
�¨¸Ó³  ¢ �—�Ÿ. 2014. ’. 11, º7(191). ‘. 1385Ä1393

”ˆ‡ˆŠ� �‹…Œ…�’���›• —�‘’ˆ– ˆ �’�Œ��ƒ� Ÿ„��. ’…��ˆŸ

EXPANDING (3 + 1)-DIMENSIONAL UNIVERSE
FROM THE IIB MATRIX MODEL

A. Tsuchiya 1

Department of Physics, Shizuoka University, Shizuoka, Japan

We show that (3 + 1)-dimensional expanding universe emerges in the IIB matrix model, which is
conjectured to be a nonperturbative formulation of superstring theory. We also discuss how the Standard
Model particles appear in the model.

PACS: 11.25.-w

INTRODUCTION

Superstring theory is a promising candidate for the uniˇed theory including quantum
gravity. Indeed, one can ˇnd perturbative vacua, which give rise to the Standard Model
with some extra exotic particles. However, there are some serious problems as well. It is
known that there actually exist tremendously many perturbative vacua, which is a situation
commonly referred to as the string landscape nowadays. Each vacuum gives different space-
time dimensionality, gauge group and matter content. Moreover, it is known that the cosmic
singularity is not resolved generally within perturbative formulation [1Ä4].

Of course, all these problems might be simply because superstring theory has been studied
essentially in perturbation theory including, at most, some nonperturbative effects represented
by the existence of D-branes. Indeed, it is possible that in a fully nonperturbative formulation
the true vacuum is determined uniquely and the beginning of universe can be explored by
resolving singularity through strong coupling dynamics of quantum gravity.

In this paper, as a nonperturbative formulation of superstring theory, we consider the IIB
matrix model [5]. The IIB matrix model has an action

S = Sb + Sf , (1)

Sb = − 1
4g2

Tr
(
[AM , AN ]

[
AM , AN

])
, (2)

Sf =
1

2g2
Tr

(
Ψ̄ΓM [AM , Ψ]

)
, (3)

where ΓM are 32 × 32 gamma matrices in 10d. The bosonic N × N matrices AM (M =
0, . . . , 9) are traceless Hermitian, while the fermionic N × N matrices Ψα (α = 1, . . . , 32)
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are MajoranaÄWeyl fermions in 10d. The action of the model can be formally obtained by
dimensionally reducing that of ten-dimensional N = 1 SU(N) super YangÄMills theory to
zero dimension. The IIB matrix model has a direct connection to perturbative-type IIB super-
string theory, but it is expected to describe the unique nonperturbative theory of superstrings
underlying the duality web of various perturbative formulations.

There are various pieces of evidence for the conjecture that the IIB matrix model is a
nonperturbative formulation of superstring theory. First of all, the action (1) can be regarded
as a matrix regularization of the worldsheet action of type IIB superstring theory in the Schild
type [5] 1. Secondly, the interaction between D-branes is reproduced correctly [5]. Thirdly,
under a few reasonable assumptions, the string ˇeld Hamiltonian for type IIB superstring
theory can be derived from SchwingerÄDyson equations for the Wilson loop operators, which
are identiˇed as creation and annihilation operators of strings [6].

In all these connections to type IIB superstring theory, the target space coordinates are
identiˇed with the eigenvalues of the matrices Aμ. In particular, this identiˇcation is consistent
with the supersymmetry algebra of the model, in which the translation that appears from the
anticommutator of supersymmetry generators is identiˇed with the shift symmetry Aμ �→
Aμ + αμ1 of the model, where αμ ∈ R. Also, the fact that the model has extended N = 2
supersymmetry in ten dimensions is consistent with the assertion that the model actually
includes gravity, since it is known in ˇeld theory that N = 1 supersymmetry is the maximal
one that can be achieved in ten dimensions without including gravity. Thus, space-time is
treated as a part of dynamical degrees of freedom in the bosonic matrices Aμ in the IIB
matrix model. It is, therefore, possible that four-dimensional space-time appears dynamically.

For more than ˇfteen years since its proposal, the IIB matrix model has been studied in
its Euclidean version, which can be obtained by making a ©Wick rotationª A0 = −iA10. In
general, the Wick rotation in gravitational theories is nontrivial unlike that in ˇeld theories.
The Euclidean version has been studied intensively, nevertheless, because it has a ˇnite
partition function [7,8]. See [9,10] for recent work, which suggests that spontaneous breaking
of the SO(10) symmetry occurs in the Euclidean matrix model.

