local) ©idealª condition χ(A, x) = 0. This is implemented in
the generating-functional path integral Z(J) via the FaddeevÄPopov trick: Insert 1 =
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∫
DUδ(χ(UA))| det K(A)| with K(A) =

δ(χ(UA))
δU

∣∣∣∣
χ=0

, factor off the gauge-group vol-

ume and obtain

Z(J) =
∫

DA δ(χ(A))| det K(A)| exp
{

i

�

[
S0(A) +

∫
JA

]}

=
∫

D(A, C, C̄, B) exp
{

i

�

[
S0(A) +

∫
C̄KC +

∫
χ(A)B +

∫
JA

]}
.

(3)

Let us illustrate potential pitfalls in a two-dimensional toy example [1], with ©gauge ˇeldsª
(x) = (r, θ) ∈ R

2 subject to ©gauge transformationsª θ �→ θ + φ. The gauge-ˇxing function
χ might vanish for more than one angle θi = θi(r), so in general∫

dφ δ(χ(r, θ+φ)) =
∑

i

∣∣∣∣∂χ

∂θ
(r, θi(r))

∣∣∣∣−1

with χ(r, θi(r)) = 0. (4)

If the ©action functionª S = S(r) is independent of θ (©gauge invarianceª), then

Z =
∫

d2x eiS(r) = ∫ dφ︸︷︷︸
2π

∫
d2x

[∑
i

∣∣∣∣∂χ

∂θ
(r, θi(r))

∣∣∣∣−1
]−1

δ(χ(x))︸ ︷︷ ︸
kills

∫
dθ

eiS(r), (5)

where the number of terms in the sum may vary with r. This expression raises a few delicate
issues: First, how does one take into account the possibility of χ intersecting with part of the
gauge orbits more than once? Second, does the orientation of the intersection play a role?
Third, can I really ignore the sign of detK(A) in (3)?

An important insight was achieved by Gribov [2], who realized that, in YangÄMills
theory, where A = AaT a ∈ su(n), the Landau gauge χ = ∂ · A (like, in fact, any covariant
gauge) is not ideal in the above sense, because a gauge orbit OA may contain more than one
conˇguration with χ = 0:

∃A′ : A′ = U(d + A)U † with ∂μAμ = 0 = ∂μA′
μ. (6)

If A′ is inˇnitesimally close to A, one may approximate U = eξ = eξaT a � 1l + ξ, and the
existence of the so-called Gribov copy is equivalent to

0 = ∂μ(∂μ + adAμ)ξ = ∂μDμξ. (7)

This condition on A simply means that the FaddeevÄPopov operator K(A) = −∂μDμ

(here in Landau gauge) possesses a nonconstant zero mode. When A is ©smallª, i.e., in
perturbation theory, K(A) � −∂μ∂μ has only positive nontrivial eigenvalues, so no Gribov
problem occurs. For the same reason, the problem does not appear in QED altogether.
However, when A becomes ©large enoughª, K(A) eventually develops negative eigenvalues.
At some critical ©sizeª of A, some eigenvalue of K(A) crosses zero, meaning that detK(A)
switches sign and a new Gribov copy will appear. Gribov [2] was the ˇrst to realize that
many popular gauges (like Landau or Coulomb) yield inˇnitely many Gribov copies. Since
then, such (inˇnitesimal) Gribov copies have been constructed rather explicitly.
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It is customary to deˇne the ©Gribov regionª and ©ˇrst Gribov horizonª by

Ω := {A |χ(A) = 0 & K(A) > 0} and ∂Ω, (8)

respectively. Then, the inˇnitesimal Gribov copies sit on either side of the Gribov horizon ∂Ω.
Let me list some important properties of the Gribov region, disregarding for this purpose
global gauge transformations:

• An alternative deˇnition is Ω = {relative minima of ‖A‖2 = tr
∫

ddxA · A on OA}
because 0 = δ‖A‖2 ⇔ ∂ · A = 0 and 0 < δ2‖A‖2 ⇔ −∂ · D > 0.

• ‖A‖2 achieves its absolute minimum on each gauge orbit, thus each gauge orbit inter-
sects Ω.

• Ω is convex and bounded in every direction, because lim
λ→∞

K(λA) = λ∂μ adAμ is

traceless. Hence, there exists a negative eigenvalue, so λA /∈ Ω.
• The Gribov region still contains the Gribov copies! The reason is that ‖A‖2 on OA

develops a saddle point at ∂Ω. Therefore, ‖A‖2 can be lowered inside Ω. Clearly, a gauge
orbit OA can feature more than one relative minimum of ‖A‖2.

