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INTEGRALS OF EQUATIONS
FOR COSMOLOGICAL AND STATIC REDUCTIONS

IN GENERALIZED THEORIES OF GRAVITY
A. T. Filippov 1

Joint Institute for Nuclear Research, Dubna

We consider the dilaton gravity models derived by reductions of generalized theories of gravity and
study one-dimensional dynamical systems simultaneously describing cosmological and static states in any
gauge. Our approach is fully applicable to studying static and cosmological solutions in multidimensional
theories and also in general one-dimensional dilatonÄscalaron gravity models. We here focus on general
and global properties of the models, on seeking integrals, and on analyzing the structure of the solution
space. We propose some new ideas in this direction and derive new classes of integrals and new
integrable models.

PACS: 04.20.Fy

INTRODUCTION

Current observational data strongly suggest that Einstein's gravity must be modiˇed. The
combination of data on dark energy and the growing evidence for in	ation have generated a
wide spectrum of such modiˇcations. Superstring and supergravity ideas suggested natural
modiˇcations, but in view of the serious mathematical problems of the current string theory,
strict unambiguous predictions about concrete modiˇcations of gravity are not yet available.
Moreover, the phenomenon of dark energy was not predicted by string theory, and its origin
in the stringy framework proved rather difˇcult to uncover and understand. The problem of
dark energy in string theory seems very deep and is related to many other complex issues of
quantum cosmology, but it also leads to some beautiful and exciting speculations, like eternal
in	ation and the multiverse. On the other hand, if we ˇrst try to ˇnd a natural place for dark
energy in classical cosmological models, which are almost inevitably essentially nonlinear
and nonintegrable, then we best return to recalling the origin of general relativity and seek
some options abandoned or not found by its creators.

Therefore, simpler modiˇcations of gravity that affect only the gravitational sector are also
popular. In essence, these modiˇcations reduce to the standard Einstein gravity supplemented
by some number of scalar bosons (the ˇrst example of such a modiˇcation was the old
JordanÄBransÄDicke theory). The main problem with this approach is that the origin of these
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scalar bosons is not clear, and there is no theoretical principle governing their coupling to
gravity. Of course, there exist some phenomenological and theoretical constraints, but the
spectrum of these models is generally too wide 1. The modiˇcation proposed and studied
in [2Ä6] satisˇes some principles of geometric nature based on Einstein's idea (1923) 2 to
formulate gravity theory in a non-Riemannian space with a symmetric connection determined
by a special variational principle involving a ©geometricª Lagrangian. This Lagrangian is
assumed to be a function of the generalized Ricci curvature tensor and of other fundamental
tensors, and is varied in the connection coefˇcients. A new interpretation and generalization
of this approach was developed in [3,4] for arbitrary space-time dimension D.

The connection coefˇcients deˇne symmetric and antisymmetric parts (sij and aij) of
the Ricci tensor and a new vector ai. Assuming that there are no dimensional fundamental
constants in the pure geometry (except the speed of light relating space to time), we choose
geometric Lagrangians giving a dimensionless geometric action. The geometric variational
principle puts further bounds on the geometry and, in particular, relates ai to aij . To
deˇne a metric tensor, we must introduce a dimensional constant. We then can ˇnd a
physical Lagrangian depending on this dimensional constant and on some dimensionless
parameters. The theory thus obtained supplements standard general relativity with dark
energy (the cosmological term, in the limit ai = aij = 0), a neutral massive (or tachyonic)
vector ˇeld proportional to ai (a vecton), and after dimensional reductions to D = 4, with
D − 4 massive (or tachyonic) scalar ˇelds.

The most natural density of this sort in any dimension is the square root of det (sij + l̄aij),
where l̄ is a number 3. The effective physical Lagrangian is the sum of the standard Einstein
term, the vecton mass term, and a term proportional to det (gij + lfij) to the power ν ≡
1/(D− 2), where gij and fij are the metric and the vecton ˇeld tensors conjugate to sij and
aij , 4 and l is a parameter related to l̄. The last term has a dimensional multiplier, which in
the limit of a small ˇeld fij produces the cosmological constant. For D = 4, we therefore
have the term ˇrst introduced by Einstein, but now usually called the BornÄInfeld or brane
Lagrangian. For D = 3, we have the EinsteinÄProca theory, which is very interesting for
studies of nontrivial space topologies.

Here, we consider the simplest geometric Lagrangian,

Lgeom =
√
− det (sij + l̄aij) ≡

√
−Δs, (1)

where the minus sign is taken because det (sij) < 0 (due to the local Lorentz invariance), and
we naturally assume that the same holds for det (sij + l̄aij) (to reproduce Einstein's general
relativity with the cosmological constant in the limit l̄ → 0). Following the steps in [3] or
using the results described in [6], we can derive the corresponding physical Lagrangian

Lphys =
√
−g

[
−2Λ [det (δj

i + lf j
i )]ν + R(g) − m2gijaiaj

]
, ν ≡ 1

D − 2
, (2)

1Restricting consideration to homogeneous cosmologies, one can ˇnd that in dimensionally reduced supergravity
theory there may emerge massless scalar bosons that couple to gravity only, see, e.g., [1].

2References to Einstein's papers as well as to many papers of other authors, which are related to the subject of
this report, can be found in our publications [2Ä10].

3Einstein used Eddington's scalar density
√

|det rij | , where rij ≡ sij + aij , as the Lagrangian.
4This unusual construction introduced by A. Einstein is described and generalized in [2Ä6].
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which should be varied with respect to the metric and the vector ˇeld; m2 is a parameter
depending on the chosen model for afˇne geometry and on D (see [2Ä4]). This parameter can
be positive or negative and we often use notation m2 ≡ μ. When the vecton ˇeld vanishes,
we have the standard Einstein gravity with the cosmological constant. For dimensional
reductions from D � 5 to D = 4, we can obtain the Lagrangian describing the vecton ai,
fij ∼ ∂iaj − ∂jai and (D − 4) scalar ˇelds ak, k = 4, . . . , D. We note that Lagrangian (2)
is bilinear in the vecton ˇeld, for D = 3, and gives the three-dimensional gravity with the
cosmological term in the approximation ai = 0.

