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INTRODUCTION

The integrability of the two-dimensional WZNW is based on the existence of an infinite
number of the local and nonlocal currents and on their charges. The n-dimensional WZNW
model is described by means of the chiral left J§ = g=194g or the chiral right J§¥ = 949 g~*
currents for arbitrary space-time dimension (A = 1,...,n), where g is element of the group
symmetry of the model. The currents J4 = J4t, and t, are the generators of the Lie
algebra. These chiral currents were related to the left and right multiplication on the group
space. The two-dimensional models (A = 0, 1) have the following additional chiral currents:

_ JO,u + 5;1,1#]{/ _ JO,u - 5;1,1#]{/
V2 V2

related to the dynamics on the (¢,z) plane. The chiral currents U,, V,, play an important
role for the construction and investigation of this type of integrable systems. We cannot
separate the movement on the left-moving mode and on the right-moving mode for the
o-model under consideration in order to formulate the movement on only one mode. It
was done by the introduction of the Witten term to the Wess—Zumino model. This term
introduces a potential for the torsion tensor on the curved space of the group parameters in
addition to the metric tensor. It is possible to extract the movement on one mode with the
fulfilling of some conditions between the constant torsion tensor and the structure constant
of Lie algebra. In this work, Lagrangian and equations of motion in the repere formalism
are considered, being the antisymmetric field B,; obtained in terms of the repere. Also,

J,f(t,x) =U,(z+1), Jf(t,m) =V, (z—1t)
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the Hamiltonian formalism and the commutations relations are rewritten in new variables.
These variables are precisely the chiral currents under the condition that the external torsion
coincides (anticoincides) with the structure constants of the SU(2), SO(3), SP(2) algebras.
In this manner, the equation of motion for the density of the first Casimir operator is obtained
as the inviscid Burgers equation, being its solution expressed as the Lambert function. The
integrable infinite dimensional hydrodynamic chains are constructed for WZNW model with
the constant SU(2), SO(3), SP(2) torsions and for this model with the SU(c0), SO(c0),
SP(o0) constant torsions. Finally, the new equations of motion of hydrodynamic type are
explicitly obtained for the initial chiral currents in terms of the symmetric structure constant
of the SU(o0), SO(c0), SP(c0) algebras.

LAGRANGIAN AND EQUATION OF MOTION

The conformal invariant two-dimensional nonlinear sigma model is described by WZNW
model which is the sigma model [1-4] with Wess—Zumino term [5-8] on the group manifold.
To each point of a 2-dimensional world-sheet one associates an element g of a group G. We
want to construct an action with the Lagrangian density which is the element of volume of
the two-dimensional space invariant under the group transformations:

S:

1 / Tr (w A dz®)(w A dz?)nags

4 EApd:L')‘/\de +%/Tr(w(d)/\w(d)/\w(d)), (D

Here x® = (t, z) are coordinates of the flat two-dimensional space: « = (0, 1) with signature
(—1,1) and n,p is the diagonal metric of this space. The form w(d) = w(d)"t, is the
differential Cartan one-form which belongs to a simple Lie algebra

[tuv ty] = Qicﬁ\yt)\a Tr (tutu) =29 (n,v=1,2,...,n). (2)

In any parametrization, Cartan forms w(d) = (g~ 'dg)*t,, depend on the group parameters
@*: w(d) = w(¢,d¢). The first term of the Lagrangian (1) has the form

Tr (w A do®)(w A do?)naps _ 09" 3;& af g2

expdz? A dzxP gan(9) 9z 928! L (&)

Here we introduce the notation
9ab(®) = gwhwy, da? Ndx® = d?x. 4)
One can see that g, (¢) is metric tensor on the curved space of local fields ¢* (a = 1,2,...,n).