In view of the above complications, a more strict notion is useful, and one deˇnes the
©fundamental modular regionª (FMR) as

Λ := {absolute minimum of ‖A‖2 on OA}. (9)

It follows that Λ ⊂ Ω, O∩Λ 
= 0, Λ is convex and bounded in all directions, and ∂Λ∩∂Ω 
= 0.
One should note, however, that degenerate absolute minima of ‖A‖2 live on ∂Λ, and so the
boundary ∂Λ still holds the Gribov copies! Most of the historical material presented in this
and the following section are taken from the review by Vandersickel and Zwanziger [1].

2. PROPOSALS FOR A REMEDY

Over the years, a fair number of proposals have been put forward to control the Gribov
copies. The ubiquity of the feature is epitomized by Singer's theorem [3], which states that
only singular, i.e., noncontinuous, gauges can be free of the Gribov copies.

An obvious reaction is to select such a singular gauge, for example, a space-like planar
or a hyperaxial one. Yet, these are very cumbersome, and the computational price may
be too high.

It has been suggested to take (3) literally and to lift the absolute value of det K into the
action, but it remains unclear whether this procedure properly accounts for the number of the
Gribov copies. The opposite recipe maintains detK without absolute value and integrates
over all Gribov copies, hoping that alternating orientations of the intersection of OA with the
gauge condition will lead to a cancellation between most copies.

Other ideas invoke stochastic quantization, which introduces a ©gauge-ˇxing forceª tan-
gential to the gauge orbits, or simply a restriction of the functional integration to the Gribov
region Ω or the FMR Λ. The latter is connected with a hope for a conˇnement mechanism:
Since Ω is compact, quantization might give rise to a mass gap.

It is believed that the boundary of Ω carries a lot of weight, namely, that the path integral
is dominated by degenerate orbits

OĀ for Ā with D(Ā)ξ = 0 =⇒ K(Ā) = 0 =⇒ Ā ∈ ∂Ω, (10)

so that dim OĀ is smaller than the generic dim OA by the number of solutions ξ.
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Denoting by κ(A) the lowest eigenvalue of K(A) and cutting off the functional integration
at ∂Ω, in a saddle-point approximation one obtains [1]:

Z(J) =
∫

D(A, C, C̄, B) θ[κ(A)] exp
{

i

�

[
S0(A) +

∫
C̄KC +

∫
χ(A)B +

∫
JA

]}
=

=
1

2πi

∞∫
−∞

dω

ω−iε

∫
D(A, C, C̄, B) eiωκ(A) exp

{
i

�

[
S0(A) +

∫
C̄KC+

+
∫

χ(A)B +
∫

JA

]}
saddle point

�
∫

D(A, C, C̄, B) exp
{

i

�

[
S0(A) +

∫
C̄KC+

+
∫

χ(A)B + γ2H(A, C, C̄, B) +
∫

JA

]}
, (11)

with a ©horizon functionalª H . In the Landau gauge, χ = ∂·A, the latter depends on A only
and has been computed to be [1]:

H(A) =
∫

ddx

∫
ddy fabcAb

μ(x)(K−1)ad(x−y)fdecAeμ(y) −
∫

ddxd(n2−1), (12)

where fabc denote the gauge-group structure constants. The ©Gribov parameterª γ is to be
determined self-consistently via the ©gap equationª

∂ ln Z(0)
∂γ

(γ) = 0 ⇔ 〈H(A)
〉

γ
= 0 ©horizon conditionª. (13)

Three remarks are in order: Firstly, the integration measure above peaks around ∂Ω, sup-
porting the ©degenerate-orbit dominanceª hypothesis. Secondly, γ ∼ exp {−1/g2} vanishes
perturbatively, so its effect is only seen in the infrared. Thirdly, one ˇnds that the gluon

propagator behaves as
k2

k4 + 2γ2g2N
, while the ghost propagator gets enhanced like 1/k4,

consistent with the mass-gap picture.

3. YANGÄMILLS THEORY IN FADDEEVÄPOPOV QUANTIZATION

Almost all considerations regarding the Gribov problem have been made in the Landau
gauge. However, for any proposal of overcoming the problem in a speciˇc gauge, there arises
the crucial issue of gauge invariance. It is therefore necessary to probe such proposals for
nearby (or even distant) other gauges [4]. The proper tool for achieving this is a gauge-
changing procedure for the generating functional, preferably in the BRST formulation.

