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ON BRANE SYMMETRIES
A. A. Zheltukhin 1

Kharkov Institute of Physics and Technology, Kharkov, Ukraine

The geometric approach to branes is reformulated in terms of gauge vector ˇelds interacting with
massless tensor multiplets in gravitational backgrounds.

PACS: 11.25.-w

Study of nonlinear dynamics of p-branes [1Ä14], as well as their quantization, require new
tools. The geometric approach [15Ä17] originally developed for strings seems to be relevant
to the problem. The gauge reformulation [18] of this approach using the ideas of Cartan [19],
Volkov [20] and Faddeev [21] has shown that strings in D-dimensional space-time form
a closed sector of states of the exactly integrable two-dimensional SO(1, 1) × SO(D − 2)
gauge model. The geometric approach has turned out to be promising for investigation of
integrability of branes PDEs [22Ä24]. Here, we adopt the string gauge approach to p-branes
and constuct new gauge-invariant models which have brane solutions.

1. A time-like (p + 1)-dimensional hypersurface Σp+1 embedded into the D-dimensional
Minkowski space-time with the signature ηmn = (+,−, . . . ,−) is described by its radius
vector x(ξμ) parameterized by the coordinates ξμ = (τ, σr), (r = 1, 2, . . . , p). Using a
local orthonormal frame nA(ξμ) = (ni,na) with A = (i, a), attached to Σp+1, one can
expand the inˇnitesimal displacements dx(ξμ) and dnA(ξμ) in the local basis nA(ξμ) at the
point ξμ

dx(ξ) = ωi(ξ)ni(ξ), ωa(ξ) = 0, (1)

dnA(ξ) = −ωA
B(ξ)nB(ξ), (2)

with the vectors ni(ξ), (i, k = 0, 1, . . . , p) tangent and na(ξ), (a, b = p + 1, p + 2, . . . , D −
p − 1) Å normal to the hypersurface. The choice ωa = 0 of the normal displacement
of x breaks down the local Lorentz group SO(1, D − 1) of the moving frame to its
subgroup SO(1, p) × SO(D − p − 1). Then, the antisymmetric matrix differential form
ωAB = −ωBA parameterized by ξμ and belonging to the Lie algebra of SO(1, D − 1) splits
into three blocks

ωA
B ≡ ωμA

Bdξμ =
(

Aμi
k Wμi

b

Wμa
k Bμa

b

)
dξμ, (3)
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where Aμi
k and Bμa

b are transformed as the gauge ˇelds of the SO(1, p) and SO(D−p−1)
groups on the base space Σp+1, respectively, and their ˇeld strengths Fμνi

k and Hμνa
b are

Fμνi
k ≡ [D||

μ, D||
ν ]ik = (∂[μAν] + A[μAν])i

k, (4)

Hμνa
b ≡ [D⊥

μ , D⊥
ν ]ab = (∂[μBν] + B[μBν])a

b. (5)

The derivative D
||
μ in (4) is covariant with respect to the Lorentz gauge group SO(1, p) of

the subspaces tangent to Σp+1

D||
μφi

ν = ∂μφi
ν + Aμ

i
k φν

k. (6)

The covariant derivative D⊥
μ corresponds to the gauge group SO(D − p − 1) of rotations of

the local subspaces orthogonal to Σp+1

D⊥
μ φa

ν = ∂μφa
ν + Bμ

a
b φν

b. (7)

The off-diagonal blocks Wμi
b in (3) are transformed like charged vector multiplets of the

gauge group SO(1, p) × SO(D − p − 1) with their covariant derivatives

(DμWν)i
a = ∂μWνi

a + Aμi
kWνk

a + Bμ
a

bWνi
b (8)

including the gauge ˇelds Aμi
k and Bμa

b.
The integrability conditions of PDEs (1) and (2) are the MaurerÄCartan (MC) equations

d ∧ ωA + ωA
B ∧ ωB = 0, (9)

d ∧ ωA
B + ωA

C ∧ ωC
B = 0 (10)

of the structure of the ambient D-dimensional space with zero torsion and curvature, where
the symbols ∧ and d∧ mean the wedge product and external differential, respectively.

One can see that Eqs. (10), called the GaussÄCodazzi (GC) equations in the differential
geometry of surfaces, contain only the differential form ωA

B . The splitting (3) of the matrix
indices A → (i, a) in (10) results in the ˇeld representation of the GC equations

Fμνi
k = −(W[μWν])i

k, (11)

Hμνa
b = −(W[μWν])a

b, (12)

(D[μWν])i
a = 0, (13)

where [μ, ν] means antisymmetrization in μ, ν, e.g., Ŵ[μŴν] ≡ ŴμŴν − ŴνŴμ.
For p = 1 the above constraints coincide with the ones discussed upon the gauge reformu-

lation of the geometric approach for strings [18]. This reformulation reveals an isomorphism
between the NambuÄGoto string in the D-dimensional Minkowski space and the exactly solv-
able sector of the two-dimensional SO(1, 1)× SO(D − 2) gauge model including a massless
scalar multiplet.

