
�¨¸Ó³  ¢ �—�Ÿ. 2014. ’. 11, º7(191). ‘. 1490Ä1495

”ˆ‡ˆŠ� �‹…Œ…�’���›• —�‘’ˆ– ˆ �’�Œ��ƒ� Ÿ„��. ’…��ˆŸ

COSMOLOGICAL SOLUTIONS
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A nonlocal modiˇed gravity model with an analytic function of the d'Alembert operator that has
been proposed as a possible way of resolving the singularities problems in cosmology is considered. We
show that the anzats that is usually used to obtain exact solutions in this model provides a connection
with f(R) gravity models.

PACS: 04.20.Cv

INTRODUCTION

General relativity (GR) being a very efˇcient and simple theory of gravity featuring the
second order equations of motion suffers from certain weaknesses. Among them is the initial
singularity problem which arises in the framework of the in	ationary paradigm. This is the
re	ection of UV incompleteness of GR. One possibility to improve the ultraviolet behavior
and even to get a renormalizable theory of quantum gravity is to add higher-derivative terms
to the EinsteinÄHilbert action. As one of the ˇrst papers we can mention [1] where curvature
squared corrections were considered. Unfortunately, this model (and models with more
than two but ˇnite number of derivatives in equations of motion in general) has ghosts. An
intriguing possibility to overcome this problem is to consider a nonlocal gravity with inˇnitely
many derivatives.

The theoretical motivation behind an introduction of inˇnite derivative nonlocal correc-
tions into a local theory is the string ˇeld theory (SFT) [2]. Such corrections naturally
arise in the SFT and usually consist of exponential functions of the d'Alembertian oper-
ator acting on ˇelds. The majority of nonlocal cosmological models motivated by such
structures explicitly include an analytic or meromorphic function of the d'Alembertian oper-
ator [3Ä9].

Both GR and the modiˇed gravity models yield a nonintegrable system of equations of
motion with only particular analytic solutions known. Having an analytic solution however
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is crucial in considering perturbations which are in turn the cornerstone of any cosmological
model. Needless to say that ˇnding analytic solutions in nonlocal nonlinear equations is an
extremely hard task. Some studies of nonlocal modiˇcations of GR that resulted in analytic
solutions can be found in [5,6, 9].

The key to ˇnding solutions in the nonlocal gravity models of interest is to employ an
ansatz which relates ˇnite powers of the d'Alembertian operator acting on the scalar curvature.
The anzats itself reduces the initial nonlocal model to an effective local model with more than
two but ˇnite number of derivatives. This does not mean that ghosts should appear as any
anzats is a relation in the background while perturbations enjoy all the new properties of the
full nonlocal structure. Provided there is a background conˇguration satisfying the anzats,
one simpliˇes the problem of solving the equations of motion considerably.

1. ACTION AND EQUATIONS OF MOTION
FOR STRING-INSPIRED NONLOCAL GRAVITY

The nonlocally modiˇed gravity proposed in [5] is described by the following action:

S =
∫

d4x
√
−g

[
M2

P

2
R +

1
2
RF

(
�

M2
∗

)
R − Λ + LM

]
, (1)

where MP is the Planck mass; Λ is the cosmological constant; M∗ is the mass scale at which
the higher derivative terms in the action become important; LM is the matter Lagrangian. We
use the convention where the metric g has the signature (−, +, +, +). M∗ is the mass scale
at which the higher derivative terms in the action become important. An analytic function
F

(
�/M2

∗
)

=
∑
n�0

fn�n is an ingredient inspired by the SFT. The operator � is the covariant

d'Alembertian. In the case of an inˇnite series we have a nonlocal action.
Introducing dimensionless coordinates x̄μ = M∗xμ and M̄P = MP /M∗, we get

F(�/M2
∗ ) = F(

−
�), where

−
� is the d'Alembertian in terms of dimensionless coordinates.

We shall use dimensionless coordinates only (omitting the bars).
A straightforward variation of action (1) yields the following system:

1
2
[M2

P + 2F(�)R] (2Rμ
ν − δμ

ν R) =
1
2

∞∑
n=1

fn

n−1∑
l=0

[
gμρ∂ρ�

lR∂ν�n−l−1R+

+ gμρ∂ν�lR∂ρ�
n−l−1R − δμ

ν

(
gρσ∂ρ�

lR∂σ�n−l−1R + �lR�n−lR
)]

+

+ 2(gμρ∇ρ∂ν − δμ
ν �)F(�)R − 1

2
RF(�)Rδμ

ν − Λδμ
ν + T μ

ν , (2)

where ∇μ is the covariant derivative; T μ
ν is the energyÄmomentum tensor of matter. The trace

equation is useful to get exact solutions:

M2
P R −

∞∑
n=1

fn

n−1∑
l=0

(
∂μ�lR∂μ�n−l−1R + 2�lR�n−lR

)
− 6�F(�)R = 4Λ − T μ

μ . (3)
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2. THE ANSATZ FOR FINDING EXACT SOLUTIONS

It has been shown in [5,6, 8, 9] that the ansatz

�R = r1R + r2, (4)

with constants r1 �= 0 and r2, is useful in ˇnding exact solutions.

