
�¨¸Ó³  ¢ �—�Ÿ. 2014. ’. 11, º7(191). ‘. 1583Ä1590

”ˆ‡ˆŠ� �‹…Œ…�’���›• —�‘’ˆ– ˆ �’�Œ��ƒ� Ÿ„��. ’…��ˆŸ

FUZZY TOPOLOGY
AND GEOMETRIC QUANTUM FORMALISM

S. N. Mayburov1

Lebedev Institute of Physics, Moscow

DodsonÄZeeman fuzzy topology is considered as the possible mathematical framework of geometric
quantization. In such a formalism the states of massive particle m correspond to elements of fuzzy
manifold called fuzzy points. Due to their weak (partial) ordering, m space coordinate x acquires
principal uncertainty σx. It is shown that m evolution with minimal number of additional assumptions
obeys Schréodinger or Dirac formalisms in norelativistic and relativistic cases correspondingly. It is
argued that particle's interactions on such a fuzzy manifold should be gauge-invariant.
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INTRODUCTION

Importance of geometric methods in Quantum Physics is duly acknowledged now. The
popular example of it is Connes noncommutative geometry which attempts to describe the
fundamental interactions at Planck distances [1]. It is also worth mentioning the extensive
studies of noncommutative fuzzy spaces with ˇnite (sphere, tori) and inˇnite discrete struc-
ture [2, 3]. The general feature of such theories is that the space coordinates turn out to
be principally fuzzy, the reason of that is the noncommutativity of coordinate observables
x1,2,3. Meanwhile, it was shown that similar fuzzy properties can be obtained for the spaces
equipped with dedicated fuzzy topology (FT) [4,5]. In our previous papers it was shown that
in its framework the quantization procedure by itself can be deˇned as the transition from the
classical phase space to fuzzy one. Therefore, the quantum properties of particles and ˇelds
can be deduced directly from the geometry of phase space induced by underlying FT and do
not need to be postulated separately of it [6,7]. I was also shown that FT equipped geometry
induces the geometrodynamics which is equivalent to quantum mechanics (QM) [6, 7]. Ear-
lier some phenomenological assumptions were used by the author; here the new and simple
formalism which permits him to drop them is described. As an example, the quantization
of massive particles will be considered. It will also be argued that the interactions on such
a fuzzy manifold possess the local gauge invariance and under simple assumptions would
correspond to YangÄMills theory [7].

Here we shall describe brie	y only the most important steps in construction of mechanics
on fuzzy manifold called fuzzy mechanics (FM); the details can be found in [6,7]. To illustrate
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FT formalism, let us describe it ˇrst for the simple discrete structure and consider some set A
of n elements {ai}. If it is the ordered set, then the ordering relation between all element pairs
ak � al (or vice versa) is fulˇlled. As an example, we choose A for which ∀i, ai � ai+1.
But if A is the partial-ordered set (Poset), then some of its element pairs can enjoy the
incomparability (equivalence) relations (IR) between them: aj ∼ ak. If this is the case, then
both aj � ak and ak � aj propositions are false. To illustrate its meaning, suppose that the
element an+1 is added to A, for which an+1 ∼ aj, ∀j; i � j � l and ai−1 � an+1 � al+1.
In this case an+1 is ©smearedª over {ai, al} subset (interval), which is rough analogue of
an+1 coordinate uncertainty relative to A ©coordinate axisª.

It is possible to detalize such a smearing by introducing the fuzzy relations, for that
purpose one can put in correspondence to each an+1, aj pair the weight wj � 0 with the
norm

∑
j

wj = 1. In this case A is fuzzy ordered set (Foset), an+1 called the fuzzy point

(FP) [4, 5]. The continuous 1-dimensional Foset CF is deˇned analogously: CF = AP ∪ X ,
where AP is the discrete subset of incomparable elements a′

j , X is the continuous ordered
subset, which is equivalent to R1 axis of real numbers. Correspondingly, fuzzy relations
between elements a′

j , x are described by real function wj(x) � 0 with the norm
∫

wjdx = 1.
In 1-dimensional Euclidean geometry, the elements of its manifold X are the points xa which
constitute the ordered continuum set. Yet in 1-dimensional FT equipped geometry the position
of fuzzy point a′

