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ON BRANE SYMMETRIES

A. A. Zheltukhin '
Kharkov Institute of Physics and Technology, Kharkov, Ukraine

The geometric approach to branes is reformulated in terms of gauge vector fields interacting with
massless tensor multiplets in gravitational backgrounds.

PACS: 11.25.-w

Study of nonlinear dynamics of p-branes [1-14], as well as their quantization, require new
tools. The geometric approach [15-17] originally developed for strings seems to be relevant
to the problem. The gauge reformulation [18] of this approach using the ideas of Cartan [19],
Volkov [20] and Faddeev [21] has shown that strings in D-dimensional space-time form
a closed sector of states of the exactly integrable two-dimensional SO(1,1) x SO(D — 2)
gauge model. The geometric approach has turned out to be promising for investigation of
integrability of branes PDEs [22-24]. Here, we adopt the string gauge approach to p-branes
and constuct new gauge-invariant models which have brane solutions.

1. A time-like (p + 1)-dimensional hypersurface ¥, embedded into the D-dimensional
Minkowski space-time with the signature 7., = (+,—,...,—) is described by its radius
vector x(£#) parameterized by the coordinates £* = (r,0"), (r = 1,2,...,p). Using a
local orthonormal frame n4 (") = (n;,n,) with A = (i,a), attached to X,q, one can
expand the infinitesimal displacements dx(£*) and dn4 (&) in the local basis n4 (&) at the
point &

dx(§) = w'(§)mi(§), w(§) =0, (1)

dna(€) = ~wa®(€) np(9), )

with the vectors n;(¢), (i,k =0,1,...,p) tangent and n, (&), (a,b=p+1,p+2,...,D —
p — 1) — normal to the hypersurface. The choice w® = 0 of the normal displacement

of x breaks down the local Lorentz group SO(1,D — 1) of the moving frame to its
subgroup SO(1,p) x SO(D — p — 1). Then, the antisymmetric matrix differential form
wap = —wp4 parameterized by £ and belonging to the Lie algebra of SO(1, D — 1) splits
into three blocks

Ak Wit
wa® =wyaPdgr = ( Wu k Blu b ) dag", 3)
na a
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where A,,;* and B,,," are transformed as the gauge fields of the SO(1,p) and SO(D —p—1)
groups on the base space ¥, 1, respectively, and their field strengths F),,;* and H,,," are

Fui* = DI, D% = (0,4, + AL A", “4)
Huwa = Dy, Dila® = (0,,By) + BjuBu)a’- (5)

The derivative DM in (4) is covariant with respect to the Lorentz gauge group SO(1,p) of
the subspaces tangent to X,

Dud)f/ = Md)f/ + Auik d)uk~ (6)
The covariant derivative D,f corresponds to the gauge group SO(D — p — 1) of rotations of
the local subspaces orthogonal to X,

D = 0,6, + By 6. )

The off-diagonal blocks Wm-b in (3) are transformed like charged vector multiplets of the
gauge group SO(1,p) x SO(D — p — 1) with their covariant derivatives

(DW,)i* = 0, W, + A" W™ + B, W,,° (8)

including the gauge fields A,,;* and B,,°.
The integrability conditions of PDEs (1) and (2) are the Maurer—Cartan (MC) equations

d/\wA+wAB/\wB=0, )
dAwa® +ws’ AweB =0 (10

of the structure of the ambient D-dimensional space with zero torsion and curvature, where
the symbols A and dA mean the wedge product and external differential, respectively.

One can see that Egs. (10), called the Gauss—Codazzi (GC) equations in the differential
geometry of surfaces, contain only the differential form w4?. The splitting (3) of the matrix
indices A — (i, a) in (10) results in the field representation of the GC equations

Fui® = =W, W), (11
Huwa” = —(W,W,))a", (12)
(D W,)i* =0, (13)

where [p, v] means antisymmetrization in p, v, e.g., W[MWV] =W, W, - W, W,.

