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INVARIANT DIFFERENTIAL OPERATORS
FOR NONCOMPACT LIE GROUPS:

THE REDUCED su(3, 3) MULTIPLETS
V. K.Dobrev 1

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Soˇa

In the present paper, we continue the project of systematic construction of invariant differential
operators on the example of the noncompact algebras su(n, n). Earlier were given the main multiplets
of indecomposable elementary representations for n � 4, and the reduced ones for n = 2. Here, we
give all reduced multiplets containing physically relevant representations including the minimal ones for
the algebra su(3, 3). Due to the recently established parabolic relations, the results are valid also for
the algebra sl(6,R) with suitably chosen maximal parabolic subalgebra.

PACS: 02.20.-Sv

INTRODUCTION

Invariant differential operators play very important role in the description of physical
symmetries. In a recent paper [1], we started the systematic explicit construction of invariant
differential operators. We gave an explicit description of the building blocks, namely, the
parabolic subgroups and subalgebras, from which the necessary representations are induced.
Thus, we have set the stage for study of different noncompact groups.

In the present paper, we focus on the algebra su(3, 3). The algebras su(n, n) belong to
a narrow class of algebras, which we call ©conformal Lie algebrasª, which have very similar
properties to the canonical conformal algebras of the Minkowski space-time. This class was
identiˇed from our point of view in [2]. The same class was identiˇed independently from
different considerations and under different names in [3, 4].

This paper is a sequel of [5], and due to the lack of space, we refer to it and to [6] for
motivations and extensive list of literature on the subject.

1. PRELIMINARIES

Let G be a semisimple noncompact Lie group, and K a maximal compact subgroup
of G. Then, we have an Iwasawa decomposition G = KA0N0, where A0 is Abelian simply
connected vector subgroup of G, N0 is a nilpotent simply connected subgroup of G preserved
by the action of A0. Further, let M0 be the centralizer of A0 in K . Then, the subgroup
P0 = M0A0N0 is a minimal parabolic subgroup of G. A parabolic subgroup P = MAN is
any subgroup of G, which contains a minimal parabolic subgroup.

1E-mail: dobrev@inrne.bas.bg



Invariant Differential Operators for Noncompact Lie Groups: The Reduced su(3, 3) Multiplets 1339

The importance of the parabolic subgroups comes from the fact that the representations
induced from them generate all (admissible) irreducible representations of G [7Ä9].

Let ν be a (non-unitary) character of A, ν ∈ A∗, let μ ˇx an irreducible representation Dμ

of M on a vector space Vμ.
We call the induced representation χ = IndG

P (μ ⊗ ν ⊗ 1) an elementary representation
of G [10]. Their spaces of functions are

Cχ = {F ∈ C∞(G, Vμ)|F(gman) = e−ν(H)Dμ(m−1)F(g)}, (1)

where a = exp (H) ∈ A, H ∈ A, m ∈ M , n ∈ N . The representation action is the left
regular action:

(T χ(g)F)(g′) = F(g−1g′), g, g′ ∈ G. (2)

For our purposes we need to restrict to maximal parabolic subgroups P , so that rank A = 1.
Thus, for our representations the character ν is parameterized by a real number d, called the
conformal weight or energy.

An important ingredient in our considerations are the highest/lowest weight representations
of G. These can be realized as (factor-modules of) the Verma modules V Λ over GC, where
Λ ∈ (HC)∗, HC is a Cartan subalgebra of GC, weight Λ = Λ(χ) is determined uniquely
from χ [11,12].

Actually, since our ERs will be induced from the ˇnite-dimensional representations of M
(or their limits), the Verma modules are always reducible. Thus, it is more convenient to use
the generalized Verma modules Ṽ Λ such that the role of the highest/lowest weight vector v0

is taken by the space Vμv0. For the generalized Verma modules (GVMs) the reducibility
is controlled only by the value of the conformal weight d. Relatedly, for the intertwining
differential operators only the reducibility w.r.t. noncompact roots is essential.

One main ingredient of our approach is as follows. We group the (reducible) ERs with the
same Casimirs in sets called multiplets [12, 13]. The multiplet corresponding to ˇxed values
of the Casimirs may be depicted as a connected graph, the vertices of which correspond to the
reducible ERs and the lines between the vertices correspond to intertwining operators. The
explicit parameterization of the multiplets and of their ERs is important for understanding of
the situation.