In addition to nontriviality of the Wick rotation, it is difˇcult to derive the real-time
dynamics in the Euclidean version of the IIB matrix model, as usual in ˇeld theories. It is,
of course, necessary to study the real-time dynamics in cosmology. Thus, in this talk, we
consider the Lorentzian version of the IIB matrix model. We show that (3 + 1)-dimensional
expanding universe emerges in the IIB matrix model. We also discuss how the Standard
Model particles appear in the model.

1. DEFINING THE LORENTZIAN VERSION

The IIB matrix model [5] is deˇned in its Lorentzian version by the partition function [11]:

Z =
∫

dAdΨ ei(Sb+Sf ). (4)

1This does not imply that the matrix model is merely a formulation for the ©ˇrst quantizationª of superstrings. In
fact, multiple worldsheets appear naturally in the matrix model as block-diagonal conˇgurations, where each block
represents the embedding of a single worldsheet into the ten-dimensional target space.
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In the deˇnition (4), we have replaced the ©Boltzmann weightª e−S used in the Euclidean
model by eiS . This is theoretically motivated from the connection to the worldsheet theory [5],
where we have to make an inverse Wick rotation for the worldsheet coordinates as well as
the target-space coordinates.

One ˇnds that the bosonic action is proportional to

Sb ∝ Tr
(
FMNFMN

)
= −2 Tr (F0i)

2 + Tr (Fij)
2
, (5)

where i, j = 1, . . . , 9, and we have deˇned Hermitian matrices Fμν = i [Aμ, Aν ]. Therefore,
the bosonic action is not positive deˇnite. In order to make the partition function ˇnite, one
actually needs to introduce infrared cut-offs

1
N

Tr (A0)
2 � κL2, (6)

1
N

Tr (Ai)
2 � L2 (7)

in both temporal and spatial directions. It turned out that these cut-offs can be removed in
the large-N limit, and clear scaling behaviors corresponding to the continuum and inˇnite-
volume limits were observed [11]. This implies that the resulting theory has no parameters
except the scale parameter, which is an expected property in nonperturbative string theory. In
actual simulation, we set L = 1 without loss of generality since it only ˇxes the scale, and
choose κ appropriately as a function of N so that both the continuum and inˇnite-volume
limits are taken.

At ˇrst sight, it is difˇcult to simulate the partition function (4) due to the phase factor eiSb .
However, by integrating out the scale factor of the bosonic matrices, one can rewrite the
partition function into the form that allows direct Monte Carlo studies,

Z =
∫

dAPf M (A) δ

(
1
N

Tr
(
FMNFMN

))
δ×

×
(

1
N

Tr (Ai)
2 − L2

)
θ

(
κL2 − 1

N
Tr (A0)

2

)
. (8)

The Pfafˇan Pf M(A) in (8), which is obtained by integrating out fermionic matrices, is real
in the present Lorentzian case, and it does not cause any sign problem 1.

2. EMERGENCE OF (3 + 1)-DIMENSIONAL EXPANDING UNIVERSE

In order to extract the time evolution from conˇgurations generated by (8), we ˇrst
diagonalize the temporal matrix A0 as

A0 = diag (α1, . . . , αN ) , where α1 < . . . < αN , (9)

1For large N , there is no possible sign 	ip of the Pfafˇan.
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using the SU (N) symmetry. In such a basis, it turned out that the spatial matrices Ai have
a band-diagonal structure; namely, it was found that the off-diagonal elements (Ai)IJ with
|I − J | > n are small for some n. This nontrivial dynamical property motivates us to deˇne
n × n matrices (

Āi(t)
)

ab
≡ (Ai)ν+a,ν+b , (10)

where ν = 0, 1, . . . , N − n, and a, b = 1, . . . , n. We consider that these block matrices
represent the states of the universe at time t, where

t =
1
n

n∑
a=1

αν+a. (11)

For instance, the extent of space at time t is deˇned by

R2(t) =
1
n

tr
(
Āi(t)

)2
. (12)

In Fig. 1, we plot the extent of space (12) for N = 16 and n = 4. Since the result is
symmetric under the time re	ection t → −t as a consequence of the symmetry A0 → −A0,
we only show the results for t < 0. There is a critical κ, beyond which the peak at t = 0
starts to grow.