For p = 1 the above constraints coincide with the ones discussed upon the gauge reformu-
lation of the geometric approach for strings [18]. This reformulation reveals an isomorphism
between the Nambu—Goto string in the D-dimensional Minkowski space and the exactly solv-
able sector of the two-dimensional SO(1,1) x SO(D — 2) gauge model including a massless
scalar multiplet.

Our main goal is to generalize the string case to p-branes, which implies construction of
a (p+ 1)-dimensional SO(1,p) x SO(D —p — 1) gauge model compatible with the GC equa-
tions (11)—(13). This step does not suppose in advance any connections of such a model with
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the existing models for p-branes, but only takes into account the independence of the con-
straints (11)—(13) of the induced metrics of hypersurfaces imbedded into flat spaces. A class
of new gauge actions compatible with the GC constraints is proposed in the next section.

2. The desired SO(1,p) x SO(D — p — 1) gauge-invariant action has to describe the
gauge and vector fields in an external gravitational field in (p + 1)-dimensional pseudo-
Riemannian space with a metric g,,,,(§) parameterized by the coordinates £/ (that will be later
identified with the coordinates parameterizing the brane hypersurface ¥, 1). The metric g,
is not considered as a dynamical field in contrast to the fields presented in the GC const-
raints (11)—(13). The desired gauge and reparameterization invariant action has the form

szv/dwg\/mg, (14)

1 1 Lo oo A
L= 2 Sp (FuF™) = £ Sp (Hyu H™) + 5V, W) VW W, W 4V, (15)

where {y, v} means symmetrization in p and v, V' encodes nonlinear (self)interactions of the
vector multiplet W,*®. The generalized covariant derivative V, in (15) is

ﬁuwuia = ap,Wuia - Fﬁpria + AuikWVka + Bp,abWVib (16)
and extends the general covariant derivative including only the Levi—Chivita connection
v;LWm’a = 8uWuia - Fﬁpriav N uGvp = 07 (17)

where ', =T, = (1/2)9”7(9ugu~ + Ovgyur — Oguw) are the Cristoffel symbols.
The variation of S (14) in the gauge and vector fields results in the following EOM:

v % = v 1 = (v 4
ViER = =V (WaW ) = S Wopa VI, (18)
v v v v]i 1 valZ i
Vil = =V (Wl W) = W VWA, 19)
SN ; PN , ov
{pyyviia AV nia ) 20
V., VHW VIV WS 4 W (20)
With the help of shifted gauge field strengths 4" and H"},
Fy = (Fuy + Wi, W)™, 1)
M, = (Hyu + Wi W)™, (22)
one can present Egs. (18)—(20) in the compact form
v v 1 = v a
VR = =5 Wi VEWH (23)
. y 1 L ,
ViHoy, = —§Wma\iv[ Wy, (24)
v, Viwrlia — o[, @V]Wlia n ov (25)

8Wyia .
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Further we take into account the generalized first Bianchi identity

[@ua vu] = Rp,u + Fp,u + H;wv (26)
where the Riemann—Cristoffel tensor RW = R,," is defined as

[V VoV = R "3V =2 (0,07, + T, D0V (27)

[lp™ v

The identity (26) allows one to present Eq. (25) in the form

1~ -~ . . .

5vuv[uvvu]m _ j:pl/szlim _ HuuabW;b —
1o
N 2 aWuia

+ ([WH, WY, W)™ = RW*, (28)

where R, := R¥,, is the Ricci tensor. Using the relation

1 8 ] L v 3
T WV WALW Y = ([ W), W) 9)
with the commutators of Wu in the r.h.s., we introduce a shifted potential VV