If the scalar curvature R satisˇes (4), then equations (2) are

1
2

[
M2

P + 2
(
F(r1)R +

r2

r1
(F(r1) − f0)

)]
(2Rμ

ν − δμ
ν R) = T μ

ν +

+ F ′(r1)

[
∂μR∂νR − δμ

ν

2

(
gσρ∂σR∂ρR + r1

(
R +

r2

r1

)2
)]

− Λδμ
ν +

+ 2F(r1) [∇μ∂νR − δμ
ν (r1R + r2)] −

δμ
ν

2

[
F(r1)R2 − r2

2

r2
1

(F(r1) − f0)
]

, (5)

where F ′ is the ˇrst derivative of F with respect to the argument.

We proceed to consider a traceless radiation along with a cosmological constant. Under
condition (4) the trace equation with T μ

μ = 0 becomes especially simple:

AR + F ′(r1)
(
2r1R

2 + ∂μR∂μR
)

+ B = 0, (6)

where the constants A and B are deˇned as follows:

A = 4F ′(r1)r2 − M2
P − 2

r2

r1
(F(r1) − f0) + 6F(r1)r1, B = 4Λ +

r2

r1
M2

P +
r2

r1
A.

The simplest way to get a solution to Eq. (6) is to impose F ′(r1) = 0 and to put A = B = 0.
These relations ˇx values of r1, r2 and the cosmological constant:

r2 = − r1[M2
P − 6F(r1)r1]

2[F(r1) − f0]
, Λ = − r2M

2
P

4r1
= M2

P

[M2
P − 6F(r1)r1]

8[F(r1) − f0]
. (7)

Under conditions A = B = F ′(r1) = 0 the complete set of equations (5) simpliˇes to

2F(r1)(R + 3r1)Gμ
ν = T μ

ν + 2F(r1)
[
gμρ∇ρ∂νR − 1

4
δμ
ν

(
R2 + 4r1R + r2

)]
. (8)

In general, one is required to include radiative sources to get exact solutions of all equa-
tions [6]. Let us emphasize that equations are general and we do not take into account the
properties of the metric.
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3. RELATION BETWEEN THE ANZATS AND R2 MODIFIED GRAVITY

It is well known [10] that the f(R) gravity model, described by the action

Sf =
∫

d4x
√
−g

(
M2

P

2
f(R) + LM

)
, (9)

has the following equations:

M2
P

(
f (1)(R)Rμ

ν − 1
2
f(R)δμ

ν − (gμρ∇ρ∂ν − δμ
ν �)f (1)(R)

)
= T μ

ν , (10)

where f (1)(R) is the ˇrst derivative of f(R) with respect to R.
From (10) for traceless matter, we get the following trace equation:

f (1)(R)R − 2f(R) + 3�f (1)(R) = 0. (11)

One can see that at

f(R) =
F(r1)
M2

P

[
R2 + 6r1R + 3r2

]
, (12)

Eq. (11) coincides with the ansatz (4). Moreover, Eqs. (8) are equivalent to (10). Note that
condition (7) gives the following connection:

M2
P =

2
r1

[
3F(r1)r2

1 − (F(r1) − f0)r2

]
.

We proved that any solution of the modiˇed gravity model (9) with f(R) given by (12)
and traceless matter is a solution of the initial system of Eqs. (2) on condition that A = B =
F ′(r1) = 0 and the anzats (4) is satisˇed.

CONCLUSIONS

We have shown that any solution of the R2 modiˇed gravity model (9), either without
matter, or with the radiation, is a solution of the corresponding SFT inspired nonlocal gravity
models (1). We do not assume some special form of the metric to prove this result. Note
that the initial nonlocal model is not totally equivalent to an R2 model. Full consideration
of the model includes both the background solution and perturbations, which may not satisfy
the ansatz (4) in general. The analysis of the cosmological perturbations in the considered
nonlocal models is given in [8]. Note that the R2 modiˇed gravity is very well studied [10]
and looks as a realistic modiˇcation of gravity. In particular, the modern cosmological and
astrophysical data [11] conˇrm the predictions of the Starobinsky in	ationary model [12].
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