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INTRODUCTION

Verma modules were ˇrst considered by Verma in [1]. His study was continued
by I. N. Berstein, I.M. Gelfand, and S. I. Gelfand [2]. Verma modules are modules over
complex semisimple Lie algebras and they are useful in the representation theory and
mathematical physics. The monograph [3] provides a thorough exposition of the Verma
modules theory.

Extremal vectors of Verma modules appeared in the representation theory of the semi-
simple Lie algebras and group [2Ä4]. In [5], root systems of all types are considered, and
the solution is given relatively to the so-called straight roots by using a special basis of the
universal enveloping algebra. In [6,7], the solution is given for types An and Dn for all roots
in the Poincar	eÄBirkhoffÄWitt basis.

Our approach is a little different. We ˇrst construct some boson realization [8,9] and then
transfer the problem to the problem of ˇnding polynomial solutions of a system of differential
equation.

1E-mail: burdik@kmlinux.fjˇ.cvut.cz
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1. LIE ALGEBRA B2 AND EXTREMAL VECTORS
OF THE VERMA MODULES

The Cartan matrix of the Lie algebra B2 is
(

2 −2
−1 2

)
. The simple positive roots are

α1 = (2,−2) and α2 = (−1, 2). We denote Ei = Xαi
and Fi = X−αi , where Xα is

the element of the Lie algebra which corresponds to the root α. We choose the Poincar	eÄ
BirkhoffÄWitt basis consisting of elements H1, H2, Ek, and Fk, where k = 1, . . . , 4, which
are deˇned by means of the relations

[
Ei,Fi

]
= Hi,

[
Hi,Ei

]
= 2Ei,

[
Hi,Fi

]
= −2Fi,

E3 =
[
E1,E2

]
, E4 =

1
2
[
E2,E3

]
,

[
Xα,Xβ

]
= Nα,βXα+β,

where i = 1, 2, N−α,−β = −Nα,β and F3 = X−α1−α2 , F4 = X−α1−2α2 .

The basis of the Cartan subalgebra h is formed by the elements H1 and H2. Let us
denote by n+ and n− the Lie algebra generated by elements Ek, Fk, respectively, where
k = 1, . . . , 4, and b+ = h + n+.

Let λ = (λ1, λ2) ∈ h∗, where λ1 = λ(H1), λ2 = λ(H2) ∈ C. Let us consider the
one-dimensional representation τλ of the Lie algebra b+ for which

τλ(H + E)|0〉 = λ(H)|0〉

holds for any H ∈ h and E ∈ n+. The element |0〉 will be called the highest-weight vector.
Let us consider

W (λ) = U(g) ⊗U(b+) C|0〉,

where b+-module C|0〉 is deˇned by the representation τλ. The space W (λ) ∼ U(n−)|0〉 is
U(g)-module for the left regular representation which we call Verma module 1.

It is known [3] that any U(g)-submodule of the module W (λ) is isomorphic to the module
W (μ), where

μ = λ − n1α1 − n2α2, n1, n2 ∈ N0 = {0, 1, 2, . . .}.

Then for the highest-weight vector |0〉μ of the module W (μ) ⊂ W (λ)

H|0〉μ = μ(H)|0〉μ, H ∈ h, E|0〉μ = 0, E ∈ n+

hold. The vectors |0〉μ are called the extremal (or singular) vectors of the module W (λ). We
ˇnd all extremal vectors of the Verma modules for the Lie algebra B2 explicitly.

1In Dixmi	er [3], the Verma module M(λ) is deˇned by the representation τλ−δ , where δ =
1

2

4∑
k=1
αk = (1, 1).

So W (λ) = M(λ + δ).
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2. DIFFERENTIAL EQUATIONS FOR EXTREMAL VECTORS

Let λ1, λ2 ∈ C. The basis of the Verma module is formed by the vectors

|n〉 = |n1, n3, n4, n2〉 = Fn1
1 Fn3

3 Fn4
4 Fn2

2 |0〉, n1, n2, n3, n4 ∈ N0.

It is easy to show by direct calculations that it is true

H1|n〉 = (λ1 − 2n1 + n2 − n3)|n〉, H2|n〉 = (λ2 + 2n1 − 2n2 − 2n4)|n〉,

E1|n〉 = n1(λ1 − n1 + n2 − n3 − 1)|n1 − 1, n3, n4, n2〉−
− n3|n1, n3 − 1, n4, n2 + 1〉 + n3(n3 − 1)|n1, n3 − 2, n4 + 1, n2〉,

E2|n〉 = n2(λ2 − n2 + 1)|n1, n3, n4, n2 − 1〉+
+ 2n3|n1 + 1, n3 − 1, n4, n2〉 − n4|n1, n3 + 1, n4 − 1, n2〉.

If we put
|n1, n3, n4, n2〉 = Fn1

1 Fn3
3 Fn4

4 Fn2
2 |0〉 ↔ zn1

1 zn2
2 zn3

3 zn4
4 ,

we see that the representation can be realized on the space of polynomials f(z1, z2, z3, z4)
of the variables z1, z2, z3, and z4. The equations for extremal vectors follow the system of
partial differential equations

λ1f − 2z1f1 + z2f2 − z3f3 = μ1f,

λ2f + 2z1f1 − 2z2f2 − 2z4f4 = μ2f,

λ1f1 − z1f11 + z2f12 − z3f13 − z2f3 + z4f33 = 0,

λ2f2 − z2f22 + 2z1f3 − z3f4 = 0.