VoV+ %Sp (W [[WH, W), W), 30)

where the trace Sp (W, [[WH, WP],W,]) =: (W, [[WH, Wr],W,]),.
As a result, EOM (23), (24) and (28) take the following form:

v v 1 = v a
VT = =5 Wi VEWH Iy, G
v v 1 valZ i
TuHl =~ Wi W, @
le & v]ia vi a va i 1 oy vyifria
5 Vu VI 4 Pt e 4 e, Wik = saw,. ~ RW (33)

Then, we observe that the first-order PDEs, which coincide with (11)-(13),
Fib =0, Hb =0, VW =o, (34)
form a particular solution of Egs. (31)—(33) on condition that

1 oV

o~ R =0, (35)

Due to independence of the Ricci tensor R*” of W4, Eq. (35) allows one to restore V

V= RYWWyia. (36)
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Thus, we find that the action (14) with the Lagrangian density

1 1 o
£ = 2Sp (FuwF*™) = 75 (Hyu H") + VWi e

N =

A N . 1
- VMWMW VVW,;; + RMVVV;QWVM - Esp (WM[[Wuv Wp]v WP]) (37)

yields the nonlinear Euler—Lagrange equations

v v 1 val4 a
V, Fh = —§Wu[i‘av[ wHe (38)
& o _ 1 & [y ali
ViHE = =S W VEWH (39)
1.~ - . . .
Ev“v[uwu]m + f’#mkvvllfa + HwabW;b =0 (40)

for the gauge Amk, Buab and vector W,;, fields in a given external gravitational field g,,,, (£”).

It is easy to see that Eqgs. (38)—(40) have the particular solution (34), which coincides with
the GC constraints (11), (12) and (13).

This solves the stated problem of the construction of gauge-invariant model compatible
with embedded hypersurfaces using the Gauss mapping. In addition, note that the action (14)
with £ (37) looks like a natural generalization of the four-dimensional Dirac scale-invariant
gravity theory with the dynamical dilaton and gravitational field g, (see, e.g., [26]).

The above-said hints at consideration of the (p + 1)-dimensional space-time of the gauge
model defined by (14), (37) as a (p + 1)-dimensional world hypersurface swept by a p-brane
in the D-dimensional Minkowski space. Our next step is to prove that the conjecture follows
from the remaining Maurer—Cartan equations (9) and to find the corresponding modification
of the proposed model.

3. To prove the mentioned statement, we come back to the MC equations (9) and split
their matrix indices A — (i,a). This yields the following equations:

D%wa,] -0, (41)
W Wyjia = 0, “2)

with the derivative DM defined by (6). As shows dx squaring, the object wz plays the role of
a (p + 1)-bein for the hypersurface ¥,11, which connects its orthonormal frame n; with the
local natural frame e, and represents the metric G, (§”) of ¥,11 by the quadratic form

i si _ i _ i k
wywy, =0, ey =w,n;, G =w; nipw,. (43)

One can solve the constraints (42) and express W,,;* in terms of the symmetric components
l,,* of the second fundamental form of 3, 1:

Wi = =l W), Lw® =n"9,,x. (44)
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The general solution of the constraints (41) is equivalent to the “tetrade postulate”
Viiw,, = Ouwy, = Tpw, + Ay'rwy = 0, (45)

which identifies the gauge connection A,°; with the background metric connection e, by
means of the gauge transformation
ey = wal,ikw’f\ -+ 8,,w’f\w£ = wipDﬂwf\. (46)

Therefore, the hypersurface metric G, has to be identified with the backgroud metric g,
introduced ad hoc in the gauge-invariant action (14).
Then, the Riemann tensor R,,,,” » (27) and the field strength F, ,“,ik (4) become dependent

Ry '\ = w] Fu'wwf, Ry = wl'F 'y, (47)
and the use of the GC constraint (11) for FWik allows one to express the Ricci tensor as
R™ = —wl (WHWwh)Fwp, (48)

Taking into account (43)—(47) permits one to transit from the gauge A,;, and vector W,;*
fields to the Cristoffel symbols and [,,,* = —wf,Wm-“, respectively, that transforms (11)—(13)
into

le’y/\ = Z[u’mlu])\aa (49)
H/wab = l[uwll/hbv (50)
Viulvjpa =0, (51)

where le,,p“ = Oulyp® — I‘i‘wb\pa - I‘i‘wl,,)\a + szl,,pb.