j becomes the positive normalized function wj(x) on X ; wj dispersion σx

characterizes a′
j coordinate uncertainty on X . Note that in such a geometry wj(x) does not

have any probabilistic meaning but only the algebraic one, characterizing the properties of
fuzzy values x̃. To describe the distinction between the fuzzy structure and probabilistic
one, the weight correlation Kf(x, x′) deˇned over wj support can be introduced; thus, if
w(x1,2) �= 0, then ∀x1, x2; Kf (x1, x2) = 1 for FP a′

j and Kf (x1, x2) = 0 for probabilistic a′
j

distribution. Thus, a′
j ©stateª G on X is described by two functions G = {w(x), Kf (x, x′)}

which characterize the fuzzy value x̃a.

1. LINEAR MODEL OF FUZZY DYNAMICS

In the described terms the massive particle of 1-dimensional classical mechanics corre-
sponds to the ordered point xa(t) ∈ X . By analogy, we suppose that in 1-dimensional FM
the particle m corresponds to fuzzy point a(t) in CF characterized by normalized positive
density w(x, t). Beside w(x), m fuzzy state |g} can also depend on other m degrees of
freedom (DFs), i.e., |g} parameters characterizing its evolution. The temptative candidate for
that is m average velocity v̄:

v̄ =
∂

∂t

∞∫
−∞

xw(x) dx =

∞∫
−∞

x
∂w

∂t
(x, t) dx. (1)

It is sensible to expect that v̄(t) is independent of w(x, t). Below we shall look for such DFs
in form of real functions q1,...,n(x, t). We shall start from considering m free evolution, and
suppose that in FM it is local, i.e.,

∂w

∂t
(x, t) = −Φ(x, t), (2)
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where Φ is an arbitrary function which depends on x, w(x, t), q1,...,n(x, t) only. From w
norm conservation:

∞∫
−∞

Φ(x, t) dx = −
∞∫

−∞

∂w

∂t
(x, t) dx = − ∂

∂t

∞∫
−∞

w(x, t) dx = 0. (3)

Since w free evolution should possess x, t-shift invariance, Φ cannot depend on x, t directly,
but only on w(x, t) and qi(x, t). If Φ = ∂J/∂x is substituted for some J(x), then Eq. (3)
demands:

J(∞, t) − J(−∞, t) = 0. (4)

If it is supposed that it is fulˇlled, J(x) can be regarded as w 	ow (current), so Eq. (2) can
be transformed to the 1-dimensional 	ow continuity equation [8]:

∂w

∂t
= −∂J

∂x
. (5)

J(x) can be decomposed formally as J = w(x)v(x), where v(x) corresponds to 1-dimensional
w 	ow velocity. In these terms w evolution equation transforms to

∂w

∂t
= −v

∂w

∂x
− ∂v

∂x
w. (6)

Note that for normalized density w(x, t) the relation (4) is rather obvious, in particular, it is
fulˇlled, if w 	ow J(x, t) from/to x = ±∞ is negligible. FM will be constructed here as the
minimal theory in a sense that at every step we shall choose its variant with minimal number
of DFs and theory constants. We shall consider here only the pure fuzzy states which are not
the probabilistic mixture of several different states.

It is sensible to suppose that v(x, t) can be considered as |g} free parameter, yet we shall
use the related parameter γ(x) deˇned as

γ(x, t) = μ

x∫
−∞

v(ξ, t) dξ + cγ , (7)

where μ is theory constant; cγ is an arbitrary real value. If it is assumed that m state |g}
does not depend on any other DFs, i.e., |g} = {w(x), γ(x)}, then it can also be expressed as
some complex function ga(x), the simplest example is ga(x) = w(x) + iγ(x). Alternatively,

one can suppose that |g} =
{

w(x), γ(x), . . . ,
∂nγ

∂xn

}
regarding formally each γ derivative as

independent DF, yet below it will be shown that such an assumption is excessive. Moreover,
FM premises restrict essentially the possible |g} complex ansatz ga(x). It is sensible to admit
that m evolution as a whole can be characterized by m velocity u with expectation value
ū(t). Yet in FM, alike m coordinate x, u can also be considered as fuzzy value ũ with the
corresponding distribution wu(u, t). Plainly, ū(t) coincides with v̄(t) of (1), hence it can be
written as