The w# () forms a repere basis on the tangent space with the metric g, in arbitrary point
of the curved space ¢®. Here we want to rewrite a WZNW model as sigma model of string
type, equipped with an antisymmetric field Bgp(¢), in terms of the repere for the arbitrary
metric gqp(¢) and for any dimension n:

(5)

v v a b
Tr (w(d) A w(d) Aw(d) = g (m UL asza) 00 09° e s

¢ 0xC b 92C ) xA 9B
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The integrability condition 0ag = gQ/4t,, was used:
DAYy — OpQy + 210" Q4% Q) = 0.

Here 2 (A = 0,1,2) are coordinates of the three-dimensional space-time, Q2*(d) is a one-
form on this space. Let us separate the last component of index A (A = «,2;a = 0,1) in
Eq.(5). Then the second term of the action has the following form:

M

N . NGl N 092 Oo°
/gWe P2(Qr oY — aQQng)axa Wd% = /d%/e MBabgﬁwdxz. (6)

0

Here Bapo = G (U020 — 02010 ) = —Byge. We will integrate on the coordinate z? in
the limits (0, M) with the following boundary conditions:

(2%, 2%) | =M = ¢°(2”), Basa(,a?) [ = Bup(a%).

The integral in 2 on the lower limit of integration equals zero, which is easily seen by using
the expansion of the integrand into the Taylor series. Consequently, the total action is
0gp® O’

Oz dxP”

S =5 [ @olaan(@n® + Bu(é)e) ™

Here ga1(¢) = gra(¢) is the metric tensor of the group space G and ¢®(x) are the group
parameters, a,b = 1,2,...,n. The background field B,;(¢) on the group space G is the
antisymmetric tensor field Bup(¢(x)) = —Bpa(p(x)). The coordinates x* = (¢, z), = 0,1
belong to the 2-dimensional word-sheet with the constant metric tensor 7,5 and the signature
(=1,1). Let us introduce a repere ej,(¢) = wy, on the compact group space G and its inverse
e!(¢) = w# such that the metric tensor can be explicitly written as

9ab(9) = e (8)ey (9)8ur, S = € (D)€}, () gab(®)- ®)

Here 0,, (u,v = 1,2,...,n) is a constant tensor on the tangent space of the compact
group space G at some point ¢®(x) with the same signature as g,»(¢). To introduce the
Hamiltonian, we rewrite the Lagrangian density and the equation of motion in terms the
world-sheet coordinates (¢, x):

©)

1 {&b“ a¢*  9g° og" 9 A"
2

L=3920) | 57 a5 ~ aa 8x]+ a(9) 5 Bz

Then the equation of motion takes the form

82(1 82(1 8bac 8bac 8bac
9u(9) [atgt - axgx} + Tasel(©) [ai; - a‘ﬂ +2Hae(6) 0 5 =0, (10)

1 [0y, 0Gac  Obe OBapy 0Bco OB
(gb g gb), H,p = b+ i b

2\ 9¢c " 9gb  9¢° ~ 9¢c  O¢b T g

(1)

Fabc =
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where T'p.(¢) are the Christoffel symbols. It is a symmetric function in b, c. The canonical
momentum is as follows:

_ oL B FoloM FoloM
pa(9(t,)) = W = gab(@ﬁ + Bab(¢)%' (12)
)
ot
By definition, the Hamiltonian is
_ 1w 9¢° ¢’ 1 d¢* D¢
H(G.0) = 300) [pa — Bucld) G | 1= Bual0) 5| + 0m(0) G . 13
Now let us introduce new dynamical variables as follows:
u a¢b a¢a
Jou(9) = €,(¢) [ o= Bab(qb)%] . Jiu(9) = el () o (14)
We see that the Hamiltonian (13) is factorized in these variables:
1
H = 2 5 Jou(6)Jow (9) + B T (0) T (6)]. (s)
The equations of motion in terms of these variables are of first order:
D0 J1(9) = D1 (9) = CLLTE (8)T7(9), 16

o Jy (¢) — O Ji (¢) = —H [\ () J5 (9)J7 ().