In fact, the multiplets contain explicitly all the data necessary to construct the intertwining
differential operators. Actually, the data for each intertwining differential operator consist
of the pair (β, m), where β is a (noncompact) positive root of GC, m ∈ IN , such that the
BGG [14] Verma module reducibility condition (for highest weight modules) is fulˇlled:

(Λ + ρ, β∨) = m, β∨ ≡ 2β/(β, β). (3)

When (3) holds, then the Verma module with shifted weight V Λ−mβ (or Ṽ Λ−mβ for GVM
and β noncompact) is embedded in the Verma module V Λ (or Ṽ Λ). This embedding is
realized by a singular vector vs determined by a polynomial Pm,β(G−) in the universal
enveloping algebra (U(G−)) v0, G− is the subalgebra of GC generated by the negative root
generators [15]. More explicitly, [12], vs

m,β = Pm
β v0 (or vs

m,β = Pm
β Vμv0 for GVMs). Then,

there exists [12] an intertwining differential operator

Dm
β : Cχ(Λ) −→ Cχ(Λ−mβ) (4)
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given explicitly by

Dm
β = Pm

β (Ĝ−), (5)

where Ĝ− denotes the right action on the functions F , cf. (1).

2. THE NONCOMPACT LIE ALGEBRA su(3, 3)

Let G = su(3, 3). This algebra has discrete series representations and highest/lowest
weight representations since the maximal compact subalgebra is K ∼= u(1) ⊕ su(3) ⊕ su(3).

We choose a maximal parabolic P = MAN such that A ∼= so(1, 1), M = sl(3, C)IR .
We note also that KC ∼= u(1)C ⊕ sl(3, C) ⊕ sl(3, C) ∼= MC ⊕AC. Thus, the factor M has
the same ˇnite-dimensional (nonunitary) representations as the ˇnite-dimensional (unitary)
representations of the semisimple subalgebra of K.

We label the signature of the ERs of G as follows:

χ = {n1, n2, n4, n5; c}, nj ∈ Z+, c = d − 3, (6)

where the last entry of χ labels the characters of A, and the ˇrst four entries are labels of
the ˇnite-dimensional nonunitary irreps of M, when all nj > 0, or limits of the latter, when
some nj = 0.

Below we shall use the following conjugation on the ˇnite-dimensional entries of the
signature:

(n1, n2, n4, n5)∗
.= (n4, n5, n1, n2). (7)

The ERs in the multiplet are related also by intertwining integral operators introduced
in [16]. These operators are deˇned for any ER, the general action being

GKS : Cχ −→ Cχ′ ,

χ = {n1, n2, n4, n5; c}, χ′ = {(n1, n2, n4, n5)∗;−c}.
(8)

For the classiˇcation of the multiplets we shall need one more conjugation for the entries
of the M representations:

(n1, n2, n4, n5)♠
.= (n5, n4, n2, n1). (9)

Further, we need the root system of the complexiˇcation GC = sl(6, C). The positive
roots in terms of the simple roots are given standardly as

αij = αi + . . . + αj , 1 � i < j � 5,

αjj = αj , 1 � j � 5.
(10)

From these the compact roots are those that form (by restriction) the root system of the
semisimple part of KC, the rest are noncompact, i.e.,

noncompact: αij , 1 � i � 3, 3 � j � 5. (11)

Further, we give the correspondence between the signatures χ and the highest weight Λ.
The connection is through the Dynkin labels

mi ≡ (Λ + ρ, α∨
i ) = (Λ + ρ, αi), i = 1, . . . , 5, (12)
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where Λ = Λ(χ), ρ is half the sum of the positive roots of GC. The explicit connection is

ni = mi, c = −1
2
(mα̃ + m3) = −1

2
(m1 + m2 + 2m3 + m4 + m5), (13)

where α̃ = α1 + . . . + α5 is the highest root.
We shall also use the so-called Harish-Chandra parameters:

mjk ≡ (Λ + ρ, αjk) = mj + . . . + mk, j < k, mjj ≡ mj . (14)

Finally, we remind that according to [6], the above results for su(3, 3) are valid also for
the algebra sl(6, IR) with parabolic M-factor sl(3, IR) ⊕ sl(3, IR).