ū =
1
μ

∞∫
−∞

∂γ

∂x
w dx. (8)
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Yet wu should be expressed as function of given |g} DFs w, γ, since it was supposed that they
describe m state completely. If so, then wu can be expressed via arbitrary w, γ X-Fourier
transform. To calculate it, let us introduce the auxiliary function ϕ(u) and its X-Fourier
decomposition:

ϕ(u) = w1/2
u (u) eiβ(u) =

∞∫
−∞

f(x) eiλ(x)+iux dx. (9)

Here β(u) is some real function, f, λ are supposed to be the real functions of w, γ in a given
point x. It follows then:

∞∫
−∞

f2(x) dx =

∞∫
−∞

ϕ(u)ϕ∗(u) du =

∞∫
−∞

wu(u) du = 1.

The calculation of δγ, δw variations for f2 integral gives f(w, γ) = ±w1/2(x). Then ū can
be calculated anew from Fourier analysis [9]:

ū =

∞∫
−∞

uϕ(u)ϕ∗(u) du =

∞∫
−∞

∂λ

∂x
f2(x) dx. (10)

From the comparison with Eq. (8) it follows that

λ(x) =
1
μ

[χ(w) + γ(x)],

where χ(w) is an arbitrary real function which obeys the condition

∞∫
−∞

w
∂χ

∂x
dx = 0.

Admitting that f = w1/2(x), wu and β(u) can be found now from Eq. (9) as functions of χ.
β(u) is the counterpart of γ(x) for u observable. Below we shall also use the observable
p = μu, if one substitutes in the integral of Eq. (9) ux by px and f eiλ by the function

η(x) = w1/2(x) eiχ(w)+iγ (11)

correspondingly, then the resulting X-Fourier transform will be equal to ϕ(p). η(x) is the
vector (ray) of complex Hilbert space H. In this framework the observable u corresponds to

the operator û =
i

μ

∂

∂x
acting on η. By analogy, we postulate that all m observables are the

linear, self-adjoint operators on H. Then η is the temptative candidate for |g} state ansatz in
X-representation, since the expectation values of all observables are expressed via η bilinear
forms. Note that η = eiχg, where g(x, t) is standard QM wave function, so that η(x, t) is
its trivial map. Thus, one can consider in detail only g(x, t) evolution and derive η(x, t)
properties from obtained results. Evolution equation for g is supposed to be of the ˇrst order
in time, i.e.,

i
∂g

∂t
= Ĥg. (12)
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In general, Ĥ is nonlinear operator; for simplicity we shall consider ˇrst the linear case and
nonlinear one below. The free m evolution is invariant relative to x space shifts performed

by the operator Ŵ (a) = exp
(

a
∂

∂x

)
. Because of it, Ĥ should commute with Ŵ (a) for the

arbitrary a, i.e.,

[
Ĥ,

∂

∂x

]
= 0. It holds only if Ĥ is differential polynom, which can be

written as

Ĥ = −
n∑

l=1

bl
∂l

∂xl
, (13)

where bl are arbitrary real constants, n � 1. From X re	ection invariance bl = 0 for
noneven l. Let us rewrite Eq. (12) as follows:

i
∂g

∂t
=

(
i
∂w1/2

∂t
− w1/2 ∂γ

∂t

)
eiγ = eiγ F̂ g, (14)

where F̂ = e−iγĤ. Hence,
∂w1/2

∂t
= im (F̂ g).

Yet if one substitutes v(x) by γ(x) in Eq. (6) and transforms it to w1/2 time derivative, then

∂w1/2

∂t
= − 1

μ

∂w1/2

∂x

∂γ

∂x
− 1

2μ
w1/2 ∂2γ

∂x2
. (15)

Plainly, this expression and im (F̂ g) coincide, then Ĥ can be obtained from their comparison
term by term. In particular, the imaginary part of F̂ g includes the highest γ derivative as

the term bnw1/2 ∂nγ

∂xn
, yet for Eq. (15) the highest γ derivative is proportional to w1/2 ∂2γ

∂x2
.