I begin by reminding the audience of the salient features of the FaddeevÄPopov quantiza-
tion of SU(n) YangÄMills theory in R

1,d−1. Its classical action reads

S0(A) = −1
4

∫
ddxF a

μνFμνa with F a
μν = ∂μAa

ν − ∂νAa
μ + fabcAb

μAc
ν , (14)

where a = 1, . . . , n and μ = 0, 1, . . . , d−1. S0 is invariant under gauge transformations

δAa
μ = Dab

μ ξb with Dab
μ = δab∂μ + facbAc

μ and ξb = ξb(x). (15)
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The BRST formulation of the quantum theory extends the ˇeld content and the action to

{φA} = {Aa
μ(x), Ba(x), Ca(x), C̄a(x)}, (16)

S(φ) = S0(A) +
∫

ddx C̄aKab(A)Cb +
∫

ddxχa(A)Ba, (17)

with a choice χa for a gauge-ˇxing function and with the ensuing FaddeevÄPopov operator

Kab(A) =
∂χa(A)

∂Ac
μ

Dcb
μ . (18)

In the Landau gauge, χa = ∂·Aa, one has Kab(A) = δab∂μ∂μ + facbAc
μ∂μ.

The extended action S is invariant under (even) BRST transformations

δλAa
μ = Dab

μ Cbλ, δλC̄a = Baλ, δλBa = 0, δλCa =
1
2
fabcCbCcλ, (19)

where λ is an odd constant. It is convenient to introduce the (odd) Slavnov variation sX of
any functional X by writing

δλX(φ) = (sX(φ))λ so that sX(φ) =
δX(φ)
δφA

RA(φ), (20)

with the combined short-hand notation

{RA(φ)} =
{

Dab
μ Cb(x), 0,

1
2
fabcCbCc(x), Ba(x)

}
(21)

and DeWitt's extension [5] of Einstein's summation convention (sum over A includes inte-
gration over x). The nilpotency of the Slavnov variation, s2 = 0, implies that

0 = sRA(φ) =
δRA(φ)

δφB
RB(φ) ≡ RA

,B RB. (22)

It is very useful to deˇne the extended (odd) gauge-ˇxing functional

ψ(φ) =
∫

ddx C̄aχa(A), (23)

in terms of which the extended action can be made manifestly BRST invariant:

S(φ) = S0(A)+
∫

ddx C̄aKab(A)Cb +
∫

ddxχa(A)Ba = S0(A)+sψ(φ) =: Sψ(φ), (24)

thus obviously sSψ(φ) = 0.

4. FIELD-DEPENDENT BRST TRANSFORMATIONS

The main point of this report, based on [6, 7], identiˇes a gauge change with a ˇeld-
dependent BRST transformation. Let me therefore generalize the odd constant λ to a ˇeld-
dependent (but still x-independent) BRST-parameter functional Λ(φ). The corresponding
transformation then reads

δΛX(φ) = (sX(φ))Λ(φ) = X,ARAΛ(φ) with Λ2(φ) = 0. (25)
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On the ˇelds φA themselves, this amounts to a (nonlocal) change of ˇeld variables φ → ϕ,

ϕA = ϕA(φ) = φA + δΛφA = φA + (sφA)Λ(φ) = φA + RA(φ)Λ(φ), (26)

with a Jacobian supermatrix

MA
B(φ) =

δϕA(φ)
δφB

= δA
B +

δRA(φ)
δφB

Λ(φ)(−1)εB + RA(φ)
δΛ(φ)
δφB

≡

≡ δA
B + RA

,BΛ(−1)εB + RAΛ,B. (27)

Surprisingly, its superdeterminant can be computed exactly:

sTr ln M(φ) = −
∞∑

n=1

(−1)n

n
sTr (RA

,BΛ(−1)εB + RAΛ,B)n =

= −
∞∑

n=1

(−1)n

n
sTr (RAΛ,B)n = +

∞∑
n=1

(−1)n

n
(Λ,ARA)n =

=
∞∑

n=1

(−1)n

n
(sΛ)n = − ln (1 + sΛ(φ)), (28)

hence

sDetM(φ) = [1 + sΛ(φ)]−1. (29)

Performing such a variable change in a functional integral, one obtains

I =
∫

Dϕ exp
{

i

�
W (ϕ)

}
=

∫
Dφ sDetM(φ) exp

{
i

�
W (ϕ(φ))

}
=

=
∫

Dφ exp
{

i

�
[W (ϕ(φ)) − i� sTr ln M(φ)]

}
=

=
∫

Dφ exp
{

i

�
[W (φ) + (sW (φ))Λ(φ) + i� ln (1 + sΛ(φ))]

}
, (30)

hence the functional W is shifted by a classical and a quantum piece. It is important to realize
that these transformations are not nilpotent, since