Next, we study the spontaneous breaking of the SO(9) symmetry. As an order parameter,
we deˇne the 9 × 9 (positive deˇnite) real symmetric tensor

Tij(t) =
1
n

tr
{
Āi(t)Āj(t)

}
, (13)

which is an analog of the moment of inertia tensor. The nine eigenvalues of Tij(t) are plotted
against t in Fig. 2 for κ = 4.0. We ˇnd that three largest eigenvalues of Tij(t) start to grow

Fig. 1. The extent of space R(t)2 with N = 16 and n = 4 is plotted as a function of t for ˇve values

of κ. The peak at t = 0 starts to grow at some critical κ
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Fig. 2. The nine eigenvalues of Tij(t) with N = 16 and n = 4 are plotted as a function of t

for κ = 4.0. After the critical time tc, three eigenvalues become larger, suggesting that the SO(9)

symmetry is spontaneously broken down to SO(3)

at the critical time tc, which suggests that the SO(9) symmetry is spontaneously broken down
to SO(3) after tc. Note, that we have not imposed any initial conditions in the simulation.
Thus, the above results are unique.

3. REALIZING THE STANDARD MODEL PARTICLES

In the previous section, we have shown that (3 + 1)-dimensional expanding universe
appears dynamically and uniquely from the Lorentzian version of the IIB matrix model.
Similarly, it is possible that the Standard Model appears uniquely at the electroweak scale
from the same model at late times. In this section, we discuss how the Standard Model
particles appear in the IIB matrix model. In particular, we are concerned with a constructive
deˇnition of the theory, in which we start with ˇnite-N matrices and take the large-N
limit afterwards.

Realization of chiral fermions and the Standard Model in the IIB matrix model has
been discussed by various authors [12Ä15]. While these works attempt to realize chiral
fermions by modifying the model, [16] proposed to realize chiral fermions in the original
IIB matrix model based on the idea of intersecting branes [17Ä20]. It was shown that chiral
fermions indeed appear at the intersections when the branes are given by (hyper)planes, which
can be represented by inˇnite-dimensional matrices in the matrix model. The authors then
proposed to replace these branes by fuzzy spheres and other fuzzy manifolds, which can be
represented by ˇnite-N matrices. Realization of the Standard Model was also discussed along
this line.

Recently, the authors of [21] calculated explicitly the spectrum of the Dirac operator for a
ˇnite-N conˇguration suggested in [16], which represents a 5-brane and a 7-brane intersecting
at a point in the extra dimensions. It was conˇrmed that a chiral zero mode localized at the
intersection point indeed appears in the large-N limit. However, one also obtains another
chiral zero mode with opposite chirality, which was not anticipated naively from the brane
conˇguration. This result was understood as a consequence of a no-go theorem, which states
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that chiral fermions cannot be realized in the large-N limit of ˇnite-N IIB matrix model
as far as one assumes that space-time is given by a direct product of our four-dimensional
space-time and extra six-dimensional space. In fact, the SO(3, 1) Lorentz symmetry alone
does not imply the direct product structure of space-time, and one generally obtains a warp
factor as we will discuss below [21].

As shown in the previous section, an expanding three-dimensional space appears dy-
namically after some time. At later times, it is speculated that three-dimensional space
becomes much larger than the typical scale of the model, and that quantum 	uctuations can
be neglected at large scales [22,23]. Furthermore, as far as we do not consider too long time
scale, we can neglect the expansion of space, and therefore the space-time has the SO(3, 1)
Lorentz symmetry. Thus, we are led to consider matrix conˇgurations given by

Aμ = Xμ ⊗ M (μ = 0, . . . , 3), (14)

Aa = 1ln ⊗ Ya (a = 4, . . . , 9). (15)

Here, we assume that the n × n Hermitian matrices Xμ have the property OμνXν =
g[O] Xμ g[O]†, where O ∈ SO(3, 1) and g[O] ∈ SU(n). Then, (14) and (15) can be re-
garded as the most general conˇguration that is SO(3, 1) invariant up to SU(N) symmetry.

