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BRANE SUSY BREAKING AND INFLATION:
IMPLICATIONS FOR SCALAR FIELDS

AND CMB DISTORTION

A. Sagnotti 1

Scuola Normale Superiore and INFN, Pisa, Italy

I elaborate on a link between the string-scale breaking of supersymmetry that occurs in a class of
superstring models and the onset of in	ation. The link rests on spatially 	at cosmologies supported by a
scalar ˇeld driven by an exponential potential. If, as in the String Theory, this potential is steep enough,
under some assumptions that are spelled out in the text, the scalar can only climb up as it emerges from
an initial singularity. In the presence of another mild exponential, slow-roll in	ation is thus injected
during the ensuing descent, and deˇnite imprints are left in the CMB power spectrum: the quadrupole
is systematically reduced and, depending on the choice of two parameters, an oscillatory behavior can
also emerge for low multipoles l < 50, in qualitative agreement with WMAP9 and the Planck data. The
experimentally favored value of the spectral index, ns ≈ 0.96, points to a potentially important role for
the NS ˇvebrane, which is unstable in this class of models, in the Early Universe.

PACS: 11.25.-w; 11.30.Pb

1. BRANE SUSY BREAKING IN THE STRING THEORY

The key progress in the String Theory [1] in the mid-1990s was spurred by the identiˇca-
tion of dualities relating to one another spectra that appear vastly different at ˇrst sight. Some
of these dualities are nonperturbative from the string vantage point, but ˇnd a partial justiˇ-
cation in the low-energy supergravity, while others are captured by string perturbation theory.
The latter include the orientifold projections [2] that can associate open sectors to correspond-
ing closed-string spectra, whose simplest manifestation is the link between the type-IIB theory
of oriented closed strings and the SO(32) type-I theory. In the geometrical picture proposed
in [3], this particular projection is induced by space-time-ˇlling nondynamical extended ob-
jects, the O9− orientifolds, whose negative tension T and charge Q are identical in suitable
units. Since the corresponding lines of force would have nowhere to come from, the charge Q
is to be compensated via dynamical extended objects, the D9-branes. These carry in their
turn identical tension T and charge Q that are, however, positive, so that both the total charge
and the total tension cancel in the vacuum of the SO(32) type-I superstring. Another option,
whose signiˇcance was appreciated later, rests on a different type of orientifold, also visible
in the perturbation theory [4], and whose ˇrst manifestation was found long before in [5].
Commonly referred to as O9+, this orientifold is somehow more standard, since it carries

1E-mail: sagnotti@sns.it



1298 Sagnotti A.

identical and positive tension T and charge Q. It results in a different projection [6,7] that is
still supersymmetric, but now D9-antibranes are to be present in the vacuum to compensate
the positive charge, with the end result that the tensions add up rather that canceling as before,
while supersymmetry appears nonlinearly realized in the low-energy spectrum [8]. More in
detail, in the open sector, the Bose and Fermi excitations that would be paired in the SO(32)
superstring display mass differences sized by the string scale 1/

√
α′ and include a goldstino

that conveys the breaking to the closed sector. The latter appears supersymmetric in the parti-
tion function only because in this ©brane SUSY breakingª (BSB) phenomenon [6,7] the open
sector emerges at a higher order in the genus expansion, from (projective) disk amplitudes,
and a similar pattern is found in the lower-dimensional BSB models [7].

The potential applications of BSB are apparently hampered by the ©smoking gunª that it
leaves behind, an exponential potential that takes a universal form in the ©string frameª, i.e.,
if the terms in the low-energy supergravity are accompanied by powers of the string coupling

gs = eφ (1)

that re	ect their origin in the Polyakov genus expansion:

S10 =
1

2κ2
10

∫
d10x

√
−g

{
e−2φ(−R + 4(∂φ)2) − T e−φ + . . .

}
. (2)

The exponential potential clearly complicates matters since 	at space does not solve the ˇeld
equations, and therefore insisting on the standard setting would require that resummations
be implemented in the String Theory [9]. Still, the basic BSB phenomenon that we have
illustrated has the encouraging feature of being free from tachyon instabilities at the classical
level.