To compactify this report, we only give an overview of the main points. First, consider a
rather general Lagrangian in the D-dimensional spherically symmetric case (x0 = t, x1 = r):

ds2
D = ds2

2 + ds2
D−2 = gij dxi dxj + ϕ2ν dΩ2

D−2, (3)

where ν ≡ (D−2)−1. The standard spherical reduction of (2) gives the effective Lagrangian 1,
the ˇrst three terms of which describe the standard spherically reduced Einstein gravity:

L(2)
D =

√
−g

[
ϕR(g) + kν ϕ1−2ν + W (ϕ) (∇ϕ)2 + X(ϕ, f 2) − m2ϕ a2

]
. (4)

Here, ai(t, r) has only two nonvanishing components a0, a1, fij has just one independent
component f01 = a0,1 − a1,0; the other notations are: a2 ≡ aia

i ≡ gijaiaj , f 2 ≡ fijf
ij ,

kν ≡ k(D − 2)(D − 3), W (ϕ) = (1 − ν)/ϕ and, ˇnally,

X(ϕ, f 2) ≡ −2Λϕ

[
1 +

1
2
λ2f 2

] ν

, (5)

where, the parameter λ is related to dimensionless parameter l in (2), but [λ] = L.
Sometimes, it is convenient to transform away the dilaton kinetic term by using the Weyl

transformation, which, in our case, is the following (w′(ϕ)/w(ϕ) = W (ϕ)):

gij = ĝijw
−1(ϕ), w(ϕ) = ϕ1−ν , f 2 = w2 f̂

2
, a2 = wâ 2. (6)

Applying this transformation to (4) and omitting the hats, we ˇnd in the Weyl frame that

L(2)
D �→ L̂(2)

D =
√
−g

[
ϕR(g) + kνϕ−ν − 2Λϕν

(
1 +

1
2
λ2ϕ2(1−ν)f 2

)ν

− m2ϕa2

]
. (7)

When D = 3, we have ν = 1, kν = 0, the Weyl transformation is trivial and the Lagrangian is

L(2)
3 =

√
−gϕ

[
R(g) − 2Λ − λ2Λf2 − m2a2

]
. (8)

These two-dimensional reductions are essentially simpler than their parent higher-dimen-
sional theories. In particular, we show that the massive vecton ˇeld theory can be transformed
into a dilatonÄscalaron gravity model (DSG), which is easier to analyze. Unfortunately,
these DSG models and their further reductions to dimension one (static and cosmological

1We suppose that the ˇelds ϕ, ai are dimensionless, while [t] = [r] = L, and thus [fij ] = L−1, [R] = [kν ] =
[X] = [m2] = L−2. For more details on our dimensions, see [6].
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reductions) are also essentially nonintegrable. It is well known that the massless case, being
a pure dilaton gravity, is classically integrable. Having this in mind, we will look for
additional integrals of motion in similar reduced vecton theories, which we transform into
dilatonÄscalaron gravity models.

The structure of the two-dimensional theory allows one to ˇnd some integrable classes
using simplifying assumptions about their potentials. For some multi-exponential potentials
and constant (©minimalª) coupling of scalars, there exist integrable systems related to the
Liouville and TodaÄLiouville ones (see [7Ä10]). The pure Liouville case was completely
solved. For the TodaÄLiouville one, it is difˇcult to ˇnd exact analytical solutions of the
two-dimensional constraints, even in the simplest u1 ⊕ su2 case. This problem is easily
solved in the one-dimensional (static or cosmological) reduction. Unfortunately, even the
one-dimensional cosmological reduction of the pure scalaron theory is not integrable, and
thus we concentrate on searching for approximate potentials that allow us to ˇnd a wide
enough class of analytic solutions to reconstruct the exact ones by iterations.

1. COSMOLOGICAL AND STATIC REDUCTIONS

In this report, we consider only the reductions of the two-dimensional theory to static and
cosmological equations ignoring one-dimensional waves studied in our previous works [8Ä10].
The simplest reduced gauge ˇxed equations can be directly derived by supposing that in the
two-dimensional light-cone equations the ˇelds h, ϕ, q, ψ depend on one variable, which we
denote τ ≡ (u + v). For the cosmological solutions this variable is identiˇed with the time
variable, τ = t, while for the static states, including black holes, it is the space variable,
τ = r. The only difference between the cosmological and static solutions is in the sign of the
metric, hc > 0, hs < 0.

In our study of black holes and cosmologies, we use the more general diagonal metric,

ds2
2 = e2α(t,r)dr2 − e2γ(t,r)dt2. (9)

Then, the static and cosmological reductions of our two-dimensional vecton theory (7) supple-
mented with the standard scalar term V (ϕ, ψ)+Z(ϕ)∇ψ2 can be presented by the Lagrangian
(taking, for the moment, Z(ϕ) = −ϕ):

εL(1)
v = eε(α−γ)ϕ

[
ψ̇2 − 2α̇ε

ϕ̇

ϕ
− (1 − ν)

(
ϕ̇

ϕ

)2
]
−

− eε(γ−α)μϕa2
ε + ε eα+γ

[
V + X(f 2)

]
. (10)

Here, we omit a possible dependence of V and X on ϕ and ψ, denote Za ≡ −μϕ ≡ m2, and
ε = ±. All the ˇelds depend on τ = t (ε = +) or on τ = r (ε = −). Finally,

a+ = a1 (τ), a− = a0 (τ), α+ ≡ α, α− ≡ γ, α̇ε =
d

dτ
αε, ȧ =

d

dτ
a.