Our main goal is to generalize the string case to p-branes, which implies construction of
a (p+1)-dimensional SO(1, p)×SO(D− p− 1) gauge model compatible with the GC equa-
tions (11)Ä(13). This step does not suppose in advance any connections of such a model with
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the existing models for p-branes, but only takes into account the independence of the con-
straints (11)Ä(13) of the induced metrics of hypersurfaces imbedded into 	at spaces. A class
of new gauge actions compatible with the GC constraints is proposed in the next section.

2. The desired SO(1, p) × SO(D − p − 1) gauge-invariant action has to describe the
gauge and vector ˇelds in an external gravitational ˇeld in (p + 1)-dimensional pseudo-
Riemannian space with a metric gμν(ξ) parameterized by the coordinates ξμ (that will be later
identiˇed with the coordinates parameterizing the brane hypersurface Σp+1). The metric gμν

is not considered as a dynamical ˇeld in contrast to the ˇelds presented in the GC const-
raints (11)Ä(13). The desired gauge and reparameterization invariant action has the form

S = γ

∫
dp+1ξ

√
|g| L, (14)

L =
1
4

Sp (FμνFμν) − 1
4

Sp (HμνHμν) +
1
2
∇̂μW ia

ν ∇̂{μW
ν}
ia − ∇̂μWμia ∇̂νW ν

ia + V, (15)

where {μ, ν} means symmetrization in μ and ν, V encodes nonlinear (self)interactions of the
vector multiplet Wμ

ia. The generalized covariant derivative ∇̂μ in (15) is

∇̂μWνia := ∂μWνia − Γρ
μνWρia + Aμi

kWνka + Bμa
bWνib (16)

and extends the general covariant derivative including only the LeviÄChivita connection

�μWνia = ∂μWνia − Γρ
μνWρia, �μgνρ = 0, (17)

where Γρ
μν = Γρ

νμ = (1/2)gργ(∂μgνγ + ∂νgμγ − ∂γgμν) are the Cristoffel symbols.
The variation of S (14) in the gauge and vector ˇelds results in the following EOM:

∇̂μFμν
ik = −∇̂μ(W [μ

ia W ν]a
k) − 1

2
Wμ[i|a∇̂[νWμ]a

|k], (18)

∇̂μHμν
ab = −∇̂μ(W [μ

ai W
ν]i

b) −
1
2
Wμ[a|i∇̂[νWμ]i

|b], (19)

∇̂μ∇̂{μW ν}ia = 2∇̂ν∇̂μWμia +
∂V

∂Wνia
. (20)

With the help of shifted gauge ˇeld strengths Fμν
ik and Hμν

ab ,

F ik
μν = (Fμν + W[μWν])ik, (21)

Hab
μν = (Hμν + W[μWν])ab, (22)

one can present Eqs. (18)Ä(20) in the compact form

∇̂μFμν
ik = −1

2
Wμ[i|a∇̂[νWμ]a

|k], (23)

∇̂μHμν
ab = −1

2
Wμ[a|i∇̂[νWμ]i

|b], (24)

∇̂μ∇̂[μW ν]ia = −2[∇̂μ, ∇̂ν ]W ia
μ +

∂V

∂Wνia
. (25)
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Further we take into account the generalized ˇrst Bianchi identity

[∇̂μ, ∇̂ν ] = R̂μν + F̂μν + Ĥμν , (26)

where the RiemannÄCristoffel tensor R̂μν ≡ Rμν
γ

λ is deˇned as

[�μ, �ν ]V γ = Rμν
γ

λV λ =: (∂[μΓγ
ν]λ + Γγ

[μ|ρΓ
ρ
|ν]λ)V λ. (27)

The identity (26) allows one to present Eq. (25) in the form

1
2
∇̂μ∇̂[μW ν]ia −Fμνi

kW ka
μ −Hμνa

bW
ib
μ =

=
1
2

∂V

∂Wνia
+ ([[Wμ, W ν ], Wμ])ia − RμνW ia

μ , (28)

where Rνλ := Rμ
νμλ is the Ricci tensor. Using the relation

1
4

∂

∂Wνia
(Wμ[[Wμ, W ρ], Wρ])i

i = ([[Wμ, W ν ], Wμ])ia (29)

with the commutators of Ŵμ in the r.h.s., we introduce a shifted potential V

V = V +
1
2
Sp (Wμ[[Wμ, W ρ], Wρ]), (30)

where the trace Sp (Wμ[[Wμ, W ρ], Wρ]) =: (Wμ[[Wμ, W ρ], Wρ])i
i.

