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We review recent results [1Ä3] on string coupling selection rules for heterotic orbifolds, derived
using conformal ˇeld theory. Such rules are the ˇrst step towards understanding the viability of
the recently obtained compactiˇcations with potentially realistic particle spectra. They arise from the
properties of the worldsheet instantons that mediate the couplings, and include stringy effects that would
seem ©miraculousª to an effective ˇeld theory observer.

PACS: 11.15.-q

INTRODUCTION

The last decade has seen the discovery of a rich landscape of explicit string compactiˇ-
cations with potentially realistic particle spectra. We now have to understand the dynamics
of these constructions, starting with their moduli stabilization, decoupling of exotics, phe-
nomenologically relevant couplings, and eventually addressing cosmology. Heterotic orbifold
compactiˇcations provide tractable global theories in which the low energy effective ˇeld the-
ory (LEEFT) can in principle be computed, and dynamical issues can be addressed, explicitly.
However, it is noteworthy that 25 years after the ˇrst string coupling computations [4,5], we
still only have a good understanding of trilinear superpotential couplings between massless
ground states, moreover, in the absence of the discrete Wilson lines that are necessary for
realistic particle spectra.

In this review, we describe recent progress in understanding L-point couplings between
massless ground and excited states. Our focus is on contributions to the holomorphic superpo-
tential, which can be directly inferred from string tree-level correlation functions. Couplings
between twisted states, typically located at different ˇxed points in the orbifold geometry,
are mediated by classical worldsheet instantons stretching between the participating strings.
Properties of the worldsheet instantons lead to several stringy selection rules. One of these
can be interpreted as an R-charge conservation law in the LEEFT. The others seem to evade
a ˇeld theoretical interpretation in terms of symmetries and may be interpreted as ©stringy
miraclesª. We also discuss anomalies in the R-charge conservation law and point out an
important open question regarding its consistency.
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1. INTERACTIONS ON ORBIFOLDS

We focus on T
6/ZN orbifolds, where the generator of the ZN point group can be written

as θ = diag
(
e2πıv1 , e2πıv2 , e2πıv3

)
, using complex coordinates for the torus. When compacti-

fying the heterotic string on an orbifold, new twisted states emerge. For example, the internal
space bosonic coordinates for states in the kth twisted sector close under the twisted boundary
conditions (i = 1, 2, 3):

X i(e2πiz, e−2πiz̄) = (gX)i(z, z̄) = (θkX)i(z, z̄) + λi, (1)

with g = (θk, λ) ∈ S and λi ∈ Λ, for S the space group ZN � Λ and Λ the torus lattice.
Strings closed by g and conjugate elements

{
hgh−1|h ∈ S

}
are physically equivalent. For

orbifolds with non-prime ordered point groups, this implies that physical states may be linear
combinations of states localized at different ˇxed points on the torus:

|ψ〉 = |f〉 + e−2πıγ |θf〉 + · · · + e−2πı(l−1)γ |θl−1f〉, (2)

with l the smallest integer such that θlf = f + λ and γ the γ-phase, ˇxed by the condition
that the full heterotic string state be twist invariant.

The vertex operators describing the emission of a twisted ˇeld are given, in the limit of
vanishing 4D momentum, by

Va = eaφ
3∏

i=1

(∂X i)N
i
L(∂X̄ i)N̄

i
L eıqa m

sh Hm

eıpI
shXI

σi
(k,f), (3)

where a = −1,−1/2 for spacetime bosonic and fermionic ˇelds, respectively. Here XI

are the left-moving gauge degrees of freedom (carrying shifted gauge momentum psh), Hm

represent the right-moving fermions after bosonization (carrying shifted H-momentum qa
sh)

and there are a number N i
L, N̄ i

L of left-moving bosonic oscillator excitations. The twist
ˇelds, σi

(k,f), implement the non-trivial boundary conditions of twisted states, and may be
decomposed into a number of auxiliary twist ˇelds in analogy to (2):

σ(k,ψ) =
l−1∑
r=0

e−2πırγσ(k,θrf). (4)

The scalar φ is the superconformal ghost ˇeld, and physically equivalent vertex operators
carrying different ghost-charge can be obtained from the picture-changing operator, e.g.,

