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SPHERICAL MECHANICS FOR A PARTICLE NEAR
THE HORIZON OF EXTREMAL BLACK HOLE
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We describe canonical transformation, which links the Hamiltonian of a massive relativistic particle
moving near the horizon of an extremal black hole to the conventional form of the conformal mechanics.
Thus, like the nonrelativistic conformal mechanics, the investigation of the particle dynamics reduces to
analyzing its ©spherical sectorª deˇned by the Casimir element of the conformal algebra. We present a
detailed list of such systems originating from various types of black hole conˇgurations.
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Conformal mechanics associated with the near-horizon geometry of an extremal black hole
is described by the triple

H = r

(√
(rpr)

2 + L(pa, ϕa) − f(pa, ϕ
a)

)
,

(1)

D = rpr, K =
1
r

(√
(rpr)

2 + L(pa, ϕa) + f(pa, ϕa)
)

,

which involves the Hamiltonian H , the generator of dilatations D, and the generator of special
conformal transformations K . Under the Poisson brackets they form an so(2, 1) algebra

{H, D} = H, {H, K} = 2D, {D, K} = K. (2)

Recently, we suggested a canonical transformation (pr, r, pa, ϕa) → (pR, R, p̃a, ϕ̃a), which
links the Hamiltonian (1) to the conventional nonrelativistic form [1Ä3] (for related earlier
studies, see [4, 5])

pR = − 2D√
2K

, R =
√

2K, ϕ̃a = ϕa +
∂U(pr, r, ψa, ϕa)

∂pa
, p̃a = pa−

∂U(pr, r, ψa, ϕa)
∂ϕa

,

(3)
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where

U(pr, r, ψa, ϕa) =
1
2

∫
x=rpr

log

(√
x2

4
+ L(pa, ϕa) + f(ϕa, pa)

)
. (4)

In these coordinates, the Hamiltonian and the remaining generators of the conformal algebra
take the conventional form

H =
1
2
p2

R +
2I
R2

, D = RpR, K =
R2

2
, (5)

with I being the Casimir element of the conformal algebra

I = HK − D2 = L(pa, ϕa) − (f(pa, ϕa))2. (6)

Thus, we get a canonical transformation relating the model of a massive relativistic particle
moving near the horizon of an extremal black hole (relativistic frame) to the conventional
form of the conformal mechanics (conformal frame). In other words, speciˇc information
regarding a massive relativistic particle moving near the horizon of an extremal black hole in
d dimensions is encoded in a (d − 2)-dimensional Hamiltonian mechanics, which represents
the spherical part of the conformal mechanics associated with the relativistic particle. In what
follows, we refer to it as the master mechanics

I = L(pa, ϕ
a) − f2(pa, ϕa), ω = dpa ∧ dϕa. (7)

As a result, the study of the initial conformal mechanics reduces to the investigation of the
master mechanics.

It is worth mentioning that the investigation of the conformal mechanics in terms of its
spherical part turned out to be useful for various applications, in particular, in the study of the
celebrated Calogero model [6Ä10]. Moreover, the extraction of the spherical part seems to be
a nontrivial reduction mechanism allowing one to construct new integrable systems (on curved
backgrounds) starting from the known ones. For example, the spherical part of the rational
Calogero model deˇnes a multicenter generalization of the spherical (Higgs) oscillator [6].
All the known conformal mechanics describing the near-horizon particle dynamics are also
integrable models. Their spherical sectors are thus integrable models as well.

The compact part of the near-horizon conformal particle allows one to investigate it in
terms of the action-angle variables. There are several reasons to be concerned about the
action-angle variables:

• A formulation of an integrable system in action-angle variables gives a comprehensive
geometric description of its dynamics and is a useful tool for developing the perturbation
theory [11].

• The use of the action-angle variables provides a criterion for the (non)equivalence of two
integrable systems because a system in the action-angle variables has two main characteristics:

i) the functional dependence of the Hamiltonian on the action variables;
ii) the domain of the action variables.
• The action-angle formulation suggests the only systematic way to reveal hidden sym-

metries. Moreover, using this formulation one can construct new nontrivial examples of
maximally superintegrable systems [12].
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• The action-angle variables yield the semiclassical quantization straightforward via im-
posing the BohrÄSommerfeld quantization conditions.