As a result, EOM (23), (24) and (28) take the following form:

∇̂μFμν
ik = −1

2
Wμ[i|a∇̂[νWμ]a

|k], (31)

∇̂μHμν
ab = −1

2
Wμ[a|i∇̂[νWμ]i

|b], (32)

1
2
∇̂μ∇̂[μW ν]ia + Fμνi

kW ka
μ + Hμνa

bW
ib
μ =

1
2

∂V
∂Wνia

− RμνW ia
μ . (33)

Then, we observe that the ˇrst-order PDEs, which coincide with (11)Ä(13),

F ik
μν = 0, Hab

μν = 0, ∇̂[μW
ν]
ia = 0, (34)

form a particular solution of Eqs. (31)Ä(33) on condition that

1
2

∂V
∂Wνia

− RμνW ia
μ = 0. (35)

Due to independence of the Ricci tensor Rμν of Wνia, Eq. (35) allows one to restore V

V = RμνW ia
μ Wνia. (36)
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Thus, we ˇnd that the action (14) with the Lagrangian density

L =
1
4
Sp (FμνFμν) − 1

4
Sp (HμνHμν) +

1
2
∇̂μW ia

ν ∇̂{μW
ν}
ia −

− ∇̂μWμia ∇̂νW ν
ia + RμνW ia

μ Wνia − 1
2
Sp (Wμ[[Wμ, W ρ], Wρ]) (37)

yields the nonlinear EulerÄLagrange equations

∇̂μFμν
ik = −1

2
Wμ[i|a∇̂[νWμ]a

|k], (38)

∇̂μHμν
ab = −1

2
Wμ[a|i∇̂[νWμ]i

|b], (39)

1
2
∇̂μ∇̂[μW ν]ia + Fμνi

kW ka
μ + Hμνa

bW
ib
μ = 0 (40)

for the gauge Aμi
k, Bμa

b and vector Wμia ˇelds in a given external gravitational ˇeld gμν(ξρ).
It is easy to see that Eqs. (38)Ä(40) have the particular solution (34), which coincides with

the GC constraints (11), (12) and (13).
This solves the stated problem of the construction of gauge-invariant model compatible

with embedded hypersurfaces using the Gauss mapping. In addition, note that the action (14)
with L (37) looks like a natural generalization of the four-dimensional Dirac scale-invariant
gravity theory with the dynamical dilaton and gravitational ˇeld gμν (see, e.g., [26]).

The above-said hints at consideration of the (p + 1)-dimensional space-time of the gauge
model deˇned by (14), (37) as a (p + 1)-dimensional world hypersurface swept by a p-brane
in the D-dimensional Minkowski space. Our next step is to prove that the conjecture follows
from the remaining MaurerÄCartan equations (9) and to ˇnd the corresponding modiˇcation
of the proposed model.

3. To prove the mentioned statement, we come back to the MC equations (9) and split
their matrix indices A → (i, a). This yields the following equations:

D
||
[μωi

ν] = 0, (41)

ωi
[μWν]ia = 0, (42)

with the derivative D
||
μ deˇned by (6). As shows dx squaring, the object ωi

μ plays the role of
a (p + 1)-bein for the hypersurface Σp+1, which connects its orthonormal frame ni with the
local natural frame eμ, and represents the metric Gμν(ξρ) of Σp+1 by the quadratic form

ωi
μωμ

k = δi
k, eμ = ωi

μni, Gμν = ωi
μηikωk

ν . (43)

One can solve the constraints (42) and express Wμi
a in terms of the symmetric components

lμν
a of the second fundamental form of Σp+1:

Wμi
a = −lμν

aων
i , lμν

a := na∂μνx. (44)
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The general solution of the constraints (41) is equivalent to the ©tetrade postulateª

∇||
μωi

ν ≡ ∂μωi
ν − Γρ

μνωi
ρ + Aμ

i
kωk

ν = 0, (45)

which identiˇes the gauge connection Aμ
i
k with the background metric connection Γρ

μν by
means of the gauge transformation

Γρ
νλ = ωρ

i Aνikωk
λ + ∂νωk

λωρ
k ≡ ωρ

i D||
νωi

λ. (46)

Therefore, the hypersurface metric Gμν has to be identiˇed with the backgroud metric gμν

introduced ad hoc in the gauge-invariant action (14).
Then, the Riemann tensor Rμν

γ
λ (27) and the ˇeld strength Fμνi

k (4) become dependent

Rμν
γ

λ = ωγ
i Fμν

i
kωk

λ, Rνλ = ωμ
i Fμν

i
kωk

λ, (47)

and the use of the GC constraint (11) for Fμν
i
k allows one to express the Ricci tensor as

Rνλ = −ωi
μ(W [μW ν])i

kωλ
k . (48)

Taking into account (43)Ä(47) permits one to transit from the gauge Aνik and vector Wμi
a

ˇelds to the Cristoffel symbols and lμν
a = −ωi

νWμi
a, respectively, that transforms (11)Ä(13)

into

Rμν
γ

λ = l[μ
γalν]λa, (49)

Hμν
ab = l[μ

γalν]γ
b, (50)

∇⊥
[μlν]ρa = 0, (51)

where ∇⊥
μ lνρ

a := ∂μlνρ
a − Γλ

μν lλρ
a − Γλ

μρlνλ
a + Bab

μ lνρb.