We see that the cosmological and static Lagrangians essentially coincide, the only dif-
ference being in the sign of the potential term and of the metric exponents as well. As the
kinetic term depends on α̇ε, the multiplier of the kinetic term, lε ≡ exp (α−ε), is a Lagrange
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multiplier, varying of which produces the constraint equation, which is equivalent to vanish-
ing of the Hamiltonian. In view of the implicit dependence of f 2 on lε , it is much more
convenient to ˇrst employ the canonical formulation and then identify the proper Lagrange
multiplier. Omitting simple details given in [6], we only give the ˇnal result.

Introducing the Hamiltonian formulation for general theory (10), we can apply to it the
elementary canonical transformation,

pa ⇒ −2q, a ⇒ p/2, Xeff(pa) ⇒ Xeff(−2q), (11)

and then derive the corresponding new Lagrangian

εL(1)
q = l−1

ε

[
ϕψ̇2 − 2α̇εϕ̇ − (1 − ν)

ϕ̇2

ϕ
+

q̇2

m2ϕ

]
+ lεε e2αε U(ϕ, ψ, q), (12)

where lε ≡ exp (α−ε − α+ε) and U = V (ϕ, ψ) + Xeff(−2q). The detailed derivation of this
transformation of the vecton into the scalaron, explanation of notation, and discussions of the
analytic approximate expressions of the potential for arbitrary D can be found in [6].

This form is more natural than (10). First, the dependence on the Lagrange multiplier lε
is simple and standard, the kinetic part is quadratic in generalized velocities and can be made
diagonal by a redeˇnition of the Lagrange multiplier and velocities. In addition, we are free
to make a convenient gauge choice and to choose the Weyl frame. For example, by making
the shift αε ⇒ αε − (1 − ν) ln

√
ϕ and redeˇning the potential by U ⇒ ϕν−1U , we remove

the third term in (12) and obtain the Lagrangian in the Weyl frame. Then, we can redeˇne
lεϕ ≡ l̄ε, introduce the new ˇeld ξ ≡ ϕ2 and ˇnally rewrite (12) in a simpler form,

εL(1)
q = l̄−1

ε

[
ξψ̇2 + m−2q̇2 − ξ̇α̇ε

]
+ l̄εε e2αεξν/2−1 U(

√
ξ, q, ψ). (13)

Before applying it to studies of cosmologies and horizons in the scalaron theory, we discuss
the effective scalaron potential, corresponding to X-potential (5) in more detail.

Note, that the scalaron kinetic term ∼ q̇2 is independent of D, while the potential U is
simple only for D = 3, D = 4. In the Weyl frame (see (8) and (7), respectively), it is easy
to derive the effective potentials U/w(ϕ) ≡ Û :

U(ϕ, q) = Û(ϕ, q) = −2Λϕ
[
1 + q2/4λ2Λ2 ϕ2

]
, D = 3, (14)

U(ϕ, q) =
√

ϕÛ(ϕ, q) = −2Λϕ
[
1 + q2/λ2Λ2ϕ2

]1/2
+ 2k, D = 4. (15)

The general effective potential in Lagrangian (13) can be written as

Ue(ϕ, x) ≡ ξν/2−1 U(
√

ξ, q, ψ) = ϕν−2U = −2Λϕν−1 vν (x) + kν ϕ−(1+ν), (16)

where x ≡ q/(−2νλΛ ϕ), and vν(x) is monotonic concave function having simple expansions

vν(x) = 1 + νx2 + O(x4), vν(x) = 2νx

[
1 +

1 − ν

2ν
x−σ + O(x−2σ)

]
. (17)

With such a simple and regular potential Ue, one might expect that at least qualitative
behavior of the solutions of the theory (13) could be analyzed for small and large values of x.
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This is true if the theory is integrable. But it is probably not integrable, even in the simplest
D = 3 case, when v1(x) = 1 + x2, k1 = 0, and thus Ue = −2Λ(1 + x2) is linear in q2/ξ.
The form of the potential signals that there must exist at least one additional integral beyond
the Hamiltonian constraint, and it was derived in [6]. The existence of a third integral, which
should allow us to integrate the scalaron model, is doubtful. We still hope to ˇnd either a
reasonable approximation for the potential or to treat the exact systems using approximate,
asymptotic, and qualitative (topological) methods. In the next sections, we attempt presenting
a draft panorama of old and new integrals in reasonably general dilaton gravity coupled to
scalars, and brie	y describe a few simple, intuitive approaches to search for new integrals.

2. INTEGRALS AND INTEGRABILITY IN SIMPLE CASES

Here, we consider a general DSG with one scalar ψ that may be a standard ˇeld or the
scalaron. The general Weyl-frame Lagrangian can be written as

L(2)
dgs =

√
−g

[
ϕR + Z(ϕ)(∇ψ)2 + V (ϕ, ψ)

]
(18)

(note that, in Lagrangians, we usually write +V instead of the standard −V ). For the scalaron
we have ψ = q, Z = Zq = −1/(m2ϕ) and the potentials are given above. For the standard
scalar Zψ ∼ −ϕ, but the results presented below are applicable to more general Z functions.
In our notation, negative signs of Z correspond to positive kinetic energies of the scalar ˇelds,
but our classical consideration is fully applicable to both signs. The general model (18) with
a general potential V is not integrable in any sense. One of the strongest obstructions to
integrability is the dependence of Z on ϕ, and the usual simplifying assumption is that the Z
functions are independent of ϕ. With this restriction, there exists a special class of ©multi-
exponentialª potentials, for which the DSG theories with any number of scalar ˇelds can be
reduced to the TodaÄLiouville systems and exactly solved. 1 For their static-cosmological
reductions, analytic solutions were explicitly derived. Here, we try to expand this class of
models. It is well known that for the constant ˇeld ψ ≡ ψ0, the two-dimensional theory
can be exactly solved with any potential V (ϕ) ≡ V (ϕ, ψ0). In fact, it degenerates to a
one-dimensional theory, because the dilaton and the metric satisfy the D'Alembert equation,
and thus depend on one variable τ = a(u) + b(v). Thus, the complete solution can be
derived by solving elementary one-dimensional equations deˇned by Lagrangian (12) with
constant ψ and q.

