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A HIGHER-SPIN CHERNÄSIMONS THEORY OF ANYONS
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We propose ChernÄSimons models of fractional-spin ˇelds interacting with ordinary tensorial higher-
spin ˇelds and internal color gauge ˇelds. For integer and half-integer values of the fractional spins, the
model reduces to ˇnite sets of ˇelds modulo inˇnite-dimensional ideals. We present the model on-shell
using Fock-space representations of the underlying deformed-oscillator algebra.

PACS: 11.15.-q

Quantum mechanics in 2 + 1 dimensions admits anyons: fractional-spin particles [1] with
correlated generalized statistics properties governed by the braid group [2]. Anyons arise
in a number of systems; for example, as non-relativistic charged vortices [3], relativistic
Hopf-interacting massive particles in matter-coupled ChernÄSimons theories [4,5] and vertex
operators in two-dimensional conformal ˇeld theories [6]. In this letter, we present topological
models of ChernÄSimons type that describe fractional-spin gauge ˇelds coupled to higher-
spin gravities (HSGRA) and internal gauge ˇelds, which we will refer to as fractional-spin
gravities. Diffeomorphism invariance as well as higher-spin symmetries are indeed natural in
theories of anyons, essentially due to the topological character of the local rotations and trans-
lations underlying the generalized spin-statistics relations [2] and the fact that local constructs
built out of fractional-spin ˇelds decompose under the Lorentz algebra into inˇnite towers of
higher-spin Lorentz tensors and tensor-spinors.

Our construction stands on the observation that the ProkushkinÄVasiliev system [7], which
provides the only known fully non-linear description of three-dimensional matter-coupled
HSGRA, admits several inequivalent embeddings of the Lorentz algebra into its higher-
spin algebra [8], besides the standard embedding leading to tensor-spinorial HSGRA. The
ProkushkinÄVasiliev system consists of a connection one-form Â and matter zero-form B̂
living on a base manifold given locally by the direct product of a commutative spacetime M
and non-commutative twistor space Z with a closed and central two-form Ĵ . These master
ˇelds are valued in associative algebras consisting of functions on a ˇber manifold Y ×I, the
product of an additional twistor space Y and an internal manifold I whose coordinates generate
a matrix algebra; for further details, see [8]. The ProkushkinÄVasiliev ˇeld equations, viz.
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d̂Â+Â2+ĴB̂ = 0 and d̂B̂+[Â, B̂] = 0, state that Â = Â|M+Â|Z describes a �at connection
on M and a pair of oscillators on Z × Y deformed by local as well as topological degrees
of freedom contained in B̂. The latter can acquire anti-de Sitter (AdS3) vacuum expectation
values, viz. 〈B̂〉 = ν. Truncating B̂ = ν yields ChernÄSimons-like HSGRAs on M of the
type introduced originally in [9Ä11]. In the simplest set up, the �at master connection one-form

A := Â|M =
1
4i

∑
n�0;s,t=0,1

Aα1···αn
s,t Γs kt q(α1 · · · qαn) ∈ Aq(2; ν) ⊗ C�1 (1)

takes its values in the direct product of the enveloping algebra Aq(2, ν) of the Wigner-
deformed canonical coordinates qα (α = 1, 2) and Kleinian k [11Ä13], viz.

[qα, qβ ] = 2iεαβ(1 + νk), {qα, k} = 0, k2 = 1, (2)

and the Clifford algebra C�1
∼= Z2 generated by a single bosonic element Γ obeying Γ2 = 1.

The gauge algebra contains several inequivalent AdS3 sub-algebras. The standard choice

M
(St)
αβ := q(αqβ), P

(St)
αβ := Γq(αqβ) (3)

yields tensor-spinorial HSGRAs of ChernÄSimons type whose CFT duals [14] consist of
quantum states with Bose or Fermi statistics, just as in 3 + 1 dimensions [15]. On the other
hand, the non-standard choice

M
(non-St)
αβ := Π+ q(αqβ), P

(non-St)
αβ := ΓM

(non-St)
αβ , Π± :=

1
2
(1 ± k) (4)

yields fractional-spin HSGRAs consisting of tensor-spinorial ˇelds in W := Π+ AΠ+ and
Lorentz-singlet color gauge ˇelds in U := Π− AΠ− coupled to the bi-fundamental master
ˇelds ψ := Π+ AΠ− and ψ̄ := Π− AΠ+, which consist of fractional-spin ˇelds in inˇnite-
dimensional discrete-series representations of the Lorentz algebra, that can be either bosonic
or fermionic [8]. Assembling the master ˇelds into