Here C*** is the structure constant tensor which can be obtained from the Maurer—Cartan
equation:

et = 259 515 6) — extorch o) = [25D 08D i)ty am

and the canonical Poisson bracket (PB) is

{6"(2),po(y)} = 056(x — y). (18)

Now we consider the commutation relations for the functions Jo,(¢(x)), Jiu(P(z)) =
S J7 (¢(x)) on the phase space under the PB (18):

{Jou(9(2)), Jou(p(y))} = CQVJOA(gﬁ(x))é(x —y)+ Hﬁ\u(¢($))=]1)\(¢($))5(x —y),
[ou(0(@)), T(6()} = ChIa@E)ow ) + bl —y), (19)
{J1u(o(x)), Ji(o(y))} = 0.

Let us introduce the chiral variables

= Jou oy o = O Y (20)

U :
8 V2 . V2
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The commutation relations for the chiral currents U (¢), V#(¢) are not Poisson brackets

because the torsion H QV (¢) is not a smooth function. These commutation relations form an
algebra, if H),(¢) is a constant tensor. The interesting cases arise if Hj, = £C3,. In the

case H ,;\l, = —C,;\l, the variables U, (¢) form the closed Kac—Moody algebra [9, 10] for the
right chiral currents:

{U.(6(2)), Un(é(y)}2 = Cp, Ux(6(2))3(z — y) + 6,820 (z — y). 2D

Here we have noted the PB (21) as PB,. The last relations are not essential. In the case
of H QV = Cﬁ‘u, the variables V,,(¢) form the closed Kac-Moody algebra for the left chiral
currents:

{Vu(@(2)), Vo (6(y))} = Cp,Va(@(x)) = 0056 (x — y). (22)

Notice that the Kac—Moody algebra [9, 10] has been considered as a hidden symmetry of the
two-dimensional chiral models [11]. In 1983 one of the authors (VDG) with Volkov and
Tkach [12] considered the algebra of the nonlocal charges in o-model in the framework of
the integrability of this model. We have shown in this previous reference that the nonlocal
charges form the enveloped algebra over the Kac—-Moody algebra. If C ,i‘l, =H /i\v the equation
of motion is

O Vu(o(t, ) =0, 0_Uu(¢(t, ) = CV,(9)Ux(9). (23)

We see from Eqgs. (21) and (23) that the chiral currents U, form the closed system in the first
case and, from Egs.(22) and (23), that the chiral currents V), also form the closed system
in the second case. Precisely, the chiral currents are the generators of group transformations
with the structure constants C{" in the tangent space.

INTEGRABLE WZNW MODEL WITH CONSTANT TORSION

The components of the torsion Cyp. are the structure constants of the Lie algebra. In
the bi-Hamiltonian approach to the integrable string models with the constant torsion, we
have considered the conserved primitive chiral invariant currents (densities of the dynamical
Casimir operators) C,,(U(x)), as the local fields of a Riemann manifold [13,14]. The
primitive and nonprimitive local charges of the invariant chiral currents form the hierarchy
of the new Hamiltonians. The primitive invariant currents are the densities of the Casimir
operators; in contrast, the nonprimitive currents are functions of the primitive ones. The
commutation relations (21) show that the currents U* form the closed algebra. Therefore, we
will consider PBs of the right chiral currents U* and the Hamiltonians constructed only from
the right currents. The constant torsion does not contributes to the equations of motion, but
it gives the possibility to introduce the group structure and the symmetric structure constants.
This paper was stimulated by the papers [16, 17] concerning the local conserved charges in
two-dimensional models. In [16] the local invariant chiral currents, as polynomials of the
initial chiral currents of he SU(n), SO(n), SP(n), were constructed for principal chiral
models. Their paper [16] was based on [17] involving the invariant tensors for the simple
Lie algebras. Let us take ¢, the generators of the SU(n), SO(n), SP(n) Lie algebras (2).
There are additional relations for the generators of the Lie algebra in the defining matrix
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representation. There is the following relation for the symmetric double product of the
generators of SU(n) algebra:

4
{tu,t,} = Eéw +2daty, p=1,...,n* =1, (24)

where d,,,» is a totally symmetric structure constant tensor. The Killing tensor g,, equals
0, for the compact Lie algebras. Similar relation for the totally symmetric triple product of
the SO(n) and SP(n) algebras has the form

Lptulyy = 0P

2N f’l’7 (25)

where v,,,,5, is a totally symmetric structure constant tensor. The invariant chiral currents
are the Liouville coordinates and they can be constructed as the product of the invariant
symmetric tensors:

k}l k}z kn—l} _
d(uluszSkl M 1pn)? d“”” - 6“1”2'

du

1~~~l1«n

For the SU(n) group and the initial chiral currents U*(¢(z)), we have
Cr(U(0(2))) = dipus..op)Upia Uz =+ - Upiys C2(U(0())) = 0, UMU”. (26)

Analogously, a similar construction can be used for SO(n), SP(n) groups. The invariant
chiral currents can be constructed as product of the invariant symmetric constant tensors:

vive . ,,V2n-3 _
Y(ur..pzn) = umzmvuwo lon—aion—1pian)’  UH1K2 = Oz

and the corresponding initial chiral currents U*
Con(U(B(2))) = ey, U U0, Co(U(8(2)) = By UM U™, (27)
The invariant chiral currents for SU(2), SO(3), SP(2) have the form
Can = (C2)". (28)

Another family of the invariant symmetric currents J,, based on the invariant symmetric
chiral currents of simple Lie groups are realized as the symmetric trace of the n product
chiral currents U(z) =t,U*, p=1,...,n* — 1:

In(U(¢(2))) = Sym Tr (U - - - U). (29)

These invariant currents are the polynomials of the product of the basic chiral currents
Cr, k=12,3,...,k [13,14]. Let us introduce the PB of hydrodynamic type for the chiral
currents in the Liouville form [18]:

(Cn(0)(2), Cal00)} = ~Winn(60)) 510y = ) + Wan(8(0) 50 =) GO

The asymmetric Hamiltonian function W, (U(#(x))) for the finite dimensional SU(n),
SO(n), SP(n) group has the following form:

-1
Wmn(C(U(x))) = mj_ n—9 Zakcm-i-n 2 k Z ap = 3D
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This PB can be rewritten as the PB of the hydrodynamic type by using the following equalities:

B(y)A(x)a%é(x —y) = B(y)A(y)(%é(x —y) - B(y)(‘)—yé(x — ),
s~ y) + Ale) 00— 4) = AW) 3-8l — 1)y 500~ ) = -0y — o).

Above, the invariant total symmetric currents C,, j, k = 1,2... are new currents, polynomials
of the product of the basic invariant currents C,,Cy, - --Cy,, n1 + ...+ ny, = n. They can
be obtained by means of the explicit computation of the total symmetric invariant currents
Jp, using the different replacements of the double product (24) for the SU(n) group and of
the triple product (25) for the SO(n), SP(n) groups into the expressions for the invariant
currents J, [13]. Here are only [ = n — 1 primitive invariant tensors for SU(n) algebra,
I = (n—1/2) for SO(n) algebra and | = (n/2) for SP(n) algebra. Higher invariant currents
C, for n > [+ 1 are nonprimitive currents and they are polynomials of primitive currents. By
using formula (30) we can obtain the expression for these polynomials within the condition
Ji, = 0 for k > [ for the generating function:

o \k
det (1 — At ,U*) =exp Tr (In (1 — AU)) = exp (— Z %Jk).
k=2

The corresponding charges for nonprimitive chiral currents C,, are not Casimir operators.
Consequently, the WZNW model is not an integrable system for the group symmetry of the
finite rank [ > 1.