A more general static-cosmological reduction of the two-dimensional theory (18) is

εL(1) = −l−1
ε

[
Z(ϕ) ψ̇2 + 2α̇εϕ̇

]
+ lεε e2αε V (ϕ, ψ), (19)

where V is the Weyl-frame potential and h ≡ ε e2αε can be identiˇed with the Weyl-frame
metric if we choose the gauge lε = 1, which we call the LC gauge. In this gauge the equations

1This class includes all previously considered integrable two-dimensional DSG, which are reviewed in [8]. The
ˇrst DSG of the Liouville type (©bi-Liouvilleª), which generalizes the so-called Jackiw and CGHS models, was
proposed and solved in paper [7], the results of which were essentially generalized in [5] and [6].
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of motion are most directly reduced to the parent two-dimensional dilaton gravity in the light-
cone (u, v) coordinates. Also useful is the Hamilton gauge, in which lεZ

−1(ϕ) ≡ l̄ε = 1;
using in addition the new variable ξ deˇned by d ξ ≡ Z−1(ϕ) dϕ, we have

εL(1) = −l̄−1
ε

[
ψ̇2 + 2α̇εξ̇

]
+ l̄εε e2αε U(ξ, ψ), (20)

where U(ξ, ψ) ≡ Z(ϕ)V (ϕ, ψ). This gauge is especially convenient when there are many
scalar ˇelds with the same Z(ϕ) = −ϕ. If the potential is the sum of linear exponents of
the scalar ˇelds, there is a class of explicitly integrable models including the TodaÄLiouville
dilaton gravity theories (see [7Ä10]). Other gauge choices used in the theory of black holes
and in cosmological models may also be exploited in our dynamical formulation, but they are
usually less convenient in the context of our search for integrals of dynamical systems.

Let us ˇrst write the dynamical equations in the Hamilton gauge:

ξ̈ + h U = 0, 2 ψ̈ + h Uψ = 0, F̈ + h Uξ = 0, ψ̇2 + Ḟ ξ̇ + h U = 0. (21)

Here, the last equation is the Hamiltonian constraint, F ≡ ln |h| ≡ 2αε, and the lower indices
ϕ, ψ denote the corresponding partial derivatives. Our ˇrst approach to integrability of this
system was based on taking linear combinations of the equations,

c1ξ̈ + c2ψ̈ + c3F̈ + ε eF [c1 U + c2 Uψ/2 + c3 Uξ] = 0. (22)

If for a given potential U the expression in brackets vanishes, we ˇnd an integral which is
linear in momenta. We can also ˇnd a general solution of the partial differential equation
for U giving corresponding integrals. For multi-exponential potentials we can instead try to
construct, with the aid of (22), the Liouville or Toda equations choosing different cn. This
approach, ˇrst proposed in [7], was applied to constructing an integrable (©bi-Liouvilleª)
two-dimensional DSG with Uψ = 0. 1 Taking c3 = 1, c2 = 0, c1 = ±λ1, we ˇnd
two Liouville equations for F± ≡ (F ± λ1ξ), if the potential U satisˇes two equations,
[Uξ ± λ1 U ] exp (∓λ1ξ) = g±. These conditions are satisˇed by the simplest bi-exponential
potential,

2λ1U = g+ exp (λ1ξ) − g− exp (−λ1ξ),

while F± satisˇes the Liouville equations and the correspondent integrals

F̈± + ε g± exp F± = 0, Ḟ 2
± + 2ε g± expF± = C±. (23)

This gives the complete solution of the problem: 4λ1 ψ̇2 = C may be taken as the third
integral, and the constraint (21) is satisˇed if C + C+ − C− = 0.

Note, that if we tried a more general potential, with −λ1 replaced by λ2, we would
immediately ˇnd that the necessary condition for the existence of two integrals is λ2 = −λ1 .
A similar solvable model is given by one-dimensional reduction (20) of theory (18). Taking
V = g1 exp (2λ1ψ) + g2 exp (2λ2ψ), Z = −ϕ ≡ −e−ξ and ψ1 ≡ (F −ξ)/2, ψ2 ≡ (F +ξ)/2,
ψ3 ≡ ψ, we ˇrst rewrite the potential term in (20) as

hU = ε eF Z V = −(g1 eq1 + g2 eq2), qi ≡ 2(ψi + λi ψ3),

1In [7], Z was constant, but here we can take arbitrary Z(ϕ) as it is included in U .
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then ˇnd that the kinetic term is diagonal in q̇2
i if λ1λ2 = 1, and see that the Lagrangian is

L = −l̄−1[−μ1q̇
2
1 + μ2q̇

2
2 + ψ̇2

3 ] − l̄ (g1 eq1 + g2 eq2), 4μ1 = −(1 − λ2
1)

−1, μ2 = −λ2
1 μ1.

The solution is obtained as in the previous case, but the formulation can obviously be
generalized to any number of scalar ˇelds. If there are N − 2 scalar ˇelds with the same
coupling to the dilaton, Z(ϕ), the multi-exponential models are deˇned by the Lagrangian

L = −l̄−1
N∑
1

εnψ̇2
n − l̄

N∑
1

gn eqn , qn ≡
N∑
1

ψmamn, (24)

where ψ1, ψ2 were deˇned above, ε1 = −1, εn = 1, n > 1. The properties of this multi-
exponential theory depend on the symmetric matrix Â ≡ âT ε̂ â, where ε̂mn ≡ εmδmn. If Â is
diagonal, we have N -Liouville model, which was directly solved also in the two-dimensional
case. Such models were met in simple compactiˇcations of supergravity theories [1].