A vastly different option is suggested by the link introduced by BSB between the SUSY
breaking and string scales, which are naturally, albeit not necessarily, identiˇed with GUT
scales O(1016) GeV. Could models of this type be perhaps of interest for the Early Uni-
verse [10,11]?

2. A CLIMBING SCALAR IN d DIMENSIONS

Let us turn to consider the behavior of a minimally coupled scalar ˇeld Φ, for which

S =
∫

ddx
√
−g

[
− 1

2κ2
d

R − 1
2
(∂Φ)2 − V (Φ) + . . .

]
(3)

in spatially 	at cosmologies of the type

ds2 = −e2B(t) dt2 + e2A(t) dx · dx, dtc = eB(t) dt, (4)

where B(t) connects the ©parametricª time variable t to the actual cosmological time tc. If the
potential V (Φ) never vanishes, combining the convenient gauge choice

V (Φ) e2B =
M

2

2κ2
d

(
d − 2
d − 1

)
(5)
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with the redeˇnitions

τ = Mt, A = (d − 1)A, ϕ = κd

√
d − 1
d − 2

Φ, V(ϕ) = 2κ2
d

(
d − 1
d − 2

)
V (Φ), (6)

one arrives at the neat universal form for the resulting equations in the expanding Universe:

ϕ̈ + ϕ̇
√

1 + ϕ̇2 + (1 + ϕ̇2)
1

2V
∂V
∂ϕ

= 0, Ȧ =
√

1 + ϕ̇2. (7)

Here, ©dotsª denote derivatives with respect to the rescaled parametric time τ , and, interest-
ingly, the driving force results from the logarithm of the scalar potential.

Equations (7) are exactly solvable if

V(ϕ) = (M)2 e2γϕ, (8)

and many explored this type of systems after Halliwell's identiˇcation of the gauge
choice (5) [12], until the exact solution was ˇrst presented for γ = 1 by Dudas and Mourad
in [13] and then for all γ by Russo in [12]. Let us review some key features of these solutions
following [10], where the climbing behavior was identiˇed, taking into account that up to
redeˇnitions of ϕ, one can restrict the attention to positive values of γ. There are then two
vastly different regions:

1. For 0 < γ < 1, two distinct types of solutions exist: a climbing scalar, for which

ϕ̇ =
1
2

[√
1 − γ

1 + γ
coth

(τ

2

√
1 − γ2

)
−

√
1 + γ

1 − γ
tanh

(τ

2

√
1 − γ2

)]
, (9)

and a descending scalar, for which

ϕ̇ =
1
2

[√
1 − γ

1 + γ
tanh

(τ

2

√
1 − γ2

)
−

√
1 + γ

1 − γ
coth

(τ

2

√
1 − γ2

)]
. (10)

In the former solution ϕ emerges from the initial singularity, set here at τ = 0, climbing up
the exponential potential to then revert its motion and descend along it, while in the latter it
emerges directly climbing it down. In both cases, the scalar is readily driven by cosmological
friction to approach the limiting speed

vl = − γ√
1 − γ2

, (11)

and for any 0 < γ < 1, there is also an exact solution of Eqs. (7), where ϕ proceeds all the
way at the limiting speed (11). This is the LucchinÄMaterrese (LM) attractor [14], which

takes such a simple form in the convenient gauge (5). If γ <
1√

d − 1
, the limiting speed

corresponds to a slow-roll in	ationary phase of the Universe.
2. As γ → 1, the limiting speed diverges, while the LM attractor disappears at the ©criticalª

point γ = 1. The descending solution is not present anymore for γ � 1, where the scalar can
only emerge from the initial singularity while climbing up the corresponding steep potentials.
For γ = 1, the climbing solution is particularly simple, and reads

ϕ̇ =
1
2τ

− τ

2
, (12)

so that for large τ it approaches a uniformly accelerated motion in the gauge (5).
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No additive constants are present in ϕ̇, while ϕ clearly does contain an initial-value pa-
rameter ϕ0, and this can effectively tune the strength of its interaction with the exponential
barrier.