3. MULTIPLETS OF su(3, 3)

3.1. Main Multiplets. There are two types of multiplets: main and reduced. The multiplets
of the main type are in one-to-one correspondence with the ˇnite-dimensional irreps of
su(3, 3), i.e., they are labelled by the ˇve positive Dynkin labels mi ∈ IN . In [5], we have
given explicitly the main multiplets for n = 2, 3, 4, and the reduced ones for n = 2.

A main multiplet contains 20 ERs/GVMs, whose signatures can be given in the following
pair-wise manner [5]:

χ±
0 = {(m1, m2, m4, m5)±; ±(mα̃ + m3)},

χ±
a = {(m1, m23, m34, m5)±; ±(mα̃ − m3)},

χ±
b = {(m12, m3, m24, m5)±; ±m1,45},

χ±
b′ = {(m1, m24, m3, m45)±; ±m12,5},

χ±
c = {(m2, m3, m14, m5)±; ±(m45 − m1)},

χ±
c′ = {(m12, m34, m23, m45)±; ±(m1 + m5)},

χ±
c′′ = {(m1, m25, m3, m4)±; ±(m12 − m5)},

χ±
d = {(m2, m34, m13, m45)±; ±(m5 − m1)},

χ±
d′ = {(m12, m35, m23, m4)±; ±(m1 − m5)},

χ±
e = {(m2, m35, m13, m4)±; ±(m1 + m5)},

(15)

where (k1, k2, k3, k4)− = (k1, k2, k3, k4), (k1, k2, k3, k4)+ = (k1, k2, k3, k4)∗. They are given
explicitly in Fig. 1 (ˇrst in [5]). The pairs Λ± are symmetric w.r.t. to the bullet in the middle
of the ˇgure Å this represents the Weyl symmetry realized by the KnappÄStein operators (8):
GKS : Cχ∓ ←→ Cχ± .

Matters are arranged so that in every multiplet only the ER with signature χ−
0 contains

a ˇnite-dimensional nonunitary subrepresentation in a ˇnite-dimensional subspace E . The
latter corresponds to the ˇnite-dimensional irrep of su(3, 3) with signature {m1, . . . , m5}.
The subspace E is annihilated by the operator G+, and is the image of the operator G−.
The subspace E is annihilated also by the intertwining differential operator acting from χ−

0

to χ−
a . When all mi = 1, then dim E = 1, and in that case, E is also the trivial one-

dimensional UIR of the whole algebra G. Furthermore, in that case, the conformal weight is
zero: d = 3 + c = 3 − (1/2)(m1 + m2 + 2m3 + m4 + m5)|mi=1 = 0.
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Fig. 1. Main multiplets for su(3, 3)

Analogously, in every multiplet only the ER with signature χ+
0 contains holomorphic

discrete series representation. This is guaranteed by the criterion [11] that for such an ER
all Harish-Chandra parameters for noncompact roots must be negative, i.e., in our situation,
mα < 0. (That this holds for our χ+ can be easily checked using the signatures (15).)

Note that the ER χ+
0 contains also the conjugate antiholomorphic discrete series. The direct

sum of the holomorphic and the antiholomorphic representations is realized in an invariant
subspace D of the ER χ+

0 . That subspace is annihilated by the operator G−, and is the
image of the operator G+. Note, that the corresponding lowest weight GVM is inˇnitesimally
equivalent only to the holomorphic discrete series, while the conjugate highest weight GVM
is inˇnitesimally equivalent to the antiholomorphic discrete series. The conformal weight of
the ER χ+

0 has the restriction d = 3 + c = 3 + (1/2)(m1 + m2 + 2m3 + m4 + m5) � 6.
In Fig. 1 and below, we use the notation: Λ± = Λ(χ±). Each intertwining differential

operator is represented by an arrow accompanied by a symbol ijk , encoding the root αjk

and the number mαjk
, which is involved in the BGG criterion. This notation is used to

save space, but it can be used due to the fact that only intertwining differential operators,
which are noncomposite, are displayed, and that the data β, mβ , which are involved in the
embedding V Λ ←→ V Λ−mβ ,β, turn out to involve only the mi corresponding to simple roots,
i.e., for each β, mβ there exists i = i(β, mβ , Λ) ∈ {1, . . . , 5}, such that mβ = mi. Hence,
the data αjk , mαjk