More complex compactiˇcations may lead to integrable models that are related to the
Toda systems. In fact, any matrix Amn, which is a direct sum of a diagonal (L × L) matrix
γ−1

n δmn and a symmetric matrix Āmn, can be represented in the form Â ≡ âT ε̂ â, if the
sum of γ−1

n is a certain function of the matrix elements Āmn, see [10]. Then, if Āmn is a
direct sum of Cartan matrices, the differential equations for the ψ functions can be reduced to
L-independent Liouville (Toda A1) equations and the higher-rank Toda system. We call it the
TodaÄLiouville system, application of which to the dilaton gravity was discussed in [10]. The
class of multi-exponential models is the main source of completely integrable dilaton gravity
theories with many degrees of freedom. Most of them can be analytically solved in one-
dimensional case, while the two-dimensional N -Liouville and the simplest TodaÄLiouville
theories were classically solved in two dimensions.

The one-dimensional exact solutions can easily be quantized (at least, formally) as their
Hamiltonians split into the sum of the Liouville Hamiltonians p2 + 2g eq , where we suppress
the indices of pn, qn and factors εn in (24). Introducing the new canonical variables

P ≡
√

p2 + 2g eq, Q ≡ − arccosh (1 + p2g−1e−q),

we ˇnd the complete solution of the N -Liouville theory:

H =
∑

εnP 2
n , Qn = Pn(τ − τn), exp (−qn) = gnP−2

n cosh2

[
Pn(τ − τn)

2

]
, (25)

where we ©recoveredª sign factors enabling to satisfy the constraint H = 0. In fact, we were
a bit sloppy in writing these simple formulae, and one must be more accurate, especially
when quantizing this apparently trivial theory. Anyway, this is a constrained (gauge) theory
and should be quantized as such. In more complex, especially, in nonintegrable gauge models
discussed below quantizing is more tricky and will not be discussed here.

With small number of scalar ˇelds, there may exist other integrals, not related to the
TodaÄLiouville class. The simplest integrals emerge when U(ξ, ϕ) is independent either of ξ
or of ψ. Remember that U ≡ Z(ϕ)V (ξ, ψ)/w(ϕ), where w is the Weyl transition function
deˇned above, and thus V can be nontrivial, even when Uξ = Uψ = 0. If the potential is a
constant, the system is obviously explicitly integrable. The integrals can exist also when the
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potential satisˇes some weaker restriction; we ˇrst discuss the potential U = g ξ + v(ψ). In
the simplest case, when g = 0, the theory can be explicitly solved if, in addition, v(ψ) is a
simple function. The main simpliˇcation is that F = aτ ; assuming that v = ḡ ψp, we ˇnd the
following rather tractable equations to be discussed in a moment:

ψ′′(F ) = − γp eF ψp−1, ξ′′(F ) = −γ eF ψp, γ ≡ εḡ a−2. (26)

The simplest model is U = g. Then, with N − 2 scalar ˇelds ψn (3 � n � N ), we have
N integrals. Supposing that all the scalars have the same |Z(ϕ)|, we ˇnd

Ḟ = C1 ≡ a, ξ̇ + (g/a)h = C2, ψ̇n = Cn, C1C2 =
∑

εn C2
n,

where εn = +1 for the normal ˇeld and εn = −1 for the phantom (ghost) ˇeld ψn, and thus

ξ − ξ0 = −ĥ + ln |ĥ| δ, ĥ ≡ h

h0
, h0 ≡ C2

1

g
, δ ≡ C2

C1
=

∑
εn

(
Cn

C1

)2

. (27)

The ˇrst equation is what we call the portrait of the integrable DSG system. We consider
only the cosmological part of it, which looks like the portrait of a more realistic cosmological
system. It is instructive to draw it in the (ϕ, ĥ)-plane supposing that ξ − ξ0 = lnϕ. One
then can see that the separatrix δ = 0 describes the solution with one horizon, while the
other two correspond to |δ| = 1. In addition, the portrait has singularities. To get the
physics portrait in the (ϕ, ĥ)-plane, one should ˇrst identify all possible singularities in this
plane: the saddle point of the horizon, (1, 0), the nodes (0, 0), (0, 1), (∞, 0), (∞, 1) and
the most interesting node (1/e, 1) Å the cross-point of all cosmological solutions. This
portrait topologically resembles the part of that derived in [7]. However, even these parts
are globally inequivalent, because the structure of their characteristic nodes is not equivalent
under differentiable topological mappings.

For the linear and quadratic potentials v(ψ), we can derive explicit analytic solutions. If
p = 1, we ˇnd a very simple solution of Eqs. (26) and of the constraint:

ψ = −γ (eF + C1F + C2), ξ − ξ0 = γ2

[
e2F

4
+ (C2 − 2C1) eF + C1F eF − C2

1 F

2

]
.

These expressions are similar to the simplest solutions discussed above and we do not discuss
them in detail. One can see that the horizon emerges when C1 = 0 and F → −∞: then,
h ≡ ε eF → 0, while ξ is ˇnite, ξ → ξ0. The topological portrait, ξ(h), of this system is
somewhat more complex than the previous one and we cannot discuss it here.

