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SO(2,3) NONCOMMUTATIVE GRAVITY MODEL

M. Dimitrijevié¢ ', V. Radovanovié?

Faculty of Physics, University of Belgrade, Belgrade, Serbia

In this paper, the noncommutative gravity is treated as a gauge theory of the noncommutative
SO(2, 3)« group, while the noncommutativity is canonical. The Seiberg—Witten (SW) map is used to
express noncommutative fields in terms of the corresponding commutative fields. The commutative
limit of the model is the Einstein—Hilbert action plus the cosmological term and the topological Gauss—
Bonnet term. We calculate the second-order correction to this model and obtain terms that are the
zeroth, first, ... and fourth power of the curvature tensor. Finally, we discuss physical consequences of
those correction terms in the limit of big cosmological constant.

PACS: 11.25.Wx

INTRODUCTION

Recently, a lot of attention was given to the Anti-de Sitter (AdS) gauge theory and its
application to studies of General Relativity (GR), quantization of gravity, AdS/CFT and its
applications [1]. In our previous paper [2], we began the study of NonCommutative (NC)
gravity based on the AdS gauge group. We started form the MacDowell-Mansouri action in
the commutative space-time and generalized it to the NC MacDowell-Mansouri on the canon-
ically deformed space. In this paper, we briefly describe the NC SO(2,3), gauge theory.
More details can be found in [3].

The NC space-time is the canonically deformed space-time with the Moyal-Weyl x-product
given by

) wgta) = ex (50 20 0 ) 1) a0 n
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Here 6#¥ is a constant antisymmetric matrix and is considered to be a small deformation
parameter. Indices u, v take values 0,1,2,3, and the four-dimensional Minkowski metric
is n, = diag(1,—1,—1,—1). In the next section, we shortly describe the commutative
S0O(2,3) gravity theory. In Sec.2, the NC SO(2,3), gauge theory via the SW map is intro-
duced. We expand the NC action to the second order in the deformation parameter #*° and
calculate the correction terms to the commutative action. The first-order correction vanishes
and we confirm the results already present in the literature. Namely, it was shown that if
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reality of the NC gravity action is imposed, all odd-order corrections (in the NC parame-
ter) have to vanish. The first nonvanishing correction is then the second-order correction.
The correction terms we obtain are of the zeroth, first, ... and fourth power in the curvature
tensor and are written in a manifestly covariant way. The term that is the zeroth power in
the curvature tensor renormalizes the cosmological constant, i.e., we obtain an z-dependent
cosmological constant.

1. COMMUTATIVE GRAVITY AS AN AdS GAUGE THEORY

We assume that the space-time has the structure of the 4-dimensional Minkowski space My
and follow the usual steps for constructing a gauge theory on M, taking the SO(2, 3) group as
the gauge group. The gauge field takes values in the SO(2, 3) algebra, w, = (1/2)wﬁBMAB.
Here M 4p are the generators of the SO(2,3) group and they fulfill

[Map, Mcp] = i(napMBpc +nBcMap —nacMpp —nepMac). (2)
The 5D metric is nap = diag (+,—,—,—,+). Indices A, B,... take values 0,1,2,3,5,
while indices a, b, ... take values 0,1,2,3. A representation of this algebra is given by
7 1 1
Moy = Z['Ym')/b] = EUab; Ms, = 57{17 3)

where 7, are four-dimensional Dirac gamma matrices. Then the gauge potential w;fB decom-
: ab ad
poses into wy;” and wy;

1 1
wy, = waBMAB = szbaab - 5“}35%' (4)

The field strength tensor is defined in a usual way by

F = 0w, — Oyw,, — iw,,w,] = %F:‘VBMAB =
= (R - pleet —ebet)) B - 2R ©)
where
R = 0wy’ = O + witwl) — wifwy”, ©)
IF,2> = Dyel — Dyej, =T, )

Equations (4), (5), (6), and (7) suggest that one can identify wzb with the spin connection of
the Poincaré gauge theory; wZ5, with the vielbeins; RZ?,, with the curvature tensor; and F ;},‘f’,
with the torsion. It was shown in the seventies that one can really do such an identification
and relate AdS gauge theory with GR. Different ways were discussed in the literature, see [4].