are represented by ijk on the arrows.
3.2. Reduced Multiplets. There are ˇve types of reduced multiplets, Ra, a = 1, . . . , 5,

which may be obtained from the main multiplet by setting formally ma = 0. Multiplets of
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type R4, R5, are conjugate to the multiplets of type R2, R1, respectively, as follows. First,
we make the conjugation on the roots and exchange all indices: 1 ←→ 5, 2 ←→ 4. With this
operation we obtain the diagrams of the conjugated cases from one another. For the entries
of the M representation we have further to employ the conjugation (9). Then, we obtain
the signatures of the conjugated cases from one another. Thus, we give explicitly only ˇrst
three types.

The reduced multiplets of type R3 contain 14 ERs/GVMs, whose signatures can be given
in the following pair-wise manner:

χ±
0 = {(m1, m2, m4, m5)±; ±m12,45},

χ±
b = {(m12, 0, m24, m5)±; ±m1,45},

χ±
b′ = {(m1, m24, 0, m45)±; ±m12,5},

χ±
c = {(m2, 0, m14, m5)±; ±(m45 − m1)},

χ±
c′′ = {(m1, m25, 0, m4)±; ±(m12 − m5)},

χ±
d = {(m2, m4, m12, m45)±; ±(m5 − m1)},

χ±
e = {(m2, m45, m12, m4)±; ±(m1 + m5)}.

(16)

These multiplets are given in Fig. 2. They may be called the main type of reduced multiplets
since here in χ+

0 are contained the limits of the (anti)holomorphic discrete series.

Fig. 2. su(3, 3) reduced multiplets of type R3

The reduced multiplets of type R2 contain 14 ERs/GVMs, whose signatures can be given
in the following pair-wise manner:

χ±
0 = {(m1, 0, m4, m5)±; ±(mα̃ + m3)},

χ±
b = {(m1, m3, m34, m5)±; ±m1,45},

χ±
c = {(0, m3, m14, m5)±; ±(m45 − m1)},

χ±
c′ = {(m1, m34, m3, m45)±; ±(m1 + m5)}, (17)
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χ±
d = {(0, m34, m13, m45)±; ±(m5 − m1)},

χ±
d′ = {(m1, m35, m3, m4)±; ±(m1 − m5)},

χ±
e = {(0, m35, m13, m4)±; ±(m1 + m5)}.

These multiplets are given in Fig. 3.

Fig. 3. su(3, 3) reduced multiplets of type R2

The reduced multiplets of type R1 contain 14 ERs/GVMs, whose signatures can be given
in the following pair-wise manner:

χ±
0 = {(0, m2, m4, m5)±; ±(mα̃ + m3)},

χ±
a = {(0, m23, m34, m5)±; ±(mα̃ − m3)},

χ±
b′ = {(0, m24, m3, m45)±; ±m2,5},

χ±
c = {(m2, m3, m24, m5)±; ±m45},

χ±
c′′ = {(0, m25, m3, m4)±; ±(m2 − m5)},

χ±
d = {(m2, m34, m23, m45)±; ±m5},

χ±
e = {(m2, m35, m23, m4)±; ±m5}.

(18)

These multiplets are given in Fig. 4.
3.3. Further Reduction of Multiplets. There are further reductions of the multiplets

denoted by R3
ab, a, b = 1, . . . , 5, a < b, which may be obtained from the main multi-

plet by setting formally ma = mb = 0. From these ten reductions four (for (a, b) =
(1, 2), (2, 3), (3, 4), (4, 5)) do not contain representations of physical interest, i.e., induced
from the ˇnite-dimensional irreps of the M subalgebra. From the others, R3

35 and R3
25 are
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Fig. 4. su(3, 3) reduced multiplets of type R1

conjugated to R3
13 and R3

14, respectively, as explained above. Thus, we present explicitly
only four types of multiplets.

The reduced multiplets of type R3
13 contain 10 ERs/GVMs, whose signatures can be given

in the following pair-wise manner:

χ±
0 =

{
(0, m2, m4, m5)±; ±1

2
m2,45

}
,

χ±
b =

{
(0, m2,4, 0, m45)±; ±1

2
m2,5

}
,

χ±
b′ =

{
(m2, 0, m2,4, m5)±; ±1

2
m45

}
,

χ±
c =

{
(0, m2,45, 0, m4)±; ±1

2
(m2 − m5)

}
,

χ±
d =

{
(m2, m4, m2, m45)±; ±1

2
m5

}
.