In the quadratic case, p = 2, the ψ equation is linear and can be solved in terms of the
Bessel functions, ψ = Z0(2

√
2γ eF ). The ξ(F ) for the horizon separatrix,

ξ − ξ0 = ψ2
0

∞∑
n=0

dn (n + 1)−2 (−2γ eF )n+1, dn ≡
n∑

m=0

[m! (n − m)!],

generalizes the expressions above, while the complete portrait contains similar entire function
multiplied by powers of F and depending on an additional parameter δ. It follows that the
qualitative properties of this model do not radically differ from the previous cases.
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When v = ḡp and p �= 0, 1, 2, we may expect much richer picture. If p is real, p �= 0, 1, 2,
Eq. (26) is called the EmdenÄFowler equation. It was studied in great detail, especially, for
integer and rational values of p, see, e.g., [11]. As is well known, it has a very important but
simple enveloping solution,

ψp = cp eλpF , λp = −(p − 2)−1, cp = [−γp (p− 2)2]λp , −γp > 0, p �= 0, 2, (28)

that suggests the transformation ψ = ψp z(λp F ). Then, we can replace Eq. (18) for ψ by the
autonomous equation for z or, equivalently, by the ˇrst-order system for z and y ≡ z′ :

z′′ + z′ + z − zp−1 = 0, (zp−1 − z − 2 y) dy = y dz. (29)

Although, in general, these equations cannot be solved analytically, we may regard them
almost integrable, at least for rational p. Indeed, the behavior of their solutions was analyzed
in great detail, including exact asymptotic behavior. More recently, a few signiˇcant results
were obtained on classical integrability of Eq. (29), see [12,13].

Before turning to a more general approach for searching additional integrals, we mention
an interesting integrable potential U = gξ + ḡψ2. Then, F satisˇes Eqs. (23), and thus the
potential eF is given by Eq. (25); the linear equation for ψ (see (26)) is related to the Legendre
equation and can be explicitly solved. Moreover, for certain discrete values of the parameters,
the potential in the equations for ψ and ξ, which is proportional to cosh−2(cτ), becomes
©transparentª. Then, the solution can be expressed in terms of elementary functions [14].

3. ON A MORE SYSTEMATIC APPROACH TO SEARCH OF INTEGRALS

In our general approach to the DG dynamical systems, we try to take care for nice features
both of the Hamiltonian and LC formulations. In [7] and [15], we proposed a ˇrst-order
dynamical system, which is related to the Hamilton dynamics, but does not coincide with
it. This allowed us to ˇnd rather nontrivial integrals, to study some global properties of the
solutions, and to construct convergent analytic expansions near horizons and singularities.
Our method can be applied to many scalars, but here we mostly consider the models with one
scalar having arbitrary coupling Z(ϕ) and arbitrary potential V (ϕ, ψ).

Introducing the new momentum-like variables χ, η, ρ, 1

ϕ̇ = χ, Z(ϕ) ψ̇ = η, Z(ϕ) Ḟ = ρ, (30)

we rewrite the main dynamical equations and the constraint (20) in the form

χ̇ + hV = 0, 2η̇ + hVψ = 0, ρ̇ + h(ZV )ϕ = 0, χρ + hZV + η2 = 0. (31)

Equations (30) and the ˇrst three equations of (31) are equivalent to the canonical system
with the Hamiltonian, which is equal to the constraint divided by Z. To completely solve
this system, we must search for two additional constraints canonically commuting with the

1It is easy to check χ = −pF , η = −pψ/2, ρ = −Zpϕ, where the momenta are derived for the Lagrangian (19)
with LC gauge lε = 1.
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Hamiltonian and with each other. As far as we are interested in the classical theory, we
usually will look for integrability in the Liouville sense. Moreover, we are mostly interested
in explicit analytic expressions for the solutions or, at least, in exact analytic relations between
the ©physicalª variables h, ϕ, ψ.

Looking at the system (31), we immediately see that there exist integrals η = η0, if
Vψ = 0, and ρ = ρ0, if (ZV )ϕ = 0. The best studied is the ˇrst case of the ψ-independent
potential. When η0 = 0, the dilaton gravity can be explicitly solved with arbitrary potentials;
the simplest case (ZV )ϕ = (ZV )ψ = 0 was solved above. In [7], we derived three dilaton
gravity models with η = η0 , for which there exists one more integral, and demonstrated how
they can be explicitly solved. Two of them are closely related to the Liouville theory, but the
third one requires a generalization of the Liouville integral that will be discussed in a moment.

Recalling the previous section, we change the variable τ to ξ, what is deˇned by the
relations χdτ = dϕ ≡ Zdξ. Then, we rewrite Eqs. (30), (31) denoting the derivative d/dξ
by the prime and introducing useful notation: H(ξ) ≡ h/χ, G(ξ) ≡ η/χ, and U ≡ ZV as
above. The main independent equations for χ, η, ψ, H now have a very compact form:

ψ′ = G, H ′ = −G2H, χ′ + UH = 0, 2η′ + UψH = 0, (32)

where the second equation is in fact equivalent to the constraint. The extended system contains
two equations with ρ (see (30), (31)):

χF ′ − ρ = 0, ρ′ + UξH = 0, χG′ = UH(G − Uψ/2U), (33)

where we add the explicit equation for G, which can replace the last equation in (32).
The system (32) is most convenient for deriving the solutions near horizons and in

asymptotic regions as well as for studying their general properties. For example, a very
important property of its solutions is that (ln H)′ = −G2 < 0. This property does not depend
on the potential and is true for any number of scalar ˇelds if their Z functions are negative,
as was ˇrst shown in [5]. Indeed, in this case, the constraint equation can be written as

Φ′ ≡ (ln H)′ = −Z0

N∑
n=0

Z−1
n (ξ)

(
ηn

χ

)2

, ηn ≡ Zn ψ̇n ≡ χZnZ−1
0 ψ′

n. (34)

For normal ˇelds Zn < 0 for all n, and thus Φ′ < 0. For anomalous ˇelds, like the
scalaron corresponding to the tachyonic vecton, Z may be positive, and then the sign of Φ′

may be negative or positive, depending on concrete solutions. In case of the same signs,
Eq. (34) resembles the second law of thermodynamics and deˇnes an ©arrow of timeª for our
dynamical system. If this is not true, the theorem is violated in a very speciˇc way. It may
be an interesting point for cosmological modeling.

