
�¨¸Ó³  ¢ �—�Ÿ. 2014. ’. 11, º7(191). ‘. 1502Ä1506

”ˆ‡ˆŠ� �‹…Œ…�’���›• —�‘’ˆ– ˆ �’�Œ��ƒ� Ÿ„��. ’…��ˆŸ

REPRESENTATIONS AND PARTICLES
OF ORTHOSYMPLECTIC SUPERSYMMETRY

GENERALIZATION 1

I. Salom 2

Institute of Physics, Belgrade

Orthosymplectic osp(1|2n) supersymmetry (alternative names: Generalized conformal supersym-
metry with tensorial central charges, conformal M-algebra, para-Bose algebra) has been considered as
an alternative to d-dimensional conformal superalgebra. Due to mathematical difˇculties, even clas-
siˇcation of its unitary irreducible representations (UIRs) have not been entirely accomplished. We
give this classiˇcation for n = 4 case (corresponding to four-dimensional space-time) and then show
how the discrete subset of these UIRs can be constructed in a Clifford algebra variation of Green's
ansatz.

PACS: 11.30.Pb; 12.60.Jv

INTRODUCTION

Orthosymplectic type of space-time symmetry was ˇrst analyzed by C. Fronsdal [1], as
early as 1985, and since then interest in this symmetry reappeared, sometimes independently,
in many contexts: M-theory [2], BPS particles [3], higher spin ˇelds [4] and others [5].

When considering a (super)group in the context of a space-time symmetry, one of the
ˇrst and most natural steps to undertake is to ˇnd unitary irreducible representations (UIRs)
of the group, as these give us basic information on the particle content of the free the-
ory. And in the case of orthosymplectic supersymmetry, physically most important class of
UIRs are so-called positive energy UIRs. The problem of ˇnding these representations has
been solved only for n = 1 and n = 2. We followed the approach of [6] and completed
the task for n = 4 by using computer algorithms to analyze Verma module structure. In
this way we managed to make a complete list of positive energy osp(1|8) UIRs, together
with explicit forms of the corresponding Verma module singular and subsingular vectors.
In this short report we present the main features of the results, leaving the details to be
published separately. In particular, we point out that there is a concrete number of discrete
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UIR families (precisely nine, or ten if the trivial representation is counted as a separate
class) that physically should be related to elementary particles of osp(1|8) models. In ad-
dition, we also point out a method to explicitly construct discrete representations, allowing
one to easily perform concrete calculations in these spaces and, in that way, give physi-
cal interpretation to the states within. The method, directly generalizable to arbitrary n,
is based on a Clifford algebra variation of Green's ansatz and is mathematically related
to Howe duality.

1. POSITIVE ENERGY UIRs OF osp(1|8)

Structural relations of osp(1|2n) superalgebra can be compactly written in the form of
trilinear relations of odd algebra operators aα and a†

α:

[{aα, a†
β}, aγ ] = −2δβγaα, [{a†

α, aβ}, a†
γ ] = 2δβγa†

α, (1)

[{aα, aβ}, aγ ], [{a†
α, a†

β}, a†
γ ] = 0, (2)

where operators {aα, a†
β}, {aα, aβ} and {a†

α, a†
β} span the even part of the superalge-

bra and Greek indices take values 1, 2, . . . , n (relations obtained from these by use of
Jacobi identity are also implied). If we additionally require that the dagger symbol †
above denotes Hermitian conjugation in the algebra representation Hilbert space (of posi-
tive deˇnite metrics), then we have effectively constrained ourselves to the so-called pos-
itive energy UIRs of osp(1|2n) 1. Namely, in such a space, ©conformal energyª operator
E ≡ (1/2)

∑
α
{aα, a†

α} must be a positive operator. Operators aα reduce the eigenvalue ε

of E, so the Hilbert space must contain a subspace that these operators annihilate. This
subspace is called vacuum subspace: V0 = {|v〉, aα|v〉 = 0}. From the algebra relations
follows: |v〉 ∈ V0 ⇒ {aα, a†

β}|v〉 ∈ V0, with α, β arbitrary. Therefore, vacuum subspace

carries a representation of U(1)× SU(N) group generated by operators {aα, a†
β} (with U(1)

part generated by E). The positive energy UIRs of osp(1|2n) are entirely labelled by UIR
μ of SU(N) (that can be given by a Young diagram) and a positive real number ε0 (energy
of the vacuum subspace) that labels U(1) representation. However, for a given represen-
tation μ only certain values of ε0 are allowed, and this connection is highly important and
nontrivial.