δ2
ΛX(φ) = δΛ[(sX(φ))Λ(φ)] = (sX(φ))(sΛ(φ))Λ(φ) (31)

vanishes only if

0 = sΛ(φ) = Λ,A(φ)RA(φ), (32)

which, of course, includes the trivial case of Λ(φ) = λ = const.
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5. RELATING DIFFERENT GAUGES

I will now be more speciˇc and take for W the extended YangÄMills action (24), i.e., in-
vestigate the form change of the YangÄMills vacuum functional in a gauge ψ under the change
of ˇeld variables induced by a ˇeld-dependent BRST transformation:

Zψ(0) =
∫

Dϕ exp
{

i

�
Sψ(ϕ)

}
sSψ=0

=
∫

Dφ exp
{

i

�
[Sψ(φ) + i� ln (1 + sΛ(φ))]

}
=

=
∫

Dφ exp
{

i

�
[S0(A) + s ψ(φ) + s δψ(φ)]

}
= Zψ+δψ(0), (33)

where the last term in the exponent is BRST exact,

i� ln (1 + sΛ(φ)) = s δψ(φ) with δψ(φ) = i� Λ(φ)(sΛ(φ))−1 ln (1 + sΛ(φ)). (34)

This shows that a ˇeld-dependent BRST transformation with Λ effects a shift of the extended
gauge-ˇxing functional by some δψ � i�Λ + O(Λ2).

It is illuminating to reverse the dependence and determine which BRST-parameter func-
tional Λ has to be chosen in order to achieve a given gauge change δψ. The inversion

sΛ(φ) = exp
{

1
i�

s δψ

}
− 1 (35)

is solved by (see also [8])

Λ(φ) = δψ (s δψ)−1

(
exp

{
1
i�

s δψ

}
− 1

)
=

=
1
i�

δψ

∞∑
n=0

1
(n + 1)!

(
sδψ

i�

)n

� δψ

i�
+

δψ sδψ

2(i�)2
+ . . . (36)

A prime example is the class of Rξ gauges, deˇned by

ψξ(φ) =
∫

ddx C̄a

(
∂μAa

μ +
ξ

2
Ba

)
. (37)

To move from Rξ to Rξ+δξ , gauge needs

δψ =
1
2
δξ

∫
ddx C̄aBa =⇒ s δψ =

1
2
δξ B2 with B2 =

∫
ddxBaBa, (38)

and the corresponding ˇeld-dependent BRST-parameter functional reads

Λ(φ) = (B2)−1

(
exp

{
δξ

2i�
B2

}
− 1

)∫
ddx C̄aBa =

=
δξ

2i�

{
1 +

1
2!

δξ

2i�
B2 +

1
3!

(
δξ

2i�
B2

)2

+
1
4!

(
δξ

2i�
B2

)3

+ . . .

} ∫
ddx C̄aBa (39)

in a (nonlocal) power series expansion in δξ (and B2/�).
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6. THE GRIBOV HORIZON BEYOND THE LANDAU GAUGE

The nonlocal GribovÄZwanziger model [1] is deˇned by adding the (nonlocal) Gribov
horizon functional to the extended action (24). In the Landau gauge, its (nonlocal) action
then reads

SH(φ) = Sψ(φ) + γ2H0(A) = S0(A) + sψ0(φ) + γ2H0(A), (40)

with

ψ0(φ) =
∫

ddx C̄a ∂·Aa and

H0(A) =
∫

ddx

∫
ddyfabcAb

μ(K−1)adfdecAeμ −
∫

ddxd(n2−1),
(41)

and the Gribov parameter γ is determined self-consistently by the gap equation (13).
As it stands in (40), the GribovÄZwanziger action SH is not BRST invariant, because H

is deˇned in the Landau gauge, and its Slavnov variation does not vanish,

sH0 =
∫

ddx

∫
ddy fabcf cde

[
2Dbq

μ Cq(K−1)ad−

− fmpn

∫
Ab

μ(K−1)amKpqCq(K−1)nd

]
Aeμ 
= 0. (42)

Does this imply that the effective quantum action and thus the physical S-matrix are gauge-
dependent even on-shell? No, it only means that away from the Landau gauge one cannot
use the same horizon functional, but should properly modify it such as to account for the
gauge change. This modiˇcation can now be directly computed using the tool developed in
the previous section.

