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We briefly review the novel off-shell formulation for A -extended conformal supergravity in three
space-time dimensions developed in [1]. Our approach is based on gauging the N-extended supercon-
formal algebra osp(N|4,R) in superspace. A special feature of the formulation is that the constraints
imposed imply that the covariant derivative algebra is given in terms of a single curvature superfield,
the super-Cotton tensor. We also elaborate on the component structure of the Weyl multiplet.

PACS: 04.65.4+¢

INTRODUCTION

Pure N -extended conformal supergravity in three dimensions (3D) is a supersymmetric
Chern—Simons theory. It was originally engineered in the 1980s [2—4] (see also [5]) by
gauging the AN -extended superconformal algebra osp(N]4,R) in ordinary space-time. The
resulting theory was off-shell only for AV = 1 [2] and A = 2 [3], and on-shell for " > 2 [4,5].
We discuss this important point in more detail below.

According to [4], N-extended conformal supergravity is described by the set of gauge
fields, which are in one-to-one correspondence with the generators of osp(N]4,R) and which
may naturally be split into three subsets. The first subset consists of the dynamical fields:
the vielbein e,,%, the N gravitino ,,% and the SO(N) gauge field V;,// = —V,, /1.
The second subset is given by the dilatation field b,,, which is a pure gauge degree of
freedom (one may completely gauge away b,, by using the local conformal boosts). The
third subset consists of the following composite fields: the spin connection w,,%’, the spe-
cial conformal connection f,,* and the S-supersymmetry connection ¢,,¢. There are two
ways to make the latter fields composite: either by imposing covariant constraints within
the second-order formalism or by enforcing certain equations of motion using the first-order
formalism.
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The action for A/-extended conformal supergravity given in [4] is

1 2
S = 1 /d?’xe {Eabc <wafg72bcfg - gwafgwbghwchf—

) 2
=5 Woef (Va)a” (a)g7e™ Wey] = 2 (Rab”vcu - gVJ"VMKVCKJ) )} . (D

Here R and Rp!7 are the Lorentz and SO(N) curvature tensors, and W,;}, — the
gravitino field strength.

It is a simple exercise to count the number of off-shell degrees of freedom which are
contained in the dynamical fields, the bosonic e,,* and V..’ and the fermionic VYm T ones.
The result is N'(N — 1) +2 bosonic and 2 fermionic off-shell degrees of freedom. Thus, the
number of bosonic degrees of freedom matches that of the fermionic ones only in the cases
N =1and N = 2. Since the formulation of [4,5] is on-shell for A/ > 2, it is not suitable for
many interesting applications such as the construction of matter couplings. Auxiliary fields
are required for N > 2.

1. THE WEYL MULTIPLET IN SO(N) SUPERSPACE

In 1995, Howe et al. [6] proposed a curved superspace geometry with structure group
SL(2,R) x SO(N), which is suitable to describe off-shell 3D N -extended conformal super-
gravity. Specifically, the authors of [6] postulated the superspace constraints and determined
all components of the superspace torsion of dimension-1. They also identified the N -extended
Weyl multiplet, that is the off-shell superconformal multiplet that contains all the independent
gauge fields of asp(N|4,R). At the same time, crucial elements of the formalism (including
the explicit structure of super-Weyl transformations and the solution of the dimension-3/2
and dimension-2 Bianchi identities) did not appear in [6]. The geometry of N -extended
conformal supergravity has been fully developed in [7] and then applied to construct general
supergravity-matter couplings in the cases N < 4 (the simplest extended case N' = 2 was
studied in more detail in [8]). Below we review the salient points of the formalism.

Since the structure group is SL(2,R) x SO(N), the superspace geometry is described by
covariant derivatives of the form

0

T 9M

1 1
Da = EaM0n = 594" Mye = 5®4" N1y, Ou )
with local coordinates 2™ = (2™, 6%) chosen to parameterize the curved superspace MBIV
Here E4 = E4M0) is the supervielbein; M, and ) AP¢ are the Lorentz generators and
connection, respectively; and N;; and ®477 are respectively the SO(N) generators and
connection. The covariant derivatives obey (anti)commutation relations of the form

1 1
[Da, D} = —~Tap“Dc — 5RABC‘iMcd - §RAB”NU, 3)

where T45€ is the torsion, R4p°® is the Lorentz curvature and Rap’” is the SO(N)
curvature.
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The torsion is subject to the conventional constraints [6]:

THe = ~2i" (4)ag, T = TL = T = T, K = 0. “)

For A/ > 1, the complete solution to the constraints (4), derived in [7], is given in terms of
three dimension-1 tensor superfields W//5E = WUIKL] glJ — qUJ) and C,17 = ¢, U],
which appear in the anticommutator

{DL,Dj} = 2i6" (v°)apDe — 2ieapC" Mys — 4iS™ Mog +
+ (iaagW”KL — 4icagSEUSIIE 4 4C, 5K L5 — 4ic(,5K“5J>L) Nkr. (5)

The tensor WI!/KL is absent for N' < 4. The Bianchi identities imply constraints on the
curvature superfields W//5L §17 and C,!7 that are given in [7]. We refer to the superspace
geometry described above as SO(N) superspace.

Although the N' = 1 case is not described by (5), it can be obtained from the N' > 1
algebra by performing a certain limit [7]. The algebra of A" = 1 covariant derivatives [9] is

{Dw, D} = 2iDpp — 4iSMag, (62)

2
[Daapﬁ] = S('Ya)ﬁ’yp'y - ('Ya)ﬂ'yc'yépMép 3 (nabDﬁS + 25abc('yc)[3'yD’Y‘9) M. (6b)

Unlike the space-time approaches that gauge the entire superconformal algebra [2-5],
the structure group of SO(N') superspace is a subgroup of osp(N|4,R). In particular, the
dilatation symmetry and S-supersymmetry are not gauged in this approach. The reason why
SO(N) superspace is suitable to describe conformal supergravity is that the constraints (4)
are invariant under arbitrary super-Weyl transformations of the form [7]:

1
5,D! = 50% + (D 6)Mug + (Dayo) N7, (7a)

i {
05Da = 0Da + 5 (74)" (D5 0)Dsxc + ane(D"0)M* + = (va)**([DF, Do) Nicr, (7)

where the parameter o is a real unconstrained superfield. Under (7), W!/KL transforms
homogeneously, while the transformations of S’/ and C,’” are inhomogeneous [7],

(SUWIJKL _ leJKL, (7C)
5,81 = o810 — é[m“, D))o, (7d)
5,0’ = 0Cu" — < () [P, Do (7e)

The superfield W17/KL is called the super-Cotton tensor, since it transforms as a primary field
under the super-Weyl group and contains the ordinary Cotton tensor among its component
fields. In the cases N < 4, the superfield W!/%Z vanishes and instead the super-Cotton
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tensor is constructed from the curvature superfields as follows [1,10,11]:

N=1: Wagy=—iDDsCapy — 2D (05D S — 85Caz, (8a)
i i

N=2: Wy= g[D},Dg]caﬁ - ZE}J[D(IQ,Dé)]S +28C,z, (8b)
i

N =3: Wy = EE[JK'DBICO(/;JK, (8c)

where for A = 2 we have defined C,5 := (1/2) e17Cop’’ and S := (1/2) 677 S;;. The sym-
metric spinors (8a)—(8c) transform homogeneously under the super-Weyl transformations (7).
The ordinary Weyl and local S-supersymmetry transformations are generated by the lowest

components of o:
olo=0, Dlolo—o. 9

The appearance of super-Weyl transformations is a common feature of conventional ap-
proaches to conformal supergravity in diverse dimensions.

The SO(N) superspace has proven powerful for the construction of general supergravity-
matter couplings in the cases NV < 4 [7,8]. However, the problem of constructing off-shell
conformal supergravity actions was not considered in these papers. As follows from the
analyses in [1,10], SO(N) superspace is not an optimum setting to address this problem.

2. THE WEYL MULTIPLET IN CONFORMAL SUPERSPACE

In this section, we present the new off-shell formulation for A/-extended conformal su-
pergravity developed in [1] and elaborate on the component structure (see also [14]). It is
a generalization of the off-shell formulations for N'= 1 and A/ = 2 conformal supergravity
theories in four dimensions [12,13].