INTEGRABLE WZNW MODELS
WITH SU (2), SO(3), SP(2) CONSTANT TORSIONS

There is one primitive invariant tensor for the algebras of SU(2), SO(3), SP(2). As
we have pointed out, the invariant nonprimitive tensors for n > 2 are functions of the
primitive tensors. Let us introduce the local chiral currents based on the invariant symmetric
polynomials on the SU(2), SO(3), SP(2) Lie groups:

Co(U) =6,,UrUY, Co,(U) = (6,,UHTU")",

where n = 1,2,... and pu,v = 1,2,3. The PB of Liouville coordinate Co(U(x)) has the
following form:

{C2(U(2)), Co(U(y))} = =2C2(U())9y0(y — x) + 2C2(U(2))0z6(x — y).

We will consider the invariant chiral C2(U(z)) as a local field on the Riemann space of the
chiral currents. As the Hamiltonians we choose the following functions:

27
1 n
Ho(ny1) = Mt D) /CQH(U(Z/))dy, n=0,1,...,00. (32)
0
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The equation of motion for the density of the first Casimir operator is as follows:

8C2 dCQ
—(2 1 n_—< _— 33
8t2(n+1) ( n -+ )(CQ) dz Oa ( )
and the equation for the currents C3 = Ca,, is
oCcy ndC3
anL +(Cy) d; =0, To=—(2n+Dtynyin). (34)

The above equation is precisely inviscid Burgers equation. We will find the solution
in the form

CH(1n,x) =exp (a +i(x — T, CF (T, x))). 35)

To obtain the solution of Eq. (34), it is convenient to rewrite this equation of motion as
Y, = Zn e, Y, =im, 9T 7 = ir,CF. (36)

Then the inverse transformation Z,, = Z,,(Y,,) is defined by means of the periodical Lambert
function [14]:
1 .
CH (7n, x) = — W (iT, e* ). (37)

1T

Consequently, the solution for the first Casimir operator is

. 1/n
’ ; a+ix
W (=i(2n + Dtgiqr) ) . (38)

200 = | G Dy

With these results, the equation of motion for the initial chiral current U* defined by
the PB (21) and the Hamiltonian (32) is

ouU, )

= o [U.(UU)"] = nU,C5 ™"

_OUu 9
8t2(n+1) ox

0
Co+CY—U =1,2,3. 39
O 2+ 2 O Iz 14 ) 4y ( )
It is easy to test that equation of motion (33) is in full agreement with Eq.(39) simply by
multiplication with the chiral current U, on the both sides of Eq. (39). It is possible to rewrite
this equation as a linear equation by using the solution (37) which diagonalizes Eq. (39):

ou,  ou, 0
Toomr, 0w T Unggln

or as the linear nonhomogeneous equation

133 u
L :fn(tnax)ai“‘gfn(tmﬂﬁ), zH =InU*,
8t2(n+1) ox ox (40)
W "
fn=0Cy 0z L U (not sum).

2 Px UK O
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INFINITE DIMENSIONAL HYDRODYNAMIC CHAINS

The first example of the infinite dimensional hydrodynamic chains is based on the invariant
chiral currents Co,, = (C2)", n=1,2,...,00 of the WZNW model with the SU(2), SO(3),
SP(2) constant torsions. The PB of the different degrees of the invariant chiral currents
C¥(x), C3*(x) has the form

2 2m —1 _ 06(x —
{an(x)’cg(y)}: %Cgurm 1(1’) (gx y)_
2nm(2n—1) n+m—1 85(:(}—3?)
T armo1 G W @D

The equation of motion for invariant current C3* with Hamiltonian

1
Hy, = on /CQn(y) dy
0

has the form

oCcy  m(2n —1) 9Cy !