For the example of the Rξ gauges (37), let me move from ξ = 0 to some ˇnite value of ξ.
As I demonstrated, this can be done by a ˇeld-dependent BRST transformation

φA �−→ φA + (sφA)Λξ(φ) with Λξ(φ) = (B2)−1

(
exp

{
ξB2

2i�

}
− 1

)∫
ddx C̄aBa (43)

leading to

Zξ=0(0) =
∫

Dφ exp
{

i

�
(S0(A) + sψ0(φ) + γ2H0(A))

}
=

=
∫

Dφ exp
{

i

�
(S0(A) + sψξ(φ) + γ2Hξ(φ))

}
= Zξ(0), (44)

where I read off

ψξ(φ) =
∫

ddx C̄a

(
∂μAa

μ +
ξ

2
Ba

)
and Hξ(φ) = H0(A) + (sH0(A, C))Λξ(φ). (45)

The last equation provides a proposal for the horizon functional in a general Rξ gauge in
such a way that gauge invariance is restored in the vacuum functional:

γ2〈δH(φ)〉γ + 〈s δψ(φ)〉γ = 0 under ψ �→ ψ + δψ. (46)
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To demonstrate the computability, here is its explicit form:

Hξ(φ) = fabc

∫ ∫
Ab

μ(K−1)adfdecAeμ −
∫

d(n2−1)+

+ fabcf cde

∫ ∫ [
2Dbq

μ Cq(K−1)ad − fmpn

∫
Ab

μ(K−1)amKpqCq(K−1)nd

]
×

× Aeμ(B2)−1

[
exp

(
ξ

2i�
B2

)
− 1

]∫
C̄�B�. (47)

This idea may likewise be applied to the local form of the GribovÄZwanziger model [1],
which further extends the ˇeld space to

{ΦA} = {φA, ϕac
μ , ϕ̄ac

μ , ωac
μ , ω̄ac

μ } (48)

and features the following (local) action:

SGZ(Φ) = S0(A) + sψ(φ) + Sγ(A, ϕ, ϕ̄, ω, ω̄), (49)

where the (now local) ©improvement functionalª reads

Sγ =
∫

ddx [ϕ̄ac
μ Kabϕμbc − ω̄ac

μ Kabωμbc + 2iγfabcAb
μ(ϕμac + ϕ̄μac) + γ2 d(n2−1)]. (50)

The new ˇelds form two BRST doublets

δλϕac
μ = ωac

μ λ, δλϕ̄ac
μ = 0,

δλωac
μ = 0, δλω̄ac

μ = −ϕ̄ac
μ λ.

(51)

Again, BRST invariance is (softly) broken since

sSγ = fadb

∫
ddx [ϕ̄ac

μ KdeCeϕμbc + ω̄ac
μ KdeCeωμbc+

+ 2iγ(Dde
μ Ce(ϕμab + ϕ̄μab) + Ad

μωμab)] 
= 0. (52)

However, gauge invariance can be restored by deˇning (for general Rξ gauges)

Sγξ(Φ) = Sγ(A, ϕ, ϕ̄, ω, ω̄) + (sSγ(A, C, ϕ, ϕ̄, ω, ω̄))Λξ(φ), (53)

so that the action changes via the corresponding ˇeld-dependent BRST transformation as

SGZ(Φ) �−→ S0(A) + sψξ(φ) + Sγξ(Φ), (54)

induced by a harmless change of variables in the functional integral. Once more,

sSγ(Φ) 
= 0, but δSγ(Φ) = sSγ(Φ)Λξ(φ) balances s δψ(φ). (55)
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7. OUTLOOK

I have shown how it is possible to move from a reference gauge ψ0 to a desired gauge ψ
via a ˇeld-dependent BRST transformation with parameter functional

Λψ(φ) = (ψ−ψ0)(s(ψ−ψ0))−1

(
exp

{
1
i�

s(ψ−ψ0)
}
− 1

)
=

=
1
i�

(ψ−ψ0)
∞∑

n=0

1
(n + 1)!

(
1
i�

s(ψ−ψ0)
)n

. (56)

This connection proposes a corresponding change of the horizon functional,

Hψ(φ) − H0(φ) = (sH0(φ))Λψ(φ). (57)

One may use these results in Rξ gauges to interpolate between the interpretation-friendly
unitary gauge (ξ → ∞) and the renormalization-friendly Landau gauge (ξ → 0). It will be
also very interesting to go beyond Rξ gauges and relate, for instance, the Coulomb gauge to
the Landau gauge. Finally, I have only discussed the vacuum functional. The analysis should
be (and can be) extended to investigate the gauge variation of Green's functions, VEVs and
S-matrix elements using

Zψ+δψ(J) = Zψ(J) − i

�
JA 〈(sφA) Λδψ(φ)〉J . (58)
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