A =
[

W ψ

ψ U

]
, (5)

it follows that dA + A2 = 0 is equivalent to dA + A2 = 0, i.e.,

dW + W W + ψ ψ = 0, dU + U U + ψ ψ = 0, (6)

dψ + W ψ + ψ U = 0, dψ + ψ W + U ψ = 0. (7)

As for off-shell formulations, suitable bilinear forms are needed, such as the supertrace op-
eration on Aq(2, ν) [11] used to ν-deform Blencowe's tensor-spinorial HSGRA theory [9].
To analyze the theory on-shell, it sufˇces, however, to use a representation of Aq(2, ν) in a
standard Fock space F =

⊕
n�0 C ⊗ |n〉 and its dual F∗ =

⊕
n�0 C ⊗ 〈n| [13], viz.

a± =
1
2
(q1 ∓ iq2), a±|F =

∑
n�0

√
[n + 1]ν

∣∣∣∣n +
1
2
(1 ± 1)〉〈n +

1
2
(1 ∓ 1)

∣∣∣∣ , (8)

k|F =
∑
n�0

(−1)n|n〉〈n|, [n]ν := n +
1
2
(1 − (−1)n)ν, 〈n|n′〉 = δn,n′ . (9)
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The master connection (1) is thus represented by

A|F =
1
4i

∑
m,n�0;s=0,1

Am,n
s Γs |m〉〈n|, Am,n

s :=
∑

p�0;t=0,1

A
α1···αp

s,t (Qα1···αp

t)m,n, (10)

where the matrix (Qα1···αp
t)m,n := (−1)t m〈m|q(α1 · · · qαp)|n〉 represents Aq(2, ν) in F .

Alternatively, using the notation of (5), the connection A|F takes the form

[
W ψ

ψ U

]∣∣∣∣
F

=
1
4i

∑
m,n�0,s=0,1

Γs

[
W 2m,2n

s |2m〉〈2n| ψ2m,2n+1
s |2m〉〈2n + 1|

ψ
2m+1,2n

s |2m + 1〉〈2n| U2m+1,2n+1
s |2m + 1〉〈2n + 1|

]
. (11)

The master ˇelds W and U are thus represented faithfully in the even and odd Fock spaces
Π+F and Π−F , respectively. In particular, the Lorentz connection in W acts non-trivially
in Π+F that forms an irrep of the Lorentz algebra for generic ν, and acts trivially in Π−F .
The (ψ, ψ̄) ˇelds exchange Π±F and transform under one-sided higher-spin and internal
gauge transformations. To compute the Lorentz spin of these intertwiners, one may ˇrst use
Dirac matrices obeying {γa, γb} = −2ηab, ηab = diag (−1, +1, +1), to convert the standard
embedding (3) of the Lorentz algebra into

J (St)
a :=

i

8
εαα′

(γa)α′
βM

(St)
αβ =

(
{a+, a−}

4
,
a+2 + a−2

2
,
a+2 − a−2

2i

)
, (12)

which acts non-trivially on Π±F . For the alternative embedding (4) of the Lorentz algebra,
one then has

J
(non-St)
0 |F =

∑
n�0

(
n +

1
4
(1 + ν)

)
|2n〉〈2n|, (13)

J
(non-St)
± |F =

∑
n�0

√
[2n + 2]ν[2n + 1]ν |2n + 1 ± 1〉〈2n + 1 ∓ 1|, (14)

where J
(non-St)
± := J

(non-St)
1 ± iJ (non-St)

2 = 1
2 Π+(a±)2Π+, which indeed acts non-trivially on

Π+F while leaving Π−F invariant. Thus, as for the quadratic Casimir operator, one has

C2 := JaJa ⇒ C2ψ|F = −sψ(sψ − 1)ψ|F , sψ =
1
4
(1 + ν), (15)

that is, ψ has Lorentz spin 1/4(1+ ν), where ν can be any real number. For negative integer
and negative half-integer lowest weights sψ, singular vectors arise in F , viz.