As is seen, exclusion of Fμνi
k transforms the constraint (11) into (49), which generalizes

the Gauss Theorema Egregium for a (p + 1)-dimensional hypersurface embedded into the
D-dimensional Minkowski space. The absence of Fμνi

k allows one not to consider the
group SO(1, p) as an explicit symmetry of the desired action. As a result, we obtain the
following SO(D− p− 1) gauge-invariant action in a gravitational background possessing the
solution (49)Ä(51):

S = γ

∫
dp+1ξ

√
|g| L,

L = −1
4
Sp (HμνHμν) +

1
2
∇⊥

μ lνρa∇⊥{μlν}ρa −∇⊥
μ lμρa∇⊥

ν lνρa−

− 1
2
Sp (lalb)Sp (lalb) + Sp (lalbl

alb) − Sp (lalalbl
b). (52)

To prove this, let us consider the following action:

S = γ

∫
dp+1ξ

√
|g|

{
−1

4
Sp (HμνHμν) +

+
1
2
∇⊥

μ lνρa∇⊥{μlν}ρa −∇⊥
μ lμρa∇⊥

ν lνρa + V

}
. (53)
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Variation of (53) in the dynamical ˇelds lμν
a, Bμ

ab gives their EOM

∇⊥
ν H

νμ
ab =

1
2
lνρ[a∇⊥[μlν]ρ

b], (54)

1
2
∇⊥

μ ∇⊥[μlν]ρa = −[∇⊥μ,∇⊥ν ]lμρa +
1
2

∂V

∂lνρa
, (55)

where Hab
μν := Hab

μν − l[μ
γalν]γ

b. Equations (54), (55) have the GC constraints (50), (51)

Hab
μν = 0, ∇⊥

[μlν]ρa = 0, (56)

as their particular solution provided that

1
2

∂V

∂lνρa
= [∇⊥μ,∇⊥ν ]lμρa. (57)

With the help of the GC equations (49)Ä(51) and the Bianchi identity

[∇⊥
γ , ∇⊥

ν ]lμρa = Rγν
μ

λlλρa + Rγν
ρ

λlμλa + Hγν
a

bl
μρb, (58)

one can transform (57) into solvable equation for the self-interaction potential V

1
2

∂V

∂lνρa
= (lalb)ρν Sp (lb) + (2lbl

alb − lalbl
b − lbl

bla)ρν − lρνb Sp (lbla). (59)

Equation (59) has the following solution for V accompanied by the trace constraints:

V = −1
2

Sp (lalb)Sp (lalb) + Sp (lalbl
alb) − Sp (lalalbl

b), Sp (la) = 0. (60)

The constraints Sp (la) = 0 express the well-known algebraic conditions of minimality for
a (p + 1)-dimensional hypersurface embedded into the Minkowski spaces. These conditions
are equivalent to the nonlinear equations of motion of p-branes

�(p+1)x = 0, (61)

where �(p+1) :=
1√
|G|

∂α

√
|G|Gαβ∂β is the reparameterization invariant LaplaceÄBeltrami

operator on Σp+1 [24].
Equation (61) follows from the Dirac action for p-branes with the minimal hypersurfaces

in the Minkowski space-time

S = T

∫
dp+1ξ

√
|G|, (62)

where G is the determinant of the induced metric Gαβ := ∂αx∂βx.
It proves that the SO(D − p − 1) gauge-invariant action (52) for the interacting gauge

and tensor ˇelds Bab
μ and laμν , respectively, in a gravitational background has the particular

solution presented by the ˇrst-order GaussÄCodazzi PDEs (49)Ä(51). The solution describes
minimal (p + 1)-dimensional hypersurfaces embedded into the D-dimensional Minkowski
space-time.
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To sum up, the gauge reformulation of the geometric approach to (p + 1)-dimensional
hypersurfaces embedded into the D-dimensional Minkowski space was proposed. The new
set of SO(1, p)×SO(D−p−1) gauge-invariant models possessing exact solutions for gauge
ˇelds and vector multiplets in gravitational backgrounds, was constructed. The Dirac p-branes
were shown to be the solutions of (p + 1)-dimensional gauge model presented by the GaussÄ
Codazzi constraints for the SO(D− p− 1) gauge vector ˇelds and massless tensor multiplets
in curved backgrounds.
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