As is seen, exclusion of FWik transforms the constraint (11) into (49), which generalizes
the Gauss Theorema Egregium for a (p + 1)-dimensional hypersurface embedded into the
D-dimensional Minkowski space. The absence of F,Wik allows one not to consider the
group SO(1,p) as an explicit symmetry of the desired action. As a result, we obtain the
following SO(D — p — 1) gauge-invariant action in a gravitational background possessing the

solution (49)—(51):
5= 7/d”+1§\/|g| c,

1 v 1 vioa vpa
L= _ZSP (H,“,H” )+ EvtlupavL{Ml tea _ le’;av,fl P

1
- 35p (1a1p)Sp (171°) + Sp (1151%1%) — Sp (1,1°1,1°).  (52)

To prove this, let us consider the following action:

1
§= w/wwm {—1 Sp (Hyu H'™) +

1
5 Viilypa VLI — 0 VL1 V} . (53)
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Variation of (53) in the dynamical fields 1,,,%, B, gives their EOM

72 Z8]
v ]‘ v
ViHal = Sl VI, (54)
1 19V
5 Vi VI = [ v et S o (55)
vpa

where = — by, "~ uations s ave the constraints S
here H2 := HAY —1;,7l,),". Equations (54), (55) have the GC ints (50), (51)

HY =0, Vil =0, (56)

[w

as their particular solution provided that

19V
2 01,0

= [V VAP (57)

With the help of the GC equations (49)—(51) and the Bianchi identity
[V Voll#P® = Ry !NV 4 R P A1 + Hey "l (58)
one can transform (57) into solvable equation for the self-interaction potential V'

19V
2 0l pa

= (1°1°)P" Sp (1) + (20,117 — 190,1° — 1,1°1%)P" — 1P*® Sp (1,1). (59)
Equation (59) has the following solution for V' accompanied by the trace constraints:
1
V=-3 Sp (Laly)Sp (1%1°) + Sp (1,151%1%) — Sp (1,1°1,1°),  Sp(l,) = 0. (60)

The constraints Sp (I,) = 0 express the well-known algebraic conditions of minimality for
a (p + 1)-dimensional hypersurface embedded into the Minkowski spaces. These conditions
are equivalent to the nonlinear equations of motion of p-branes

Oe+x =0, (61)
1
VG|

operator on X, [24].
Equation (61) follows from the Dirac action for p-branes with the minimal hypersurfaces

in the Minkowski space-time
S=T/d”+1§¢|Gl, (62)

where G is the determinant of the induced metric Gog = Ja%X0pX.

It proves that the SO(D — p — 1) gauge-invariant action (52) for the interacting gauge
and tensor fields Bﬁb and [, respectively, in a gravitational background has the particular
solution presented by the first-order Gauss—Codazzi PDEs (49)—(51). The solution describes
minimal (p + 1)-dimensional hypersurfaces embedded into the D-dimensional Minkowski

space-time.

where OP+1) .= Da\/|G|G*?dp is the reparameterization invariant Laplace-Beltrami
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To sum up, the gauge reformulation of the geometric approach to (p + 1)-dimensional

hypersurfaces embedded into the D-dimensional Minkowski space was proposed. The new
set of SO(1,p) x SO(D —p—1) gauge-invariant models possessing exact solutions for gauge
fields and vector multiplets in gravitational backgrounds, was constructed. The Dirac p-branes
were shown to be the solutions of (p 4 1)-dimensional gauge model presented by the Gauss—
Codazzi constraints for the SO(D — p — 1) gauge vector fields and massless tensor multiplets
in curved backgrounds.
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