Hence, for all l > 2 it should be that bl = 0; only in this case both expressions for
∂w1/2

∂t
can coincide. The same is true for other F̂ g terms. Thus, g free evolution is described by the
only Ĥ term with b2 = 1/2μ, it corresponds to free Schréodinger equation for particle with
mass μ. Note that in standard QM the evolution equation is postulated ad hoc. The obtained
ansatz also gives J(±∞, t) = 0 for w 	ow of Eq. (3), in accordance with our expectations.
Plainly, γ(x) corresponds to |g} quantum phase, so that

Δ(x, x′) = γ(x) − γ(x′)

describes the dynamical or phase correlation between the state components in x, x′.

2. GENERAL FUZZY DYNAMICS

In the previous section 1-dimensional FM formalism was derived from FT premises
assuming that |g} evolution is linear and g(x) coincides with QM wave function ψ(x).
Here we shall drop both these assumptions one by one. Concerning nonlinear evolution,
the conditions of QM dynamics linearity were reconsidered by Jordan, and turn out to be
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essentially weaker than Wigner theorem asserts [10]. In particular, it was proved that if the
evolution maps the set of all pure states one to one onto itself, and for arbitrary mixture of
orthogonal states ρ(t) =

∑
Pi(t)ρi(t) all Pi are independent of time, then such evolution is

linear. Here ρi(x, x′, t) = gi(x, t)g∗i (x, t) are the density matrices of orthogonal pure states
gi. Yet for the considered FM formalism the ˇrst condition is, in fact, generic: no mixed
(i.e., probabilistic) state can appear in the evolution of pure fuzzy state. The second condition
involves the probabilistic mixture of such orthogonal states and also seems to be rather weak
assumption.

Now let us return to η(x) ansatz of (11) and demonstrate that the Jordan theorem demands
that χ(w) = 0. For the obtained sets of m states, if 〈gi|gj〉 = δij , then 〈ηi|ηj〉 = δij and vice
versa. As was argued above, in FM any pure state g(t0) should evolve to pure state g(t) for
arbitrary t, so the same should be true for any η(t0). Now the Jordan theorem can be applied
to η evolution, for that let us rewrite g evolution equation for η:

i
∂g

∂t
= i

∂

∂t
(η e−iχ) = i

∂η

∂t
e−iχ + η

∂χ

∂w

∂w

∂t
e−iχ = Ĥ(η e−iχ). (16)

From it one can come to the equation for η, the term containing ∂w/∂t can be rewritten
according to (15). As a result, it gives

i
∂η

∂t
= eiχĤ(ηe−iχ) +

η

μ
eiχ ∂χ

∂w

∂

∂x

(
w

∂γ

∂x

)
. (17)

The resulting equation for η is also of ˇrst time order, but is openly nonlinear. Therefore, for
arbitrary χ(w), given the initial η(x, t0), the resulting η(x, t) is equivalence class of g(x, t)
which evolved linearly from g(x, t0) = η(x, t0) e−iχ.

In fact, 3-dimensional FM does not demand any principal modiˇcations. In this case FT
fundamental set will be CF = Ap ∪ R3; hence, for any fuzzy point a′

j ∈ Ap its ordering
properties should be deˇned relative to X, Y, Z coordinate axes separately. Assuming FM
rotational invariance, it follows that a′

j fuzzy properties can be described by the positive
function wj(r) with norm

∫
wjd3r = 1. Then the particle m corresponds to the fuzzy point

a(t) characterized by w(r, t). Analogously to Sec. 2, given w evolution depends on local
parameters only, it can be expressed as 3-dimensional 	ow continuity equation:

∂w

∂t
= −divJ. (18)

Then one can decompose formally J = wv and regard w 	ow velocity v(r) as independent
|g} parameter. |g} phase γ(r) is related to it via the equality μv = grad (γ). To guarantee
the formalism consistency, we assume that for m evolution the phase correlation Δ(r, r′) is
independent of the path l which connects r, r′ where

Δ(r, r′) = γ(r) − γ(r′) =

r∫
r′

grad (γ)dl.

From a similar sequence of calculations, as for 1-dimensional case, free Schréodinger
equation can be derived for 3-dimensional geometry. Like in 1-dimensional case, we assume
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ˇrst that g evolution equation is of the ˇrst order in time, and g evolution operator Ĥ is
linear. Then for free m evolution it should be polynom of the form

Ĥ = −
n∑

l=1

b2l
∂2l

∂r2l
. (19)

From ∂g/∂t the term ∂w1/2/∂t can be extracted and expressed via w, γ r-derivatives. From
their comparison with corresponding Ĥg derivatives it follows b2 = 1/2μ and b2l = 0 for
l > 1, i.e., free Schréodinger equation is obtained for 3-dimensional case. The applicability
of the Jordan theorem to 3-dimensional Ĥ is obvious, because its proof of Ĥ linearity does
not depend on the dimensionality of coordinate space. The same is true for the proof of
uniqueness of g(r, t) ansatz, i.e., that χ(w) = 0 for 3 dimensions as well.