Our system of equations (32) has other interesting global properties. The general solution
of the ˇrst two equations can be written in terms of integrals of G(ξ) and G2(ξ):

ψ(ξ) = ψ0 +

ξ∫
ξ0

G, H(ξ) = H0 exp

⎛
⎜⎝−

ξ∫
ξ0

G 2

⎞
⎟⎠. (35)
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Then, inserting these ©solutionsª into the third and the forth equations and integrating them,
we can write one integral equation for G(ξ) instead of system (32):

G(ξ) ≡ η

χ
=

⎛
⎜⎝η0 −

1
2

ξ∫
ξ0

UψH

⎞
⎟⎠

⎛
⎜⎝χ0 −

ξ∫
ξ0

UH

⎞
⎟⎠

−1

, (36)

where ψ(ξ) and H(ξ) are given by Eq. (35). As was discussed in [7] and [15], the standard
(regular and nondegenerate) horizon appears when χ0 = η0 = 0. Then, h(ξ0) = 0, while
G(ξ0) = Uψ(ξ0)/ 2U(ξ0) is ˇnite, if Uψ �= 0. It follows that G, ψ, H are ˇnite and can be
expanded in convergent series around ξ0, if the potential U(ξ, ψ) is analytic in a neighborhood
of (ξ0, ψ0). 1 When Uψ ≡ 0, there is the obvious integral of motion η = η0. As can be seen
from the above equations and was proved in [7], there is no horizon, if η0 �= 0; when η0 = 0,
we have G ≡ 0 and return to pure dilaton gravity with horizons.

In simple cases, the integral equation can easily be reduced to a differential one. For
example, if U = u(ξ) v(ψ) and Uψ = 2gU , the integral equation can be reduced to the
second-order differential equation, which is not integrable for arbitrary u(ξ), but is explicitly
integrable, if Uξ = g1U . This result is quite natural as, in this case, there exist two additional
integrals, η = gχ + η0 , ρ = g1χ + ρ0 , and therefore the most direct approach is to use the
extended differential system. In nonintegrable cases or when there is only one additional
integral, this ©masterª integral equation still can be a quite useful analytical tool.

Above, we mostly supposed that the potential U is known and tried to ˇnd integrals or
directly integrate some equations. Now, we consider a different approach supposing that we
do not ˇx the potential and try to ˇnd equations for the potentials allowing some integrals.
To get a feeling of the approach, look at Eq. (22). If we take potentials, for which the
expression in brackets vanishes, we immediately ˇnd that the solution of the homogeneous
equation for ln U depends on an arbitrary function of one variable, f(c2ξ − 2c3ψ), and on
arbitrary parameter deˇning solutions of inhomogeneous equation. In general, we thus obtain
one integral. However, for linear f we can derive two independent integrals. This approach
becomes much more powerful if we use extended system (32), (33). Here, we only brie	y
outline a generalization of the approach of [7] to ˇnding potentials U , for which the extended
differential system has additional integrals (see also [16]).

Generalizing the approach of [7] and the above remarks about possible integrals of motion,
let us collect those equations, which can generate such integrals:

0 = ρ + UH +
η2

χ
= χ′ + UH = η′ +

Uψ H

2
= ρ′ + UξH = 0, (37)

0 = ψη′ +
ψUψH

2
= η ψ′ − η2

χ
= ξρ′ + ξ Uξ H = ξ′ρ − ρ = 0. (38)

The ˇrst equation in (37) is the energy constraint, which we denote E0 and the next items in

this chain of equations are denoted by Ei, i = 1, . . . , 7. Now, taking the sum
7∑
0

ciEi with

1This is shown in [15]. One can ˇnd a detailed discussion of regular solution with horizons, including a
generalization of the SzekeresÄKruskal coordinates and examples of singular horizons, in [5].
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c4 = c5 = c6 = c7 = c0, we ˇnd that the solutions of Eqs. (37) satisfy the identity

[c1χ + c2 η + c3 ρ + c4(ψ η + ξ ρ)]′ =

= −H

[
(c1 + c4)U +

c2Uψ

2
+ c3Uξ + c4

(
ψ Uψ

2
+ ξ Uξ

)]
. (39)

Therefore, if the r.h.s. identically vanishes, the l.h.s generates the integral of motion,

c1χ + c2η + c3ρ + c4(ψη + ξρ) = I. (40)

This means that for the potentials U(ξ, ψ), satisfying the partial differential equation

(c1 + c4)U +
c2Uψ

2
+ c3Uξ + c4

(
ψUψ

2
+ ξ Uξ

)
= 0, (41)

there exists the corresponding integral of Eqs. (37). Many of the above integrals can be
obtained by applying this theorem. The solution of Eq. (41) depends on an arbitrary function
of one variable. Using this fact, it is possible, in some simple cases, to derive one more
integral. This is true, for example, if the potential is exponential.

In the above example of the potential U = U0 exp (2gψ + g1ξ) with two additional
integrals, we immediately ˇnd the equation for χ,

χ′ = (g2 + g1)χ + (ρ0 + 2η0g) +
η2
0

χ
, (42)

by solving of which we explicitly express ξ, η, ρ, h and ψ as functions of χ. This is sufˇcient
for ˇnding the portrait of this physically interesting system.

To demonstrate the problems, which remain even for apparently simpler systems, we
consider the potential U(ψ) also having two additional integrals. The obvious linear integral
is ρ = ρ0. To obtain one more integral, suppose that ψUψ = 2gU . Then, we have the
additional integral of the three differential equations:

ψη − (g + 1)χ + ρ0ξ = I, χ′ = ρ0 +
η2

χ
, ηψ′ =

η2

χ
, ψη′ = gχ′. (43)

We can exclude ψ (or, η), and thus get two equations for χ and η (or ψ). But this is not an
integrable dynamical system because of its explicit dependence of I on ξ. If we take ρ0 = 0
in the expression for the above integral, the system can be explicitly integrated, but this is
only a ©partialª solution. 1 Unfortunately, here we do not know the transformation to an
autonomous system, which helped us in the EmdenÄFowler case, see (28), (29).