In this way we analyzed the spherical sector of the conformal mechanics on the ReissnerÄ
Nordstréom, dilatonÄaxion and Kerr backgrounds [13, 14], as well as on the MyersÄPerry
background with equal rotation parameters [3]. Spherical mechanics describing these systems
looks as follows:

ReissnerÄNordstréom BH. The spherical mechanics associated with the near-horizon
ReissnerÄNordstréom black hole is governed by the Hamiltonian

I = p2
θ +

(pϕ + ep cos θ)2

sin2 θ
+ (mM)2 − (eq)2, ω = dpθ ∧ dθ + dpϕ ∧ dϕ, (8)

where m and e are the mass and the electric charge of a particle, while M , q and g are the
mass, the electric and magnetic charges of the black hole, respectively. This is precisely the
spherical Landau problem (a particle on a two-dimensional sphere in the presence of a constant
magnetic ˇeld generated by the Dirac monopole) shifted by the constant I0 = (mM)2−(eq)2.
A link between the two systems was discussed in [4, 5].

Cl�ementÄGal'tsov BH. This solution of the EinsteinÄMaxwellÄdilatonÄaxion theory can be
viewed as interpolating between the near-horizon extremal ReissnerÄNordstréom black hole and
the near-horizon extremal Kerr black hole [15]. The corresponding spherical mechanics reads

I = p2
θ +

(pϕ cos θ − e)2

sin2 θ
+ m2. (9)

Here m and e are the mass and the electric charge of a particle. This system coincides with
the planar rotator [1, 14].

Kerr BH. Spherical mechanics associated with the near-horizon Kerr geometry is deˇned
by the integrable but not exactly solvable system [13]:

I = p2
θ +

[(
1 + cos2 θ

2 sin θ

)2

− 1

]
p2

ϕ +
(

1 + cos2 θ

2

)
(mr0)

2, (10)

where m is the mass of a particle and r0 is the horizon radius.

KerrÄNewmanÄAdSÄdS BH. The KerrÄNewmanÄAdSÄdS black hole is a solution of the
EinsteinÄMaxwell equations with a nonvanishing cosmological constant [16]. Its near-horizon
limit has been constructed in [17], while the conformal mechanics on this background was
built in [18]. The Hamiltonian of the corresponding spherical mechanics reads

I =
p2

θ

α(θ)
+

(
Γ(θ)
γ(θ)

− k2

)
[pϕ + eλ(θ)]2 + U(θ). (11)

It describes a particle probe on a two-dimensional curved space with the metric

ds2 = α(θ) dθ2 +
dϕ2

Γ(θ)/γ(θ) − k2
, (12)

which moves in the potential and magnetic ˇelds deˇned by the expressions

U(θ) = m2Γ(θ) − e2k2f2(θ)
Γ(θ)/γ(θ) − k2

, λ(θ)dϕ =
Γ(θ)f(θ)

Γ(θ) − k2γ(θ)
dϕ. (13)
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Here we denoted

Γ(θ) =
r2
0

1 + ν2
+

(
1 + ν2

+ cos2 θ
)
, α(θ) =

(
r2
+

r2
0

)
1 + ν2

+

1 − ν2
0 cos2 θ

,

γ(θ) =
[
r+(1 + ν2

+)
1 − ν2

0

]
(1 − ν2

0 cos2 θ) sin2 θ

1 + ν2
+ cos2 θ

, (14)

f(θ) =
1 + ν2

+

ν+(1 − ν2
0)

qe

2
(1 − ν2

+ cos2 θ) + qm cos θ

1 + ν2
+ cos2 θ

and used the following notation for the constant parameters:

ν+ ≡ a

r+
, ν0 ≡ a

l
, k ≡ 2

(
r0

r+

)2 1 + ν2
0

ν+(1 + ν2
+)2

,

(15)

r2
0 = r2

+

(1 + ν2
+)(1 − r2

+/l2)
1 + 6r2

+/l2 − 3r4
+/l4 − q2/l2

.

Above m and e are the mass and the electric charge of a particle, r+ is the horizon radius
and l2 is linked to the cosmological constant via Λ = −3/l2. The parameters M , a, qe and
qm are related to the mass, angular momentum, electric and magnetic charges of the black
hole, respectively (for explicit relations, see, e.g., [17])

a2 =
r2
+(1 + 3r2

+/l2) − q2

1 − r2
+/l2

, M =
r+[(1 + r2

+/l2)2 − q2/l2]
1 − r2

+/l2
. (16)

This system reduces to the near-horizon Kerr particle when qe = qm = 0 and l2 → ∞.
5d MyersÄPerry BH. In the case of the ˇve-dimensional near-horizon MyersÄPerry black

hole, one reveals a three-dimensional integrable system governed by the Hamiltonian