(19)

The multiplets are given in Fig. 5.
Note, that the differential operator from χ−

d to χ+
d is a reduction of an integral KnappÄStein

operator.
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Fig. 5. su(3, 3) reduced multiplets of type R3
13

The reduced multiplets of type R3
14 contain 10 ERs/GVMs, whose signatures can be given

in the following pair-wise manner:

χ±
0 =

{
(0, m2, 0, m5)±; ±1

2
(m23,5 + m3)

}
,

χ±
b =

{
(0, m23, m3, m5)±; ±1

2
m2,5

}
,

χ±
c =

{
(0, m23,5, m3, 0)±; ±1

2
(m2 − m5)

}
,

χ±
c′ =

{
(m2, m3, m23, m5)±; ±1

2
m5

}
,

χ±
d =

{
(m2, m3,5, m23, 0)±; ∓1

2
m5

}
.

(20)

The multiplets are given in Fig. 6.
The reduced multiplets of type R3

15 contain 10 ERs/GVMs, whose signatures can be given
in the following pair-wise manner:

χ±
0 =

{
(0, m2, m4, 0)±; ±1

2
(m24 + m3)

}
,

χ±
a =

{
(0, m23, m34, 0)±; ±1

2
m24

}
,

χ±
b′ =

{
(0, m24, m3, m4)±; ±1

2
m2

}
,

χ±
c =

{
(m2, m3, m24, 0)±; ±1

2
m4

}
,

χ±
d = {(m2, m34, m23, m4)±; 0}.

(21)

The multiplets are given in Fig. 7.
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Fig. 6. su(3, 3) reduced multiplets of type R3
14 Fig. 7. su(3, 3) reduced multiplets of type R3

15

Fig. 8. su(3, 3) reduced multiplets of

type R3
24

We note a peculiarity in the last case, namely, the
operator between χ±

d is not a differential operator. It
is a reduction of the KnappÄStein operator, which does
not change the conformal weight, but only conjugates the
signature of M.

The reduced multiplets of type R3
24 contain

10 ERs/GVMs, whose signatures can be given in the fol-
lowing pair-wise manner:

χ±
0 =

{
(m1, 0, 0, m5)±;±1

2
(m1,3,5 + m3)

}
,

χ±
b =

{
(m1, m3, m3, m5)±;±1

2
m1,5

}
,

χ±
c =

{
(0, m3, m1,3, m5)±;±1

2
(m5 − m1)

}
,

χ±
d′ =

{
(m1, m3,5, m3, 0)±;±1

2
(m1 − m5)

}
,

χ±
e =

{
(0, m3,5, m1,3)±;∓1

2
m15

}
.

(22)

The multiplets are given in Fig. 8.
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3.4. Last Reduction of Multiplets. There are further reductions of the multiplets Å triple
and quadruple, but only one triple reduction contains representations of physical interest.
Namely, this is the multiplet R3

135, which may be obtained from the main multiplet by setting
formally m1 = m3 = m5 = 0. It contains 7 ERs/GVMs, whose signatures can be given in
the following manner:

χ±
a =

{
(0, m2, m4, 0)±; ±1

2
m2,4

}
,

χ±
b =

{
(0, m2,4, 0, m4)±; ±1

2
m2

}
,

χ±
b′ =

{
(m2, 0, m2,4, 0)±; ±1

2
m4

}
,

χd = {(m2, m4, m2, m4); 0}.

(23)

The multiplets are given in Fig. 9. The representation χd is a singlet, not in a pair, since it
has zero weight c, and the M entries are self-conjugate under (7). It is placed in the middle
of the ˇgure as the bullet. That ER contains the minimal irreps of su(3, 3) characterized by
two positive integers, which are denoted in this context as m2, m4. Each such an irrep is the
kernel of the two invariant differential operators Dm2

14 and Dm4
25 , which are of order m2, m4,

respectively, and correspond to the noncompact roots α14, α25, respectively, cf. (5).

Fig. 9. su(3, 3) reduced multiplets of type R3
135
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