Otay m4n-—1 ox
After the redefinition C = C5,, = C,, we can obtain the standard form of the hydrodynamic
chain:

-1 06(x — -1 0y —x
(Col), o)} = =2 0y o) PG P o) P2 )
The second example of the infinite dimensional chain is based on the invariant chiral currents
of the WZNW model with the SU(c0), SO(c0), SP(c0) constant torsions. If dimension
of matrix representation n is not ended (n — o00), all the chiral currents are the primitive
currents. This is easy to see from the expression for the new chiral currents Cy, j (see,
e.g., [13,14]). The PB in Liouville coordinates C,,(z), m = 2,3, ..., 0o takes the form

(G (@), Ca (W)} = ~ W (W) L6(y — 2) + Wi (Cla)) L —y),  (43)

oy or
mn(n —1)
Win(C(z)) = mcm+n—2($)- (44)

This PB obeys the skew-symmetric condition: {Cy,(x),Cy(y)} = —{Cn(y), Crn(z)}. How-
ever, the Jacobi identity imposes conditions on the Hamiltonian function W, (C(z)) [18]:

Wi Wy AWy Wi AW, W,y

(Wkp + ka’)a—cvk - (Wk’m, + Wm,k) ack 5 dx aCk - Az ack .

The Jacobi identity is satisfied by the metric tensor Wi, (C(z)) (44). The algebra of charges

(45)

2
[ Cy(z)dz is the Abelian algebra. Now let us choose the Casimir operators C,, as the
0

Hamiltonians:

Hn:l/Cn(x)dm, n=223.... (46)
n
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Then the equations of motion for the densities of Casimir operators are the following:

80,,1(1,‘) _ m(n— 1) 8C(m-i-n—Q

Otn, m4+n—2 ox

(47)

Thus, the invariant chiral currents with the SU(2), SO(3), SP(2) constant torsion and the
invariant chiral currents with the SU(00), SO(c0), SP(c0) constant torsion form the same
infinite hydrodynamic chain (42), (43), (44). This PB (43) is particular case of the M -bracket
given by Dorfman [19] and Kupershmidt [20] for M = 2 and describes the hydrodynamic
chains. We can construct new nonlinear equations of motion for the initial chiral currents U#*
using the flat PBy (21) and the Hamiltonians H,, (46), where C,,(x) is defined by Eq. (26)
for the SU(o0) group:

27
U, (x 1
) 1 [ ntvu@). .U,
n J (48)
8UL X 8 5 - 121 Vn—1
E;t( ) - %[dl]ﬂl&dzU/g e dl]i::fNU (l‘) Ut (J?)]

As an example, we consider n = 3:

ou, 0 .
815; = %(dwU U, p=12,...,00. (49)

It is easy to see that this dynamical system is a bi-Hamiltonian one:

27 27
oU, 1 1
28 2 [ayU). 0 = § [ (U@, Uk 60
0 0
Above, the PBs has the form
{UH(J?), Ul/(y)}3 = Zd;w)\U)\- (51)

Let us remind that d,,, are the symmetric structure constants of the SU(oc) algebra in a
matrix representation. This PB satisfies Jacobi identity for (n — 00):

1
do’uuda)\p + da,u/\dm/p + do’p,pdau/\ = E(‘S,uu(s)\p + 5/1,)\51/,0 + 51/,051/)\)~

Analogously, we can obtain the equation of motion for the chiral currents of SO(co) and
SP(00):
8UH(£) _ g[vkl
ot,  Ox

To see how it works, for example, let us consider n = 4:

. phan-s U ... UVQn—l]. (52)

vivaVs Van—2V2n—1H

ouU )
W: = %(U,WAPUVU)‘UP), pw=1,2,... . (53)
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Also we can obtain a solution for the metric function W,,,(C(x)) which is analog of the

Dubrovin-Novikov metric tensor W,,,, =

PF
aUrOUY”

Cm(U(x)) = mF((U(l‘)), F(J?,tn) —9 (tn * %) 7

and g (tn + m) is an arbitrary function of its argument.
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