V0 =
3∑

j=1

(
eiqjm

0 Hm

∂̄Xj + e−iqjm
0 Hm

∂̄X̄j
)

eφ V−1, (5)

which introduces additional H-momentum qi
0 = δi

j , and right-moving bosonic oscillators.
We now have all the ingredients to compute the string correlation functions corresponding

to terms in the holomorphic superpotential
〈
V−1/2V−1/2V−1V

L−3
0

〉
. Since the CFT is free, the

correlation function factorizes according to the various components of the heterotic string. The
parts corresponding to Hm, XI and ghosts are easily computed and lead to the conservation
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of gauge momentum (gauge invariance), H-momentum (this ˇxes the right-moving oscillator
numbers according to N i

R = 0,
∑
α

qi
sh α − N̄ i

R = 1), as well as ghost-charge. The twist ˇeld

contributions are more complicated, and lead ˇrst to the so-called space group selection rule

on the boundary conditions or space group conjugacy classes,
L∏

α=1
[gα] = (�, 0). Imposing

these results, the non-trivial part of the correlation function simpliˇes to

F =
3∏

i=1

〈
(∂X i)N

i
L (∂X̄ i)N̄

i
L (∂̄X̄ i)N̄

i
Rσi

(k1,ψ1)
· · ·σi

(kL,ψL)

〉
, (6)

where from now on N i
L, N̄ i

L, N̄ i
R refer to the total number of oscillators. By using (4), F

can be decomposed into a sum of auxiliary correlation functions, weighted by the γ-phases.

2. WORLDSHEET INSTANTON SELECTION RULES

To make further progress, we split the bosonic coordinates into their classical instanton
solutions to the equation of motion, ∂∂̄X i

cl = 0, and their quantum 	uctuations: X i(z, z̄) =
X i

cl(z, z̄)+X i
qu(z, z̄) and in the path integral we sum over all instantons. For 3-point couplings

(α = 1, 2, 3; see [1] for L-point couplings), they are given by

∂X i
cl(z) =

3∏
α=1

ai(z − zα)k
i
α−1, ∂X̄ i

cl(z) =
3∏

α=1

b̄i(z − zα)−ki
α , (7)

where the functional form was determined by the local monodromy conditions, whereas
the constant coefˇcients, ai, bi, are determined by the global monodromy conditions to be
proportional to torus coset lattice vectors, νi = (f2 − f1 + (1− θk1+k2)(1− θgcd(k1,k2))−1λ).
Also, we have deˇned ki

α = kαvi mod 1, such that 0 < ki
α � 1 (0 � ki

α < 1) in the ˇrst
(second) equation of (7).

Depending on the twisted sectors involved, it may be that the only way to satisfy the
local monodromy conditions with a convergent classical action is with a vanishing solu-
tion. Meanwhile, if the ˇxed points involved in two instanton solutions are related by the
orbifold twist, then so will be the coefˇcients ai, bi. Consequently, symmetries in the orb-
ifold geometry are observed in the set of classical solutions. We must also consider the
quantum part of the correlation function. There, the basic OPEs of the theory imply that
〈(∂X i

qu)s(∂X̄ i
qu)t(∂̄X̄ i

qu)uσ · · ·σ〉 = 0 unless s = t + u. Note also that, as far as quantum
properties go, the auxiliary twist ˇelds σ(k,θrf) with various θrf are indistinguishable. By
plugging these results into the correlation function and performing some elementary manip-
ulations, we ˇnd that the correlation functions vanish unless certain conditions are satisˇed.
For factorizable orbifolds we have (see [2] for non-factorizable orbifolds):

Forbidden instanton selection rule (rule 5): Applies when twisted sectors are such that
there are no non-trivial worldsheet instantons [1]. Non-trivial holomorphic (anti-holomorphic)
instantons exist if and only if 1 +

∑
α

(−1 + ki
α) < 0 (1 +

∑
α

(−ki
α) < 0). If no instantons are

allowed, then we require N i
L = N̄ i

L + N̄ i
R. If only holomorphic instantons are allowed, then

N i
L � N̄ i

L. If instead only anti-holomorphic instantons are allowed, then N i
L � N̄ i

L + N̄ i
R.
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R-charge conservation: Due to symmetries relating ˇxed points, generated by θj for
planes j with prime ordered twists, and

∏
i�=j

θi for non-prime planes i �= j [2]. These imply

respectively N j
L−N̄ j

L−N̄ j
R = 0 mod Nj and

∑
i�=j

Nvi(N i
L−N̄ i

L−N̄ i
R)−N

∑
α

γα = 0 mod N.