One way is to start from the following action:
il

S: 647TGN

ﬁ/&mwwbﬂm, (8)
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where G is the Newton gravitational constant. An additional auxiliary field ¢ = ¢AT 4,
T4 = (iva75,75), transforming in the adjoint representation of SO(2,3), is introduced. One
can show that the action (8) is invariant under the SO(2,3) gauge symmetry. However, if
we restrict the field ¢ to be ¢* = 0, ¢° = [, with an arbitrary constant [, then the symmetry
of the action is reduced to the SO(1,3) gauge symmetry. The constraint on the field ¢ can
be introduced via a Lagrange multiplier or dynamically [4]. We are not concerned with that
problem here. The action obtained after symmetry breaking is given by

il? oo
= mdj' P /d4xT‘I‘(FuVF/)U,Y5) =
_ /d%{ﬁew% beaRVR 4 e R+ 26/\} 9)
167G N 16 e Tee ’
where A = —3/I” and e = det (e%). This action is written in the first-order formalism:

the spin connection w, and the vielbeins e}, are independent fields. Varying the action
with respect to the spin connection, we obtain an equation that relates the spin connection
and the vielbeins. After the analysis of the equations of motion, we see that after the
symmetry breaking, the action (9) describes GR with the negative cosmological constant and
the topological Gauss—Bonnet term.

2.NC 5O(2,3), GAUGE THEORY

In order to construct the NC SO(2,3), gauge theory, we use the enveloping algebra
approach and the Seiberg—Witten (SW) map [5]. The NC action is given by
il
167G N

Sne = Tr / AT A ) (10)
The *-product is the Moyal-Weyl x-product (1), fields with a «hat» are NC fields, and we
will use the SW map to expand them in terms of the corresponding commutative fields. One
can show that this action is invariant under the NC SO(2, 3) gauge transformations. In the
limit 8% — 0, the action (10) reduces to the commutative action (8). The solutions of the
SW map for the field strength tensor and the field 45 are given in terms of the recursive
relations [6]

~ 1 ~ ~

(nl) _ L prA(fp (n)
En 4(n+1)9 ({&n ¥ OnEp + DrF )+

1 WA B w1\ (™)
+ 2(TL + 1)0 ({FHH7 Y I/A}) b (11)

. 1 R A\ ()

(n+1) — _ KA P
¢ AN GO AR (12)

We expand the action (10) in orders of the deformation parameter §°°, using the SW map
solutions and expanding the x-products that appear in the action. The first-order correction
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vanishes, as expected. The second-order correction is given by

(2) _ il l af gk
SNC = Giman sl X

1 1
X Tr/d4x6HVpU{_§{Fa5, {FMV’FPU}}{¢7 FK)\} + i{Faﬁ’ {Fpg, {FI{M;F)\V}}}¢+
1 ) )
+Z{{Fuu7 Fpa}a {Fna; F)\ﬂ}}(b"‘Z{F(yﬁ; [DnF‘;wv DAFpa]}¢+§[{DnF}LV7 Fp07 D/\Faﬁ}](b_
1
- §{Fpa; {Foz;u Fﬁu}}{¢a Fn/\} + {F(yu; FBV; {FH/H F/\U}}¢+
+2{Fpm {Fﬂw {F,m, F/\u}}}¢+i{Fpm [DnFa/u D/\Fﬂu]}qb"‘Zi[{Fﬁm DnFau}v D/\Fpa](b_

1 7
- Z{¢, Fn/\}[DaF‘uw DﬁFpa] + §{DnDozFuu; D)\DBFpJ}¢+
+ [{Fnaa D>\Flw}v DﬁFpa]¢ + [{Fkua DaFw}v DﬁFpa]¢ + [{F,W, DaF/\V}a Dnga]qb}.