3. STRING REALIZATIONS

Can these solutions play a role in the String Theory? The actual link entails an interesting
subtlety, which I can brie	y illustrate starting from the compactiˇcation of the Lagrangian (2)
to d dimensions on the metric

ds2 = exp
[
− (10 − d)

(d − 2)
σ

]
gμν dxμ dxν + eσ δij dxi dxj , (13)

whose dependence on the scalar σ that sizes the internal volume has been arranged in such a
way that the system ends up in the Einstein frame. The reduced Lagrangian

Sd =
1

2κ2
d

∫
ddx

√
−g

{
−R − 1

2
(∂φ)2 − 2(10 − d)

(d − 2)
(∂σ)2−

−T exp
[
3
2
φ − (10 − d)

(d − 2)
σ

]
+ . . .

}
(14)

can be turned into the more conventional form

Sd =
1

2κ2
d

∫
ddx

√
−g

{
−R − 1

2
(∂Φs)2 −

1
2
(∂Φt)2 − T eΔΦt + . . .

}
(15)

by the ˇeld redeˇnitions, but then, remarkably, rescalings similar to those in Eq. (6) show that
the exponential potential for Φt has γ = 1, and is thus ©criticalª for all d [15]! The presence
of the second scalar Φs clearly complicates matters, but we shall assume nonetheless that it
is somehow stabilized, and we shall thus follow the common practice of concentrating on
one-ˇeld models of in	ationary cosmology.

A climbing scalar is of special signiˇcance in the String Theory, since it is naturally
compatible with an upper bound on the dilaton φ, and thus with a perturbative string regime.
However, while later epochs will be central in what I am about to describe, let me stress
that I am not aware of fully convincing arguments to ignore, as we did in [10, 11], higher-
derivative corrections to the effective action (2) near the initial singularity, which generally
make climbing not inevitable. Nonetheless, let me conclude this section on a positive note,
mentioning brie	y another little miracle [10]: in four dimensions the climbing behavior
persists even if one includes the axion partner θt of Φt, since its nonminimal kinetic term
freezes it out near the initial singularity.

4. IMPLICATIONS FOR THE CMB POWER SPECTRUM

The critical exponential potential of Eq. (15) is not alone in the String Theory. Already in
the simple model of [6], it is accompanied in principle by a similar term with γ = 1/2 that
originates from the non-BPS D3-brane of [16] and is capable of supporting an in	ationary
phase, so that in the following, I shall focus on the more general class of potentials

V(ϕ) = M
2
(e2ϕ + e2γϕ), (16)
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and the comparison with the actual CMB power spectrum tilt determines γ ≈ 1/12.4 as an
optimal choice. This class of potentials combines an early climbing phase, a sort of bounce
against a ©hard exponential wallª and a ˇnal in	ationary descent. It is not exactly solvable
in general, but two choices of qualitatively similar integrable potentials are described in [15].
The wide scan presented in [17] opens a number of possibilities for brane contributions to be
held responsible for the value needed to account for the tilt, and an extension of the reasoning
sketched in the preceding section yields a prediction for the values of γ that can be induced
by a generic p-brane coupling to the dilaton, in the string frame, as exp (−αφ). The result is
simply [15]:

γ =
1
12

(p + 9 − 6α), (17)

so that these values are remarkably quantized in units of 1/12, a few percents from the
experimentally favored value! There is also a clear suspect for the best-ˇt value 1/12, the
NS ˇvebrane wrapped on a small internal cycle (p = 4, α = 2). This brane is interestingly
unstable in orientifold models, so that it is tempting to associate to its decay the graceful exit
from slow roll and the subsequent reheating of the Universe.

Let me now turn to examine the implications of the potential (16) for the CMB scalar
power spectrum. The key tool is provided by the MukhanovÄSasaki (MS) equation [18],

d2vk(η)
dη2

+ [k2 − Ws(η)]vk(η) = 0, (18)

where

ds2 = e
2
3A(η)(−dη2 + dx · dx), Ws =

1
z

d2z

dη2
, z(η) ∼ e

1
3A(η) dϕ(η)

dA(η)
, (19)

ϕ(η) and A(η) are background values and η denotes the conformal time. Details on the
spectrum of tensor perturbations, which also overshoots the attractor curve and disappears as
k → 0, can be found in [11].