I =
1
4
p2

θ +
ρ4
0

4(a + b)2

[
p2

φ̃

a2 sin2 θ
+

p2
ψ

b2 cos2 θ
− 1

ρ2
0

(
b

a
pφ +

a

b
pψ

)2
]
−

− 1
4

(√
b

a
pφ +

√
a

b
pψ

)2

+ m2ρ2
0, ρ2

0 = ab + a2 cos2 θ + b2 sin2 θ. (17)

This system is integrable but not exactly solvable for arbitrary values of rotation parame-
ters a, b. For the special case that the rotation parameters are equal to each other a = b, it
becomes exactly solvable and maximally superintegrable

I =
1
4

[
p2

θ +
p2

φ

sin2 θ
+

p2
ψ

cos2 θ
− 3

2
(pφ + pψ)2 + 8(mr0)2

]
. (18)

Fixing the momenta pφ, pψ, we arrive at the one-dimensional system on the circle given by
the modiˇed PéoshleÄTeller potential.



1382 Galajinsky A., Nersessian A., Saghatelian A.

5d MyersÄPerryÄAdSÄdS BH. A generalization of the ˇve-dimensional rotating black
hole solution by Myers and Perry to include a cosmological constant was constructed in [19].
Its near-horizon limit was built in [20]. The corresponding spherical mechanics reads

I =
1
2
Δθp

2
θ +

1
2

(
ρ4
0

Δθ sin2 θ
− (1 + r2

0/l2)b2ρ2
0

Δθ
− 4a2(r2

0 + b2)2

4r2
0

)
p2

φ+

+
1
2

(
ρ4
0

Δθ cos2 θ
− (1 + r2

0/l2)a2ρ2
0

Δθ
− 4b2(r2

0 + a2)2

4r2
0

)
p2

ψ−

−
(

(1 + r2
0/l2)abρ2

0

Δθ
+

4ab(r2
0 + a2)(r2

0 + b2)
4r2

0

)
pφpψ + g2 cos2 θ. (19)

Here g2 is a coupling constant which vanishes for a = b, m is the particle mass, and we
denoted

Δ =
1
r2

(r2 + a2)(r2 + b2)
(

1 +
r2

l2

)
− 2M, Δθ = 1 − a2 cos2 θ

l2
− b2 sin2 θ

l2
,

(20)

ρ2
0 = ab + a2 cos2 θ + b2 sin2 θ, Ξa = 1 − a2

l2
, Ξb = 1 − b2

l2
.

The parameters M , a, and b are linked to the mass and the angular momenta (for explicit
relations, see, e.g., [20]). l2 is taken to be positive for AdS and negative for dS and is related
to the cosmological constant via Λ = −6/l2.

Higher-Dimensional Rotating BH [2,3,21]. The Hamiltonian of the spherical mechanics
associated with a rotating extremal near-horizon black hole in d = 2n + 1 dimensions, which
has equal rotation parameters, reads

I =
n−1∑
i,j=1

(δij − μiμj)pμipμj +
n∑

i=1

p2
φi

μ2
i

− (n + 1)
n

(
n∑

i=1

pφi

)2

, (21)

where (μi, pμi) with i = 1, . . . , n − 1, and (φj , pφj ) with j = 1, . . . , n form canonical pairs
obeying the conventional Poisson brackets. μ2

n entering the second sum in (21) is found from

the unit sphere equation
n∑

i=1

μ2
i = 1. For d = 2n the Hamiltonian is modiˇed to take the form

I =
n−1∑
i,j=1

((2n − 3)ρ2
0δij − μiμj)pμipμj +

n−1∑
i,j=1

(
(2n − 3)ρ2

0

μ2
i

δij−

− (2n− 3)2ρ2
0

2(n − 1)
− 2

n − 1

)
pφipφj + m2ρ2

0, ρ2
0 =

2(n − 1)
2n − 3

−
n−1∑
i=1

μ2
i , (22)

where (μi, pμi) and (φj , pφj ) with j = 1, . . . , n−1 form canonical pairs, and m2 is a coupling
constant. Note that, as compared to the previous case, the number of the azimuthal coordinates
is decreased by one.
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Considering further reduction over the cyclic variables and investigating the integrability,
we established in [2] that the spherical mechanics corresponding to the (2n + 1)-dimensional
black hole is a maximally superintegrable and exactly solvable system, i.e., it is completely
similar to the ˇve-dimensional black hole with the coinciding rotation parameters. In contrast
with this case, the spherical mechanics corresponding to the 2n-dimensional black hole lacks
only one constant of the motion to become maximally superintegrability and is not exactly
solvable. The solution of its equations of motion is given by elliptic integrals and is similar
to that derived for the Kerr background in [13].
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