This expanded action is manifestly invariant under the commutative SO(2, 3) gauge transfor-
mations. This result is guaranteed by the SW map. After the symmetry breaking, which is
obtained by taking the field ¢ to be ¢* = 0 and ¢° = [, we obtain

2
(2) _ l af gr\ _pvpo 4 1 cd rab mrmn
SNC = _7647TGN9 O etvP 6abcd/d x{256 'F;J,VFpJFaB KAMN

— SF P P Fige + FabFEA(F Fyomn + 2F 3 Fot,) ) =

prvt po

1
= 53 (PR EL L Fagmn + 2GS EL R, + FELFSELS Fpomn ) =

1
— S5 (FEbES (B By + 2F50 ) + b Fg (B P + 2FL0 Fy) )+

1 a cm (&2
+ 16 F (DaBw) ™) (DaFyo) i+ (DiFru)™ (DAFy )5 ) =

- 1_16 <(D”F“”)ab(DAFaﬁ)d5F53 + (DnFuu)GS(DAFaﬁ)bSFﬁg) +
+ 1—16F§ZF“5 (i Faomn + 2P Fagms ) +
+ 11—6 (FiffF SEFR Py + 2F0% Faums ) + Fe FSL ™ Fgyy i —
— UFEFS + FEFY)Fs Foves ) -

1 a cm (&2
— S E ((DaFop) ™ (DxEp Yy + (D Foye) ™ (DrFp)s*) +

8 17
1
+ 5 (Fa(DaFo) (Ds o)™ + FE(DaFi)' ) (Ds o)+
1 1
+ g (FEL(DAFW) + FE(DAFL)™) (DpFra)® - 3—2<D~DQFW>Q’><DAD6FW>“}-

13)
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Here D, F,,, is the SO(2,3) covariant derivative and its components are

1
(Do Fou)® = VaF“fj ~ (€T, b_etT ),

a’ py

(Do Fy)®™ = (v T%, +emF

p,um)

3. DISCUSSION

The result (13) is very complicated. In order to see the physical consequences of this
model, we have to make some additional requirements. We will first assume that the torsion
in the zeroth order vanishes, Flff = 0. Since we have no fermionic matter, this assumption is
valid. Then we will expand Fﬁ,ﬁ in terms of the curvature tensor and the vielbeins, using (5).
Since the torsion vanishes, the curvature tensor will have the usual symmetry properties:
Ruvpe = Rpojw = Ruppe = —Ruvep. Finally, we discuss different scales in the theory.
We have three parameters: the cosmological constant A = —3/I2 (the length parameter [
is related with the radius of the AdS space), the NC parameter #*°, and the powers of the
curvature tensor (powers of derivatives). Depending on the values of these three parameters,
we can analyze different limits of the model: big cosmological constant and low energies
(lower powers of curvature dominate), or big cosmological constant and high energies (higher
powers of curvature dominate), and so on.

Let us assume that we are interested in the limit of the big cosmological constant and
low energies. In that case, from (13), we include only the term that is zeroth order in the
curvature. The resulting action is given by

1

l2
5=~ TonCn / d%{lb‘cw Cabealty, R +V/=gR +2v/= A]

39&69/{)\ .
+ == 167TG 16 d TN —99GarxgpA- (14)

To obtain the equations of motion, we vary the action with respect to the metric g,,. The
result is

1 3 1
Rpo — §gpo'(R +2A) + —6*PprA <§gpgga,{9fn + 2gg)\gapg,w> =0. (15)

16
A simple analysis shows that the flat space g,, = 7, is not the solution of these equations.
Therefore, although in the action (14) the cosmological constant is renormalized with the
z-dependent term 67 6”’\9%95 A, this is not enough to completely cancel its effect and the
resulting space-time remains curved. If we are interested in the linearized theory, we would
have to expand around the AdS space-time. This problem and further analysis are the subject
of the future investigations.
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