In this paper we are interested in the n = 4 case. SU(4) representation μ will be explicitly
parameterized by three non-negative integers s1, s2, s3 in a way that μ is determined by a
Young diagram with s1 + s2 + s3 boxes in the ˇrst row, s1 + s2 boxes in the second and
s1 boxes in the third row. In addition to these three numbers, we will use real parameter d
given by d = (1/4)(ε0 − s1 + s3) to label osp(1|8) representations.

Classiˇcation of all positive energy UIRs was done by computer analysis of the Verma
module structure, carried out in the following general manner (that we just brie	y describe).

1Omitting a short proof, we note that in such a Hilbert space all superalgebra relations actually follow from one
single relation Å the ˇrst or the second of (1).
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First, Kac determinant of a sufˇciently high level was considered as a function of parame-
ter d (for each given class of SU(4) representation μ). In this way it was possible to locate
the highest value of d for which the determinant vanishes and the Verma module becomes
reducible. The singular or subsingular vector responsible for the singularity of the Kac matrix
was then calculated effectively by solving an (optimized) system of linear equations. Next
we would ˇnd the norm of this vector and look for possible additional discrete reduction
points at (lower) values of d for which the norm also vanishes. If new reduction points
with new (sub)singular vectors were found, it was also necessary to check that, upon re-
moval of the corresponding submodules, no vectors with zero or negative norm remained.
For this, it was enough to check that previously found (sub)singular vectors (i.e., those oc-
curring for higher d values) belonged to the factored-out submodules. Optimized Wolfram
Mathematica code was written to perform all these calculations. We now summarize the
main results.

Parameter d can take the following values, depending on the labels s1, s2, s3:
1. s1 = s2 = s3 = 0: d > 3/2 and singular points d = 0, 1/2, 1, 3/2;
2. s1 = s2 = 0, s3 > 0: d > s3/2+2 and singular points d = s3/2+1, s3/2+3/2, s3/2+2;
3. s1 = 0, s2 > 0: d > (s2 + s3)/2 + 5/2 and singular points d = (s2 + s3)/2 + 2,

(s2 + s3)/2 + 5/2;
4. s1 > 0: d > (s1 + s2 + s3)/2 + 3 and a singular point d = (s1 + s2 + s3)/2 + 3.
Case 1 corresponds to ©unique vacuumª representations, i.e., when the vacuum sub-

space V0 is one-dimensional and carries trivial representation of the SU(4) group. Since
spatial rotations are a subgroup of this SU(4) group, in representations 1 the lowest con-
formal energy state is invariant to rotations. In this sense, representations 1 correspond
to ©fundamentally scalarª particles or, more precisely, multiplets (states of other spin val-
ues also belong to the multiplet of the full supersymmetry). Of particular physical interest
are representations at singular points, and there are exactly three of such scalar represen-
tations. Namely, at singular points additional equations of motion appear directly related
to the corresponding singular or subsingular vectors. In the case of the simplest non-
trivial representation d = 1/2, s1 = s2 = s3 = 0, singular vector yields the massless
condition p2 = 0 (this is the well known and studied UIR-containing tower of massless
particles with increasing helicities). However, relating (sub)singular vectors to physical con-
straints (i.e., equations of motion) is in general complicated, and this problem is effec-
tively solved by the explicit construction of representations that is discussed in the following
section.

Case 2 corresponds to representations where V0 subspace transforms w.r.t. SU(4) subgroup
as a Young diagram with s3 boxes in a single row. The simplest representative of the kind
is a single box representation Å lowest energy state in these representations behaves as
a Lorentz 1/2 spinor. There are again three singular points in case 2, corresponding to
three physically interesting classes of representations, including three ©fundamentallyª spinor
multiplets.