The evolution described by the MS equation ˇnds an instructive analogy in the time-
independent boundary-value Schréodinger problem, with the important proviso that in in	a-
tionary dynamics one is actually solving an initial-value problem for the counterparts of the
	at-space exponentials e−iEkt. The MS potential Ws(η) has some universal features, since it
behaves near the initial singularity (at a ˇnite negative conformal time −η0) and at late times
(η → 0−) as

Ws
˜η→−η0

− 1
4

1
(η + η0)2

, Ws
˜η→0−

ν2 − 1/4
η2

(
ν =

3
2

1 − γ2

1 − 3γ2

)
. (20)

As a result, Ws must cross the real axis, and actually does it once in the models of interests,
before approaching an inˇnite barrier at the origin of conformal time (Fig. 1). In quantum
mechanics this barrier would result in total re	ection, but in the MS initial-value problem
the growing mode generally dominates in the classically forbidden region. In other words,
the WKB ©barrier penetration factorª leaves way here to a ©barrier ampliˇcation factorª, and
after a (large) number of e folds that depends on ε

vk(−ε) ∼ 1
4
√
|Ws(−ε) − k2|

exp

⎛
⎝

−ε∫
−η�

√
|Ws(y) − k2| dy

⎞
⎠ , (21)
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Fig. 1. The MS potentials for the two-exponential case of Eq. (16) with ϕ0 = −4 (a) and ϕ0 = 0 (b).
Both approach eventually the LM attractor curve (dashed line). Notice, however, that this occurs earlier
in the ˇrst case, where the curve also overtakes it, and later in the second case, where the curve always

stays well below

where −η	 denotes the classical inversion point. The extent of the ampliˇcation re	ects the
area below the positive portion of Ws, and therefore an inspection of Fig. 1 sufˇces to acquire
a clear qualitative picture of the power spectrum

P (k) ∼ k3

∣∣∣∣vk(−ε)
z(−ε)

∣∣∣∣
2

. (22)

The plots in Fig. 1 show typical MS potentials Ws for the two-exponential problem and for
a potential V(ϕ) containing only the milder term, and ˇnally in all cases the dashed curves
correspond to the LM attractor, for which the second formula of Eqs. (20) applies for all
negative ηs. Notice that P (k) must tend to zero as k → 0 simply due to the initial singularity,
which forces the curve to cross the real axis, so that the area below it is bounded as k → 0.
As a result, the power spectra for our ©climbingª systems experience a k3 fall-off for small
k, in contrast with the k3−2ν growth that occurs for the LM attractor. On the other hand,
for large k, the ©climbingª power spectra approach the attractor result, albeit more slowly
in the two-exponential system, whose Ws stay well below the attractor curves of Fig. 1 for
a while. These considerations are well re	ected in Fig. 2, but for the oscillations that are

Fig. 2. Scalar power spectra for two values of ϕ0, ϕ0 = −1.5 (a) and ϕ0 = 0 (b)
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missed altogether by the WKB approximation, here as in quantum mechanics, where they
would re	ect resonant transmission through a potential well.

5. AN OBSERVABLE WINDOW IN THE COSMIC MICROWAVE BACKGROUND?

Can this class of string-inspired models capture some features of the WMAP9 or Planck
multipole plots [19]? The actual comparison depends, so to speak, on the portion of the
power spectra of [11] that is accessible to current observations. One can anticipate that any
signiˇcant effects should only concern the low-� portions, since the power spectra of Fig. 2
merge eventually with the attractor curve, but our real chance of connecting the current data to
the String Theory via BSB rests on the enticing possibility that Nature is unveiling the onset
of in	ation. The low-k portions of the power spectra translate directly, via the FourierÄBessel
integrals