All m states g(r, t) belong to H; hence, the superposition principle also holds true in FM.
In our approach the state space is deˇned by geometry and corresponding dynamics, i.e.,
is derivable concept. For pure states of free nonrelativistic particle m it is obtained to be
equivalent to H, but, in principle, it can be different for other systems. Similar features
possess the formalism of algebraic quantum mechanics where the state space is deˇned by
the observable algebra and system dynamics [11]. The Planck constant � = 1 in our FM
ansatz, but the same value ascribed to it in relativistic unit system together with velocity of
light c = 1; in FM framework � only connects x, p geometric scales and does not have any
other meaning.

In our derivation of evolution equation we did not assume Galilean invariance of FM,
rather in our approach it follows itself from the obtained evolution equation, if the observer
reference frame (RF) is regarded as the physical object with mass μ → ∞ [6]. For the
transition to relativistic FM the important condition is that m density w(r, t) ansatz exists
and is normalized and nonnegative in any RF. Then it follows that for massive particle m the
simplest extension of FM state |g} is 4-spinor ψi(r, t); i = 1, 4; its evolution is described by
Dirac equation for spin-1/2, and w(r) = ψ+

i (r)ψi(r).
Now we shall consider the particle interactions in nonrelativstic FM. As follows from

Eqs. (13)Ä(15), m free dynamics can be described by the system of two equations which
deˇne ∂w1/2/∂t and ∂γ/∂t which for 3-dimensions can be written as

∂w1/2

∂t
= − 1

μ

∂w1/2

∂r
∂γ

∂r
− 1

2μ
w1/2 ∂2γ

∂r2
,

(20)
∂γ

∂t
= − 1

2μ

[(
∂γ

∂r

)2

− 1
w1/2

∂2w1/2

∂r2

]
.

Yet the ˇrst of them is equivalent to Eq. (18) which describes just w(r) balance and so is,
in fact, kinematical one and cannot depend on any interactions directly. Namely, under some
external in	uence the values of w, γ variables can change, but no new terms can appear in
the equation. Hence, m interactions can be accounted for only via modiˇcation of the second
equation of this system. In the minimal case, assuming that the evolution terms are additive,
it gives

∂γ

∂t
= − 1

2μ

[(
∂γ

∂r

)2

− 1
w1/2

∂2w1/2

∂r2

]
+ Ĥint, (21)
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where Ĥint is the interaction term which is nontrivial if ∂Ĥint/∂r �= 0. If for the interaction
of two particles Ĥint = F (r12), then it corresponds to the classical potential. Since γ
corresponds to the quantum phase, it supposes that in FM m interactions can possess some
form of local gauge invariance [13]. In our previous paper the toy-model of Abelian gauge
interactions on fuzzy manifold was formulated which in the main aspects is similar to QED [7].
Despite the fact that the fermion state is described by several quantum phases, the same
invariance is fulˇlled for it and can also be extended to relativistic case. Preliminary results
for interactions of fermion multiplets show that their interactions can also possess local SU(n)
gauge invariance and be transferred by corresponding YangÄMills ˇelds.

In conclusion, we have shown that the quantization of elementary systems can be derived
directly from axiomatic of Set theory and topology together with the natural assumptions
about system evolution. It allows us to suppose that the quantization phenomenon has its
roots in foundations of mathematics [11]. At the same time, the considered fuzzy manifold
describes the possible variant of fundamental pregeometry which is basic component of some
quantum gravity theories [2]. It is worth noticing that in such a formalism the commutation
relation [x̂, p̂x] = i results, in fact, from the geometry and topology of fuzzy manifold. The
main aim of our theory, as well as of other studies of fuzzy spaces, is the construction of
nonlocal QFT (or other more general theory) [12]. In this vein, FM provides the interesting
opportunities, being generically nonlocal theory which, at the same time, can possess Lorentz
covariance and local gauge invariance.
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