(1)

3. EXTREMAL VECTORS

It is evident that the extremal vectors are in the one-to-one correspondence with polynomial
solution of the system (1). By the standard method it is possible to show that nonzero solution
of this system exists only in eight cases.

In this section we will give the extremal vectors and the corresponding functionals μ.
1. μ = (λ1, λ2), where λ1, λ2 ∈ C. For any λ there is the trivial extremal vector

|0〉μ = |0〉. This extremal vector is the height-weight vector of the Verma module W (λ).
2. μ = (−λ1 − 2, 2λ1 + λ2 + 2), where λ1 + 1 ∈ N0 a λ2 ∈ C. In this case we obtain the

extremal vector |0〉μ = Fλ1+1
1 |0〉.

3. μ = (λ1 + λ2 + 1,−λ2 − 2), where λ2 + 1 ∈ N0 a λ1 ∈ C. The extremal vector in this
case is |0〉μ = Fλ2+1

2 |0〉.
4. μ = (−λ1 − λ2 − 3, 2λ1 + λ2 + 2), where λ1 + λ2 + 2 ∈ N0 and λ2 + 1 ∈ N0. This

case leads to the extremal vector |0〉μ = Fλ1+λ2+2
1 Fλ2+1

2 |0〉.
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5. μ = (λ1 + λ2 + 1,−2λ1 − λ2 − 4), where λ1 + 1 ∈ N0 and 2λ1 + λ2 + 3 ∈ N0. In this
case we obtain the extremal vector

|0〉μ =
∑

n�k�2n

(−λ1 − 1)n (−2λ1 − λ2 − 3)k

(k − n)! (2n − k)!
Fλ1−n+1

1 F2n−k
3 Fk−n

4 F2λ1+λ2−k+3
2 |0〉,

where (α)0 = 1 and (α)n = α(α + 1) · · · (α + n − 1) for n ∈ N.
6. μ = (−λ1 − λ2 − 3, λ2), where 2λ1 + λ2 + 3 ∈ N0. Extremal vector in this case is

|0〉μ =
∑

n�k�2n

(−λ1 − 1)n (−2λ1 − λ2 − 3)k

(k − n)! (2n − k)!
F2λ1+λ2−n+3

1 F2n−k
3 Fk−n

4 F2λ1+λ2−k+3
2 |0〉.

7. μ = (λ1,−2λ1 − λ2 − 4), where λ1 + λ2 + 2 ∈ N0. In this case we have the extremal
vector

|0〉μ =
∑

n�k�2n

(−λ1 − λ2 − 2)n (−2λ1 − λ2 − 3)k

(k − n)! (2n − k)!
Fλ1+λ2−n+2

1 F2n−k
3 Fk−n

4 F2λ1+2λ2−k+4
2 |0〉.

8. μ = (−λ1 − 2,−λ2 − 2), where 2λ1 + λ2 + 3 ∈ N0 and 2λ1 + 2λ2 + 4 ∈ N0. The
extremal vector is

|0〉μ =
∑

n�k�2n

(−λ1 − λ2 − 2)n (−2λ1 − λ2 − 3)k

(k − n)! (2n − k)!
F2λ1+λ2−n+3

1 F2n−k
3 Fk−n

4 F2λ1+2λ2−k+4
2 |0〉.

4. CONNECTION OF THE EXTREMAL VECTORS WITH THE WEYL GROUP

It is known, see, e.g., [3], that W (μ) ⊂ W (λ) iff μ = λ − n1α1 − n2α2, where
n1, n2 ∈ N0, and there is an element w of the Weyl group W such that

w(λ + δ) = μ + δ = λ − n1α1 − n2α2 + δ.

The above found extremal vectors correspond to the eight elements of the Weyl group.
The extremal vectors of the Verma modules have been intensively studied by Dobrev. He

found in [5] some extremal vectors for the quantum groups Uq(g), where g is a simple Lie
algebra. Unlike this paper, he used the CartanÄWeyl generators of the quantum group.

Dobrev gives only the extremal vectors which correspond to the element of the Weyl
group of the form w = sα, where α is a root. His extremal vectors are, after transformation
to the Poincar	eÄBirkhoffÄWitt basis, the same as ours.

The extremal vectors corresponding to our cases 4, 5, and 8 are not included in the
cited work. On the other hand, it is easy to see that these extremal vectors can be easily
obtained from the extremal vectors, which correspond to these roots. For example in our
case 4, we have λ2 + 1 ∈ N0. Therefore the vector |0〉3 = Fλ2+1

2 |0〉 is extremal and also the
highest-weight vector for Verma module with weight μ = (μ1, μ2) = (λ1 +λ2 +1,−λ2− 1).
However in case 4, we have λ1 + λ2 + 2 = μ1 + 1 ∈ N0. So this Verma module has the
extremal vector

Fμ1+1
1 |0〉3 = Fλ1+λ2+2

1 Fλ2+1
2 |0〉,
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which is our extremal vector in case 4. Similarly, we can rewrite |0〉5 = F2λ1+λ2+3
2 Fλ1+1

1 |0〉,
|0〉8 = Fλ1+1

1 |0〉7 for λ1 + 1 ∈ N0, and for λ2 + 1 ∈ N0 we can write the extremal vector
|0〉8 = X6|0〉3 = X6Fλ2+1

2 |0〉, where X6 is the element of U(B2) which corresponds to the
extremal vector in our case 6.

The main aim of our paper was to give a new method, how to ˇnd the extremal vectors
in the Poincar	eÄBirkhoffÄWitt basis which are more frequently used in physics. We did not
use from the beginning the Gelfand result. If we used this result, the solution would be
much easier.
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