Coset vector selection rule (rule 6): For couplings with K < N, for K the lowest common
multiple of the twisted sectors (or their conjugates), instantons enjoy a further symmetry
generated by θK

i , leading to N i
L − N̄ i

L − N̄ i
R = 0 mod Ni/K [3].

Torus lattice selection rule (rule 4): When all twisted sectors are at the same ˇxed point
in plane i for every auxiliary coupling, the symmetry is enhanced from the point group to
that of the full torus lattice (order Mi), and we have N i

L − N̄ i
L − N̄ i

R = 0 mod Mi [1, 6].
Notice that, because rules 4 and 6 depend on the relative properties of the states that

are coupling, they cannot be interpreted in terms of symmetries in the LEEFT. Rule 5 also
appears to evade ˇeld theoretic interpretation; due to the dependence on the right-moving
oscillators, it is difˇcult to assign meaningful, picture-independent charges to the states that
are coupling. Therefore, among the worldsheet instanton selection rules, only the R-charge
conservation law admits an interpretation as a symmetry within the LEEFT.

3. MORE ON R-CHARGE CONSERVATION LAWS

Above, we described the derivation of an R-charge conservation law by explicit compu-
tation of vanishing correlation functions. One can also derive R-charge conservation laws by
studying directly how the twisted states transform under the remnants of the 10D Lorentz
symmetries surviving the orbifold compactiˇcation [3, 7]. In this way, we can also study
models that include discrete Wilson lines, for whom explicit correlation functions are not
yet understood. Moreover, one should obtain the conservation law directly for the physical
couplings, not necessarily superpotential ones. E.g., consider rotations � of the torus lattice,
which leave the ˇxed-points on the orbifold invariant (θj and

∏
i�=j

θi above; see [3] for more

general orbifold isometries leading to new R-symmetries). By deˇnition, given a g ∈ S, �(g)
is conjugate to g, and hence there exists a space group element hg, easily found, such that

�(g) = hggh−1
g . (8)

Using (8) it is straightforward to derive the corresponding R-charges. The result is N j
L −

N̄ j
L−N̄ j

R = 0 mod Nj for prime planes, and
∑
i�=j

Nvi(N i
L−N̄ i

L−N̄ i
R)+N

∑
α

γα = 0 mod N

for non-prime planes [3]. Surprisingly, although the origin of both our R-symmetries lies in
the orbifold geometry, their R-charges are different.

We can compute the anomalies for both R-symmetries. Discrete symmetries are global,
but if they arise as remnants of some spontaneously broken gauge symmetry like Lorentz
invariance, they should be anomaly-free. In heterotic orbifolds, anomalies are generally ex-
pected to be universal if they are to be cancelled via the GreenÄSchwarz mechanism (an
exception is discrete target space modular invariance whose anomalies are partially can-
celled by threshold corrections). Beautifully, the R-symmetries derived by directly computing
R-charges [3] turn out to have universal anomaly coefˇcients. In contrast, the R-symmetries
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derived by computing explicitly vanishing correlation functions [2] have non-universal anom-
alies, suggesting that they might be stringy zeroes that are not observed in the ˇnal physical
couplings of the full quantum LEEFT. It remains an essential task to verify the universally
anomalous R-symmetry by explicit computation of string couplings, and also to identify the
physics behind the discrepancy in the two R-charge conservation laws. Another important
issue is that in order to identify allowed couplings in the ˇnal LEEFT, including, e.g., effec-
tive holomorphic couplings after moduli stabilization, we must also understand the allowed
couplings in the Kéahler potential.

It is our pleasure to acknowledge and thank our co-authors Nana Cabo-Bizet, Tatsuo
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