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STRINGY HOLOGRAPHY AT FINITE DENSITY
M. Goykhman1, A. Parnachev 2
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We consider an exactly solvable worldsheet string theory in the background of a black brane with a
gauge ˇeld 	ux. Holographically, such a system can be interpreted as a ˇeld theory with ˇnite number
of degrees of freedom at ˇnite temperature and density. We construct closed string vertex operators
which holographically represent the U(1) gauge ˇeld and the stress energy tensor and compute their
two-point functions. At ˇnite density, the system behaves like a sum of two noninteracting 	uids.

PACS: 11.25.Yb

INTRODUCTION

In the usual AdS/CFT setting, gauge theory on the boundary has a dual description in
terms of closed string theory in the bulk. Most often, a limit of small curvature is taken
to yield a low energy theory of strings, supergravity. In the N = 4 supersymmetric YangÄ
Mills case, this limit implies strong 't Hooft coupling of ˇeld theory. A distinct example
of nongravitational theory with a holographically dual description is the Little String Theory
(LST) [1,2]. It can be viewed as the theory of N coincident NS5-branes, taken at vanishing
string coupling, gs = 0, where the bulk degrees of freedom decouple.

The holographic dual of the little string theory [2, 3] is the theory of closed strings
in the background of NS5-branes, with the geometry R5,1 × Rφ × SU(2)N , the two-form
ˇeld and the linear dilaton. The CFT on SU(2) is described by WZW action at level N .
The bulk physics (in the double scaling limit) can be reformulated as the string theory on

R5 × SL(2, R)N

U(1)
×SU(2)N space-time. This is due to the fact that the gauged WZW model

on SL(2, R)N/U(1) gives rise to the classical ®cigar¯ geometry of the two-dimensional black
hole with the asymptotically linear dilaton [4]. In the large N limit, the bulk theory reduces
to supergravity3.

Generally one expects that a lot of nontrivial physics drastically simpliˇes in the limit of
inˇnitely many degrees of freedom (large N limit), both in the boundary ˇeld theory and
from the dual bulk perspective. For example, one expects the large N physics of a ˇeld
theory at ˇnite temperature and density to have ®classical¯ nature, resulting, in particular, in
the mean ˇeld critical exponents.

1E-mail: goykhman89@gmail.com
2E-mail: parnachev@lorentz.leidenuniv.nl
3The radius of the SU(2) sphere is Rsph =

√
N�s. Therefore the large N limit is equivalent to the limit of

small �s/Rsph.
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1. SETUP

In our work we study string theory in the background of a direct product of 	at space
Rd−1 and the two-dimensional charged black hole [5]

ds2 = −f(r)dt2 +
dr2

f(r)
, f(r) = 1 − 2m

r
+

q2

r2
, Φ = Φ(r), At � −q

r
. (1)

The temperature, chemical potential, and pressure of the QFTd are given by [6] (ψ ∈ [0, π/2])

T =
1

2π
√

N

cosψ

cos2(ψ/2)
, μ = tan (ψ/2), P = 0. (2)

The string theory in the two-dimensional charged black hole background is described by

the gWZW action with the target space-time [7, 8] M =
SL(2, R) × U(1)x

U(1)
. Here U(1)x is

a compact circle, which is KaluzaÄKlein reduced, and U(1) subgroup of SL(2, R) × U(1)x

is gauged asymmetrically

(g, xL, xR) ∼
(
eτ cos ψσ3/

√
Ng eτσ3/

√
N , xL + τ sin ψ, xR

)
. (3)

The left-moving sector of the gauged U(1) is a linear combination of the left-moving sector of
the U(1)x and the left-moving sector of the U(1) subgroup of the SL(2, R). The coefˇcient
of this linear combination determines the charge-to-mass ratio of the resulting black hole. The
right-moving sector of the gauged U(1)x is the right-moving sector of the U(1) subgroup of
the SL(2, R).

This bulk system is holographically dual to the boundary quantum ˇeld theory at ˇnite
temperature and charge density. (One can think of the resulting system as a little string theory
at ˇnite density, but we do not study the ˇeld theoretic interpretation here in detail.) The
ˇnite charge density in the ˇeld theory is described holographically by the background U(1)
potential in the bulk.

We construct the vertex operators which describe massless closed string excitations in
this model, which constitute the NS-NS sector of type-II supergravity. We also construct the
gauge ˇeld vertex operators, which are obtained by KaluzaÄKlein reduction on U(1)x from
graviton and antisymmetric tensor ˇeld vertex operators. The graviton in the bulk is dual to
the stress-energy tensor on the boundary; the gauge ˇeld in the bulk is dual to the charge
current on the boundary. We study the low-energy excitations of the system by computing
holographically the two-point functions for the charge current and the stress-energy tensor and
reading off the dispersion relation from their poles. We ˇnd two distinct gapless modes in
the shear channel; the dispersion relation of one of them is independent of the charge-to-mass
ratio of the black hole. The two modes merge in the limit of vanishing charge. We conˇrm
these results by solving 	uctuation equations of the type-II supergravity. The situation in the
sound channel is similar.