It should be emphasized that Eqs. (39)Ä(41) only generate the integrals that are linear in
momenta (like the variables χ, η, ρ), but do not allow derivation of possible bilinear integrals.
The simplest example of an additional bilinear integral can be obtained, if we multiply the
last equation in (37) by 2ρ,

0 = 2ρ (ρ′ + UξH) ≡ (ρ2)′ + 2h′Uξ, (44)

1This is a typical problem Å integrals often have ξ-depending terms that describe a sort of a ©back-reactionª of
gravity on matter.
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and then suppose that Uξ is a constant, Uξ = g. This gives a new integral, ρ2 + 2gh = I ,
generalizing the Liouville one. This integral exists, if U = g ξ + v(ψ), and we can ˇnd
v(ψ), for which there exists one more integral, with the aid of Eq. (41). Inserting in it the
expression for U , we ˇnd that c1 + 2c4 = 0, and thus ˇnd the equation for v:

(c2 + c4ψ) v′(ψ) − 2 c4v(ψ) + 2 gc3 = 0. (45)

If c4 = 0, the solutions are linear in ψ and we have the additional integral c2η + c3ρ = I . If
c4 �= 0, we ˇnd that v = g c3/c4 + c0(ψ + c2/c4)2 and the integral is

−2c4χ + c2η + c3ρ + c4(ψη + ρξ) = I. (46)

Some integrals of this sort were ˇrst discovered in [7]. To derive them using the present
approach, we somewhat generalize this process and ˇnd the following nontrivial integral:

(a + bξ) ρ2 + ch + bη2
0 ln |h| = I, (47)

where we used the constraint multiplied by ρ, the identity ρH = h′U , and supposed that
Uψ = 0, which gives the integral η = η0. The solution of the equation for the potential is

U =
c

b
+

c0√
a + bξ

,

where c0 is arbitrary. The integral and potential do not coincide with those of [7] and look
rather exotic. To reproduce the most interesting integral of [7], we note that here we work
exclusively in the Weyl frame W = 0 (but omitting hats), while there was used the original
frame W = (1 − ν)/ϕ, see Eqs. (4), (6), (7) above.

To return to the general W frame with the arbitrary dilaton kinetic potential W (ϕ) ≡
W (ξ), we thus apply the Weyl transformation h �→ hw, V �→ V/w and, correspondingly,

H �→ Hw, U �→ U/w, F �→ F + lnw, ρ �→ ρ + χ(ln w)′. (48)

This gives us more freedom in search for integrals. For example, if we apply (48) to (44),
replace h, U , ρ by ĥ ≡ hw, Û ≡ U/w, ρ̂, transform ĥ′ Ûξ into

h′ [w Ûξ] + hU [U−1w′ Ûξ] = h′ [w Ûξ] − χχ′ [U−1w′ Ûξ],

and make the expressions in the square brackets constant, we will ˇnd a new bilinear integral.
With this approach, we can recover the complex bilinear integral of [7] and ˇnd the new
ones. This subject requires more careful investigation and will be discussed elsewhere.

Finally, let us return to our main goal formulated in Introduction and Sec. 1 of the present
report Å to integrate the equations or, at least, to ˇnd a global portrait of the simplest or
approximate scalaron cosmologies. Here, we present a realistic example of one additional
integral. Consider the integral and the corresponding equation for the potential

c1χ + (ψη + ρξ) = I, 2βU + 2ξUξ + ψUψ = 0, β ≡ c1 + 1. (49)

The general solution for this equation is

U(ξ, ψ) = ψ2α ξβ−αF(1 + ψ2ξ−1), (50)
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where F(x) is an arbitrary function of one variable, α Å arbitrary parameter. Taking

F ≡ F1 =
(

1 +
λ2

0ψ
2

ξ

)
, α = 0, β = 0,

we get the effective potential for the scalaron model in D = 3, see (14), (16). For other
dimensions, neglecting the curvature term (i.e., kν = 0), Eq. (16) gives

F ≡ Fν = vν(λ0ψ/ϕ), α = 0, β =
ν − 1

2
.

We still hope to ˇnd one more integral for D = 3. However, for other dimensions we must
look for some approximations.

4. SUMMARY AND OUTLOOK

In conclusion, we summarize the main points of the report. Dilaton gravity with scalars
is, in general, not integrable even with formally sufˇcient number of integrals of motion.
The models with massless scalars qualitatively differ from the scalaron models (DSG) that
inevitably include nonintegrability. Fortunately, in some physically important cases, the non-
integrable systems are partially integrable, and therefore can be effectively studied, at least
qualitatively. The solutions near horizons and singularities can be derived analytically Å by
using exact series expansions or, alternatively, by iterations of the master integral equation.
On the other hand, our approach to constructing systems with additional integrals may help to
ˇnd integrable or partially integrable systems that are qualitatively close to the realistic ones.
We demonstrated that there are two kinds of additional integrals: 1) linear in momenta and
described by a sufˇciently general approach; 2) quadratic in momenta, similar to the Liouville
integrals. In addition, we argued that in the dilaton gravity the scalar ˇeld equations resemble
the well-known generalized EmdenÄFowler equations. The rich technology developed for
understanding the global structure and asymptotic properties of these equations may prove
helpful in the context of scalaron models in cosmology.

Understanding global properties of classical solutions is also desirable for their quan-
tization. The simplest approach was attempted some time ago for classically integrable
gravitational systems with minimal number of degrees of freedom (see, e.g., [17]).

We hope that the above panoramic presentation of several new ideas on ˇnding integrals
of nonlinear equations of modern cosmological models, which are met in various generalized
theories of gravity, may be of interest in studies of their global properties.
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