Cases 3 and 4 correspond to more complex classes of representations. However, it turns
out that states from these classes can be naturally seen as composite states built from states
belonging to representations of classes 2 or of classes 1.

Overall, there turns out to be 10 singular points corresponding to 9 different classes of
nontrivial multiplets (d = 0 point corresponds to the trivial representation).
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2. CONSTRUCTION OF REPRESENTATIONS

It turns out that all representations with (half-)integer d values (including all representations
at (sub)singular points) can be obtained by representing the odd superalgebra operators a
and a† as the following sums:

aα =
p∑

a=1

ba
α ea, a†

α =
p∑

a=1

ba†
α ea. (3)

In these expressions, p is integer, ea are elements of a real Clifford algebra:

{ea, eb} = 2δab, a, b = 1, 2, . . . , p, (4)

and operators ba
α together with adjoint ba†

α satisfy ordinary bosonic algebra relations: [ba
α, bb†

β ] =
δβαδab, [ba

α, bb
β] = 0. The (reducible) representation space is spanned by the vectors:

H = l.s. {P(b†)|0〉⊗ ω}, (5)

where P(b†) are monomials in mutually commutative operators ba†
α ; |0〉 is a bosonic vacuum

and w ∈ HCl, where HCl is the representation space of real Clifford algebra (4).
Representation ansatz in the form (3) possesses certain intrinsic symmetries. Operators

Gab ≡
n∑

α=1

i(ba†
α bb

α − bb†
α ba

α) +
i

4
[ea, eb] (6)

commute with entire osp(1|8) superalgebra. Operators Gab themselves satisfy commutation
relations of so(p) algebra (the full symmetry is actually slightly larger, given by the orthogonal
group). We will call this symmetry the gauge symmetry.

The gauge symmetry actually removes all degeneracy in decomposition of (5) to osp(1|8)
UIRs, i.e., the multiplicity of osp(1|8) UIRs is fully taken into account by labeling trans-
formation properties of the vector w.r.t. the gauge symmetry group. Furthermore, there is
one-to-one correspondence between UIRs of osp(1|8) and of the gauge group that appear
in the decomposition, meaning that transformation properties under the gauge group action
automatically ˇx the osp(1|8) representation.

The vector |v0
{d,s1,s2,s3}〉 that is the lowest weight vector of osp(1|8) positive energy UIR

{d, s1, s2, s3} and the highest weight vector of the gauge group UIR (in a standardly deˇned
root system) takes the following explicit form (up to multiplicative constant):

|v0
{d,s1,s2,s3}〉 =

(
B

(1)†
4+

)s3

×

×
(
B

(1)†
4+ B

(2)†
3+ − B

(2)†
4+ B

(1)†
3+

)s2

⎛
⎝

3∑
k1,k2,k3=1

εk1k2k3B
(k1)†
4+ B

(k2)†
3+ B

(k3)†
2+

⎞
⎠

s1

×

×

⎛
⎝

4∑
k1,k2,k3,k4=1

εk1k2k3k4B
(k1)†
4+ B

(k2)†
3+ B

(k3)†
2+ B

(k4)†
1+

⎞
⎠

s0

|0〉⊗ ωh.w., (7)
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with d = s0+
s1 + s2 + s3 + p

2
, where B

(k)
α± =

1√
2
(b2k−1

α ∓ib2k
α ) and (e2k−1+i e2k)ωh.w. = 0,

k = 0, 1, . . . , [p/2]. The form above assumes that p is large enough that all B
(k)
α± can be

deˇned, i.e., p � 8: s0 must be 0 when p < 8, s1 must be 0 when p < 6, s2 must be 0 when
p < 4, and all s0, s1, s2, s3 must be 0 when p = 1 (p = 0 is trivial UIR of osp(1|8)).

In this way all positive energy UIRs of osp(1|8) classiˇed in the previous section with
integer or half-integer values of d can be constructed using ansatz (3) with p � 9. Physically,
corresponding states have natural interpretation as particles composed from p of the simplest
osp(1|8) massless particles (belonging to d = 1/2, s1 = s2 = s3 = 0 UIR).
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