C
 =
2
9π

∫
dk

k
P (k)j2


 [kΔη], (23)

where Δη denotes our current comoving distance from the last scattering surface, into cor-
responding predictions for the multipole coefˇcients with � < 50. Since the squared j
s
are peaked for arguments of order �, if our Universe was confronting us with the growing
portions, in Fig. 2 one could anticipate that the quadrupole should be reduced for all models
under scrutiny. On the other hand, the behavior of subsequent multipoles should depend on
the details of the dynamics, and thus on the value of ϕ0. In [11], we contented ourselves with
the quadrupole reduction, but playing with ϕ0 can enhance the oscillations, so that one can
end up with curves like the left one of Fig. 3. This is qualitatively similar to the low-� portion
of the WMAP9 results, which is surrounded by the ellipse in Fig. 3, so that the String Theory
and BSB are perhaps ˇnding some indirect evidence in the CMB! Of course, cosmic variance
adds more than a word of caution to this suggestion, but nonetheless, one can explore the
possibility of arriving at a best ˇt of the present data playing with the two parameters at our
disposal, the observable window of the spectrum and the value of ϕ0. The optimal model
would be an ideal starting point to analyze the bispectrum, which could then lend further

Fig. 3. A qualitative comparison between the low-� portion of the WMAP9 plot and the ˇrst C�s for
the BSB-inspired potential (16), normalized with respect to C30 and computed for a climbing phase that

occurred about one e fold before the horizon exit of the current Hubble scale. The oscillations are very

sensitive to ϕ0 and disappear if the current Hubble scale exited more than 3Ä4 e folds after the onset
of in	ation
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support to this picture (or perhaps disprove it) [20]. Let me conclude by stressing that reˇned
analyses of the low-� tail of the CMB power spectrum are starting to appear [21], and that
they point to a lowering of the quadrupole. Time will tell whether these exciting signs will
materialize.

CONCLUSION

I have reviewed the work of [10], where a link was proposed between a peculiar string-
scale SUSY breaking mechanism, ©brane SUSY breakingª or BSB for short, and the onset
of in	ation. I have also reviewed its application to the CMB power spectrum presented
in [11], and I have mentioned some recent results that are in qualitative agreement with the
low-� tails of WMAP9 or the Planck data. BSB results in a ©criticalª logarithmic slope
for a tree-level exponential potential, and under some assumptions this forces the in	aton
(a mixture of the dilaton and the scalar related to the volume of the extra dimensions, in
the setting that we have analyzed) to emerge from the initial singularity while climbing it
up. The subsequent descent could have injected the in	ationary phase of our Universe, so
that the String Theory and BSB are perhaps providing some clues on why and how in�ation
started. Remarkably, under the same assumptions all branes in the String Theory yield
tree-level contributions to the scalar potential with logarithmic slopes that are quantized
in terms of γ = 1/12, which lies a few percents away from the experimentally favored
1/12.4! As we have seen, this picture could have left tangible signs in the CMB power
spectrum that are intriguingly along the lines of the WMAP9 plot of Fig. 3. How about
the subsequent evolution, then? Admittedly, we are not addressing in detail key issues
like the graceful exit and reheating, since our current grasp of the String Theory would
be of little help in this respect, although Eq. (17) points to the (unstable) NS ˇvebrane,
which could have played a key role in connection with the graceful exit from in	ation and
with the subsequent reheating. At any rate, the relevant scalar actors of the early phase
couple to other ˇelds in the rich fashion that is typical of supergravity, in a version with
nonlinear supersymmetry, but containing, nonetheless, the types of matter couplings that are
generally associated with reheating (see, e.g., [22] and references therein). More work is

Fig. 4. The step potential of Eq. (24) (a) and a graceful exit from climbing and in	ation (b): the dashed

curve and the continuous one represent, respectively, ϕ(t) and the acceleration of the Universe
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needed to clarify the issue, but let me close mentioning a remarkable exact solution [15],
whose potential (Fig. 4, a)

V(ϕ) ∼ arctan (e−2ϕ) (24)

combines a ©criticalª tree-level exponential with similar, if ad hoc, higher-genus closed-string
terms to provide a vivid picture of a graceful exit from an initial climbing phase. This
potential is essentially a step function with a slight tilt and ϕ has the option of emerging
from the right to climb it up, linger for quite a while on the plateau and then eventually roll
down as in	ation ends. Or, alternatively, to emerge from the left, undergo slow roll on the
plateau and roll down as in	ation ends. Figure 4, b displays an example where ˇfty e folds
of in	ation are produced climbing up from the right. The early climbing phase, however, is
not inevitable in this example: the scalar could also move fast all the way, giving rise to no
in	ation at all.
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