2. VERTEX OPERATORS AND TWO-POINT FUNCTIONS

The vertex operators of the graviton and the 2-form ˇeld are

Gμν = (jμ
−1j̃

ν
−1 + jν

−1j̃
μ
−1)Vg, Bμν = (jμ

−1j̃
ν
−1 − jν

−1j̃
μ
−1)Vg. (4)
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Taking one polarization along U(1)x and performing KK reduction, we obtain the gauge
ˇelds

aμ = (jμ
−1j̃

x
−1 + jx

−1j̃
μ
−1)Vg, bμ = (jμ

−1j̃
x
−1 − jx

−1j̃
μ
−1)Vg. (5)

The ground-state vertex operator of the bosonic string on SL(2, R) is the SL(2, R)
KacÄMoody primary ˇeld. The two-point function of SL(2, R) primaries is known exactly [9]:

〈Vj,m,m̄Vj,−m,−m̄〉 �
Γ

(
1 − 2j + 1

N

)
Γ(−2j − 1)Γ(1 + j + m)Γ(1 + j − m̄)

Γ
(

1 +
2j + 1

N

)
Γ(2j + 1)Γ(−j + m)Γ(−m̄ − j)

. (6)

Gauging of U(1) from SL(2, R) × U(1)x is realized by imposing the BRST conditions

jn|Ψ〉 = 0, n � 0, j(z) = k(z) − ∂w(z), (7)

where j(z) is a null current, k(z) is U(1) current which we gauge, and w(z) parameterizes
auxiliary U(1) circle. Similarly for antiholomorphic sector.

The ground-state vertex operator of the bosonic string on M is

Φjmm̄ = Vjmm̄ einLx+inRx̃, (8)

subjected to the U(1) BRST condition [8]

m cosψ + m̄ +
√

NnL sin ψ = 0. (9)

We have performed covariant quantization of a string to construct physical massless
NS-NS states.

Choose X to be direction of propagation of excitations, with momentum p and fre-
quency ω. We have the following groups of vertex operators deˇned by the spin w.r.t. to
the rotations in the transverse noncompact space (with coordinates xa). Sound channel: the
spin is zero, GXX , AX BX . Shear channel: the spin is one, GXa, BXa, Aa, Ba. Scalar
channel: the spin is two, Gab, Bab. Due to the rotational symmetry in the transverse space,
vertex operators from different groups are decoupled from each other.

Mass-shell condition of the gravity multiplet states is

− j(j + 1)
N

+
p2 − ω2

2
= 0, ω =

2im cosψ√
N

. (10)

In the shear channel, we have vertex operators, which we regroup into two decoupled
systems,

SXa =
1
2
(GXa + BXa) = jX ∂̄xaVg, W a =

1
2
(Aa + Ba) = jx∂̄xaVg, (11)

RXa =
1
2
(GXa − BXa) = j̃X∂xaVg, Ua =

1
2
(Aa − Ba) = ∂̄x∂xaVg . (12)
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3. LOW-ENERGY MODES

We read off the low-energy modes of the QFTd as poles of two-point functions for the
operators of the stress-energy tensor Tμν and charge current Jμ. Holographic correspondence
maps these operators to the vertex operators of the ˇelds in the bulk:

Tμν ↔ Gμν , Jμ ↔ Gμx = Aμ. (13)

The holographic prescription for computing the two-point functions is

〈TμνTλρ〉QFT = 〈GμνGλρ〉w.s, 〈TμνJλ〉QFT = 〈GμνAλ〉w.s, 〈JμJλ〉QFT = 〈AμAλ〉w.s.
(14)

We have computed 〈TXaTXa〉 via string holographic dual and found the poles at

ω = −i

√
N

2
p2, ω = −i cosψ

√
N

2
p2. (15)

Each mode comes from one of the two decoupled systems (11), (12). From QFT point of
view, we therefore have two different noninteracting 	uids, each supporting one of these
modes. We have veriˇed the dispersion relations (15) by solving 	uctuation equations in
supergravity approximation.

Finally, recall that all the two-point functions are proportional to ground-state two-point

function (6), which in turn is proportional to Γ
(

1 − 2j + 1
N

)
. Using the mass-shell condi-

tion (10), we obtain singularity at ω = 0 and p = p∗, p2
∗ =

1
�2
s

(
N − 1

N

)
[10]. Measured in

units of curvature radius R =
√

N�s, it goes as (Rp∗)2 ∼ N2, when N is large and there-
fore becomes parametrically large in supergravity approximation. Therefore, ω = 0, p = p∗
singularity is a purely stringy effect.
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