2.1. The Geometry of Conformal Superspace. The 3D N -extended superconformal al-
gebra, 0sp(N|4,R), contains the super-Poincaré translation P4 = (P,,QL), special (su-
per)conformal generators! K4 = (K,,S.), Lorentz (M), dilatation (D) and SO(N) or
R-symmetry (N ) generators. Their (anti)commutation relations are given explicitly in [1].
The covariant derivatives are chosen to have the form

1 1
Va=Es—walX,=Es— §QAbCMbC — 5<1>,4JKNJK — BAD — AP K. (10)
The action of the generators X, = (Myp, N1.7,D, K 4) on the covariant derivatives,

[Xa,VB} = —fus“Vo — faBXe, (11)
resembles that with P4 in the superconformal algebra

[Xa, Pp} = —faB“Po — faB*Xe. (12)

!In line with usual nomenclature we may refer to SZ as the S-supersymmetry generator.
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The supergravity gauge group G is generated by local transformations of the form
1 1
66Va=1[K,Va], K=¢BVp+ §AbCM,,C + 5AJKNJK +oD+ABKg.  (13)

Such a gauge transformation is a combination of: (i) a covariant general coordinate transfor-
mation associated with £; and (ii) a standard superconformal transformation associated with
AY = (A% AVE 5 APB). The covariant derivatives satisfy the (anti)commutation relations

1 1
[Va,Vg}=-Tap°Ve — aR(M)ABCndd - §R(N)ABPQNPQ—
— R(D)AB]D) - R(S)AB}Y(S%{ - R(K)ABCKa (14)

where T4 € is the torsion and R(X)ap® is the curvature associated with X_.

The above geometry is too general and one needs to impose constraints. The con-
straints chosen are based on two principles: (i) the entire covariant derivative algebra should
be expressed in terms of a single primary superfield, the A -extended super-Cotton tensor;
and (ii) the superspace geometry should resemble the one describing the Yang—Mills super-
multiplet.

As discussed above, the super-Cotton tensor possesses a different index structure for
different values of A. For N/ > 3 it corresponds to the SO(N') superspace curvature
WIJEL Tt is in this case that we take

(VL.V} =2i6"" Vg + 2ieasW!’ (15)
and require the operator W7 to be of dimension-1 and conformally primary,
o, W =w! (s, w'X] =o. (16)

The most general ansatz for W7 is
1 . C\«
W = SWHEEN + AVE W5 Sar, + Bi(y) F(Vax Vo WHEN K, (17)

with A and B some constants that turn out to be uniquely determined by (16). The resulting
algebra of covariant derivatives for N' > 3 is

{V(Iy, Vé} = 21‘5”Va5 + i&,gWIJKLNKL — V}Y(WIJKL)S—YL—I—

1
N3

+ cap(Y) (Vo Vs WKL K, (18a)

1
2N —2)(N —3)

1

1
m (Va) 8y

N =3)
()2 (Vo (Vi VEVEWREP VK, ) (18b)

Va, V3 = (VWP Npg - (VLYW EEP) Sy

1

2N - DNV =-2)
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1
Vo Vil = s DV v =3) "

X 2ave(1)ag (2NN = 1) (VEVIWPT) Npg + 2N (VEVIVEWETE)S, 14

+ ()6 (VEVIVEVEW IR, (180)

WIJKL

where satisfies the Bianchi identity

4
N -3

In the N = 4 case, WI/KL = VKLY and Eq.(19) is identically satisfied. For N = 4 we
instead have the Bianchi identity

VLIWIKLP _ V[O{WJKLP] _ VO(QWQ[JKLéP]I. (19)

1
veIvIw = Z(s”v%vfjw. (20)

Although we considered only the N > 3 case, its algebra of covariant derivatives contains
information about the lower A cases. This is discussed in detail in [1]. The important point
is that in each case the algebra is expressed completely in terms of the super-Cotton tensor.

2.2. Degauging to SO(N') Superspace. Under a K 4 transformation, the dilatation gauge
field B = EABa = E*B, + E¢BL transforms as

S (A)B = —2E%A, + 2E¢AL, (1)

which permits the gauge choice B4 = 0. This removes the dilatation connection from all the
covariant derivatives. Once the K4 symmetry has been fixed, it is natural to introduce the
degauged covariant derivatives

Da:=Va+3aPKsg, (22)

whose structure group corresponds to SL(2,R) x SO(N'). The vanishing of all components
of the dilatation curvature imposes constraints on the components of 4. The solution of
these constraints is

Fah = ~Fha = iCas’’ —icapS", (23a)
2 N -1 N <
Saﬁ,'Iy( = _S»Iy(,aﬁ = Co(ﬁny + gEV(Q(TSﬁ)J + mpé)S), (23b)