a−|2� + 1〉 = 0 = a+|2�〉, ν = −2� − 1, � = 0, 1, 2, . . . (16)

Thus, for these values of ν, referred to as critical values, the representation of Aq(2, ν) in F
decomposes into a ˇnite-dimensional and an inˇnite-dimensional algebra as follows [11,13]:

Aq(2;−2� − 1)|F ∼= gl(2� + 1) ⊕ Aq(2; 2� + 1)|F . (17)
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Thus, using Feigin's notation gl(λ) [16], it follows that

W |F ∈ gl(−2sψ + 1; τ) ⊗ C�1, U |F ∈ gl(−2sψ; τ) ⊗ C�1, (18)

which are inˇnite-dimensional algebras for generic sψ with critical limits given by semi-direct
sums of a ˇnite-dimensional and an inˇnite-dimensional sub-algebra with ideal structure con-
trolled by τ , which can thus take three distinct values depending on whether one or the other or
both of the sub-algebras are ideal; in the case at hand, τ is chosen in accordance with (17), that
is, such that both sub-algebras are ideals; for further details, see [8]. Thus, the fractional-spin
HSGRA model reduces to a certain conventional tensor-spinorial HSGRA in critical limits.

The representation of f ∈ Aq(2, ν) in F twists the Hermitian conjugation operation
[8], viz. (f †)|F ≡ ((CfC)|F )† where (qα)† := qα, k† := k and (|m〉)† := 〈m| and the
conjugation matrix obeys C2 = 1 and Ck = kC [13]. Taking C† = C, we can impose the
reality condition

(A|F)† = −(CAC)|F , C =
[

Π+ C 0
0 Π−

]
, (19)

for which U is valued in a compact real form of Π−Aq(2, ν)Π− represented unitarily in
Π−F for all ν, while W is valued in a non-compact real form of Π+Aq(2, ν)Π+ represented
unitarily in Π+F iff Π+C = Π+, that is, iff ν � −1. For ν < −1 there are negative eigen-
values in Π+C|F whose number grows linearly with |ν|. Using the notation of analytically
continued real forms [8,16,17], one has

W |F ∈ u(p+, p−; τ) ⊗ C�1, U |F ∈ u(−2sψ; τ) ⊗ C�1, (20)

p+ + p− = −2sψ + 1, p+ − p− = 1 + (−1)−2sψ . (21)

For critical ν = −2� − 1, one has Π+C|F =
�∑

n=0
(−1)n|2n〉〈2n| +

∑
n��+1

|2n〉〈2n| and hence

W |F ∩ gl(2� + 1) ∈ u(p+, p−) ⊗ Z2, U |F ∩ gl(2� + 1) ∈ u(�) ⊗ Z2, (22)

where p± =
1
2
(� + 1 ± 1 + (−1)�

2
), and (ψ, ψ)|F ∩ gl(2� + 1) belong to bi-fundamental

representations with integer or half-integer spins and ˇnite-rank color indices. We note that
if ψ = |σ〉〈c|, where thus σ is a spin and c is a color, then ψ̄ = −|c〉〈σ|C and hence
ψψ̄ = |σ〉〈σ|C while ψ̄ψ = |σ〉〈c|C|c〉〈σ| that can vanish in the non-unitary regime. Thus,
the fractional-spin ˇelds necessarily source the tensor-spinorial ˇelds W (cf. positivity of
energy in ordinary gravity), while the internal gauge ˇeld U can be truncated consistently
leading to

dW + W 2 + ψψ̄ = 0, dψ + Wψ = 0, dψ̄ + ψ̄W = 0, ψ̄ψ = 0, (23)

which deˇnes a quasi-free differential algebra. In summary, the model presented here may
be of interest in the context of holography where (ψ, ψ̄) are expected to correspond to vertex
operators with fractional conformal weights resulting in multi-valued correlation functions
forming anyonic representations of the braid group, possibly along the lines of [6]. The
model also serves as a starting point for incorporating local FS degrees of freedom in three
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and four dimensions; the latter may correspond holographically to massive anyons in three-
dimensional quantum ˇeld theories. As for their quantization, we propose to use generalized
Poisson sigma models [8]. Subjected to suitable boundary conditions, these sigma models
may remain weakly coupled in the critical limits of the ProkushkinÄVasiliev system, which
are otherwise strongly coupled limits of the standard ChernÄSimons formulation.
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