The Hermitian matrix M in (14) can be regarded as a matrix version of the warp fac-
tor. The special case M = 1l corresponds to a space-time, which is a direct product of
(3 + 1)-dimensional space-time and the extra dimensions. In a generic case with a nontriv-
ial matrix M representing a warp factor, chiral zero modes in extra six dimensions do not
automatically correspond to those in our four-dimensional space-time. For the conˇguration
studied in [21], it was found that there are huge degrees of freedom in M , which allows
only the desired chiral zero mode to appear in four dimensions 1. Thus, one can realize a
chiral fermion in the large-N limit of ˇnite-N IIB matrix model thanks to the matrix warp
factor M .

Taking into account the no-go theorem and the need for introducing a nontrivial M to
avoid its consequence, we explore realizing chiral fermions and the Standard Model in the
IIB matrix model [24]. We realize chiral fermions from intersecting fuzzy S2 and fuzzy
S2 × S2, which can be obtained as classical solutions in the IIB matrix model assuming
that a Myers term [25] is induced dynamically. (See [26Ä28], which discuss the appearance
of these fuzzy manifolds in the IIB matrix model due to quantum corrections. Note also
that, including the dimensionality of our four-dimensional space-time, fuzzy S2 and fuzzy
S2 × S2 correspond to a D5-brane and a D7-brane, respectively, which naturally appear
in type IIB superstring theory.) The two types of fuzzy manifold intersect in the six-
dimensional space generically at even number of points, which give rise to pairs of chiral
fermions with opposite chirality in six dimensions. However, by using the degrees of freedom
in the matrix warp factor M , one can obtain only the desired chiral zero modes in four
dimensions.

Extending this basic setup, we give an explicit realization of the Standard Model [24]. The
SU(r) group can be realized as a subgroup of U(r), which appears naturally from r coinciding

1Moreover, a local ˇeld in four-dimensional space-time can actually be realized, for instance, by a mechanism
discussed in [29].
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branes. First, we introduce ©SU(3) branesª, which consist of three coinciding fuzzy S2×S2,
and ©SU(2) branesª, which consist of two coinciding fuzzy S2. In addition, we introduce a
©lepton braneª, which is a single fuzzy S2 × S2, and an ©up-type braneª and a ©down-type
braneª, which are two separate fuzzy S2. Thus, we end up with a conˇguration with ˇve stacks

Fig. 3. A schematic view of the conˇg-
uration with ˇve stacks of branes, which

gives rise to the Standard Model fermi-

ons and a right-handed neutrino

of branes intersecting with each other (see Fig. 3). An
important point here is that chiral fermions actually
appear only from intersections of fuzzy S2 and fuzzy
S2 × S2. This enables us to obtain just the chiral
fermions in the Standard Model plus a right-handed
neutrino, with the correct gauge interactions. One can
also check that the hypercharge can be assigned to the
chiral fermions consistently.

In fact, we show that the number of intersections
of S2 and S2 × S2 in six dimensions cannot exceed
four for arbitrary radii, location of the centers and their
relative angles. This implies that we can obtain only
up to two generations, if we restrict ourselves to such
conˇgurations. Three generations can be realized, for
instance, by squashing S2 or S2 × S2 that appear in the conˇguration. We can also discuss
how the Higgs ˇeld appears from the bosonic matrices, with nontrivial Yukawa couplings to
the Standard Model fermion.

4. CONCLUSION AND DISCUSSION

In this paper, we showed that in the Lorentzian version of the IIB matrix model three
out of nine spatial directions actually start to expand after a critical time, which may be
interpreted as the birth of universe. We also discussed how three generations of the Standard
Model particles can be obtained in the model.

If we identify R(tc) with the Planck length, we see only the Planckian time interval in
the present simulation. While the late-time behaviors are difˇcult to study by direct Monte
Carlo methods because larger N is needed, the classical equations of motion are expected to
become more and more valid at later times, since the value of the action increases with the
cosmic expansion. One can actually construct a simple solution representing an expanding
(3 + 1)-dimensional universe, which naturally solves the cosmological constant problem [22].

There are many classical solutions [22, 23], which is reminiscent of the fact that string
theory possesses inˇnitely many vacua that are perturbatively stable. However, unlike in
perturbative string theory, we have the possibility to pick up the unique solution that describes
our universe by requiring smooth connection to the behavior at earlier times accessible by
Monte Carlo simulation. We expect that the idea of the renormalization group developed
in [30] is useful to pursue this possibility.
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