1

Tab = —W(’Y(a)aﬁ(%))wﬁmcﬁwl—
R

DSl — —— W DIDLS—
GNZ IO TGNy T e
1 1
- W(%)aﬁ(%)vécayucﬁau + NﬂabSIJSIJ + 1avS?,  (23¢)
where 1
S =871, 8= =615 (24)

N
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The superfields Cagl J §IJ, CQMK , S, and S appear in the torsion and curvature tensors
corresponding to the degauged covariant derivatives. To see this, it suffices to evaluate the
action of [D4,Dp} on an arbitrary conformal primary superfield. In particular, one finds

{DL, D]} = 2i6" (v*)agDe — 2ieasC? Mys — 4iS™ Mog +
+ (izagW 7L — dizaS5UGIE — 4iCog U5 ) Nycy,. (25)
In fact, if we introduce a new vector covariant derivative defined by
Dy =Dy~ 3O Ny, (26)

the algebra of the covariant derivatives D4 = (D,, D) exactly coincides with that of SO(N)
superspace. The reason for having to introduce the new covariant derivatives D4 can be

attributed to the appearance of the nonzero torsion component E’B'YTQE;J»IY( I = —2C,”K in the

algebra corresponding to D4. Although this torsion component appears more complex than
that of SO(N) superspace, Eq. (4), it leads to a simpler covariant derivative algebra.

We conclude that the A -extended conformal superspace describes the Weyl multiplet.

2.3. The Weyl Multiplet. The 3D N-extended Weyl multiplet can be extracted from
conformal superspace via component projections. It involves a set of gauge one-forms: the
vielbein e,,”, the gravitino ., the SO(N) gauge field V.17 and the dilatation gauge
field b,,. They appear in the superspace formulation as the lowest components of their
corresponding super one-forms,

ema = Ema|; 'me? = 2Em([y , V;n,IJ = (I)mIJ|; by = Bm|7 (27)

where the bar-projection [9] of a superfield V' (z) = V(x,0) is defined by the standard rule
V] := V(x,0)|p=0. The remaining connection fields are composite and their expressions in
terms of the other fields are given in [14]. By adopting a Wess—Zumino gauge it is possible
to see that the remaining physical fields are contained in the super-Cotton tensor.

Since one can deduce the lower A cases from the A/ > 3 case, we focus on the N' > 3
case. For A/ > 3 the additional fields are encoded in the super-Cotton tensor WIJKL 6] (see
also [15,16]). The component fields are defined as

wrkr = WrikLl, (28a)
wO(IJK — _mv@LWIJKL|’ (28b)
wag” = 2N — 23(./\[— S)V(QKvﬁ)LW”KLL (289
von’ = W - B —3) o Vo VWL 250
Wains = R T T 75 Vet Vo VoV WIREL s
yIIEL A%Svfy[lvvaJKL]PL (286)

Koy, "I = I() VL -

(o1

i i) a5
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The factor I(n), which is needed to ensure the fields X, ..., * 7+ are real, is defined to
be I(n) =i, when n = 1,2 (mod4) and I(n) =1 with n = 3,4 (mod 4). The fields defined
in (28), when organized by dimension, diagrammatically form the following tower [15, 16]:

w11~~~l4
Iy---1, 11151
Xa 1 5 We, 14213
I1---Ig I1---14

Xa1a2 s y 1

/ AN

I
Way s

/ N\

Iy In

LI
Wary ovn 112

Xonan_a Wy --ag

The component fields was’?, wap,’ and wag,s are constrained by the geometry to be
composite [14].

Although we have only defined the component fields coming from the Cotton tensor for
N > 3, the coefficients in Eq. (28) have been chosen to allow one to derive component results
for lower A/ from the higher ones. We simply switch off the components with more than N
SO(N) indices (independently) and define

LI o LI
e TN Way vy = Wageeas e b (29)

For NV < 5 the component fields defined by Eq.(28g) are identically zero. The N/ = 1
components of the super-Cotton tensor are

Wapy = Wapyl,  Wapys =1V (aWpae)l, (30)
while for N' = 2 they are defined by
wap = Wagl,  Wapy" :=26""V(asWpy)l,  Wapys = iersV{,ViWosl,  (31)
which are all composite. The N' = 3 component fields of the super-Cotton tensor are

Wo = Wal, wag"” = ="V (0xWp)|, wapy' == ="KV VW, (32a)

)
wag,yg = —g&]JKVéIVéVé(Wé)L (321’))

where the only auxiliary field is w,, and all other components are composite.
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