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WATERSHED ON VECTOR QUANTIZATION
FOR CLUSTERING OF BIG DATA

S. V. Mitsyn 1, G. A. Ososkov 2

Joint Institute for Nuclear Research, Dubna

A method for clustering large amounts of data is presented which is a sequenced composition of two
algorithms: the former builds a partition of input space into Voronoi regions and the latter clusters them.
First, a model of clusters as high-density regions in input space is presented, then it is shown how a
Voronoi partition and its topological map a) can be built and b) used as a low complexity approximation
of the input space. During the b) step, the usage of ©watershedª algorithm is presented which has been
previously used for image segmentation, but it is its application to a data space partition that is proposed
by the authors.
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INTRODUCTION

Data clustering is a data mining method, during which objects comprising some data set
are partitioned to a set of disjoint sets, whose union contains all initial objects. The goal of
clustering is to give non-strict, heuristic, simpliˇed description of a data set by splitting it into
several groups according to a closeness of objects in the feature space for each of groups.
As a ˇnal result, some idea about structure of the data is obtained.

Big data, when applied to data mining, represents a fact that analyst is facing a too large
data set so that is hard to deal with on common computers. Particular characteristics of such
a situation include a large number of objects and measurements (starting from 106) and
dimensions. Standalone difˇculty is an absence of apriori hypothesis about data structure Å
number of clusters, their form and position. Our task is to develop a method for big data
clustering.
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MODEL

For each object of data set let us assign a vector in multidimensional vector space (feature
space), whose components describe quantitatively characteristics of corresponding object.
The task of clustering is to split objects into groups by their closeness in vector space.

First, we need to deˇne what the nature of sought-for groups is and how they in
uence
the population (overall) distribution. We take up the simple variant, where every cluster
is a ©denseª group of objects, distributed with a single well-deˇned maximum of distribution
density in a feature space.

Let p(x) be a density distribution function in a population with x being a vector of a feature
space. Recall that analytical form of p(x) is unknown, but a big sample is given. Our goal is
to ˇnd partition c(x) ∈ N, c(xk) = c(xl) ⇔ objects k and l belong to one group. We'll say
that a group can be identiˇed if a) a peak (local maxima) in p(x) can be set to correspondence
to this group and b) a cluster can be formed around the peak to distinguish the group from
other groups.

ALGORITHM

The algorithm is a multistep clustering, where on each step a qualitatively new data
description is discovered.

On the ˇrst step, the initial data partition is built Å Voronoi partition, with sets being
convex and contained inside (hyper-)polyhedron, so that they unite objects which are close
to each other. It can be formalized as a mapping v(x) : X → V , V ⊂ N, which is a primary
clustering. The next steps give more precise result by clusters merging.

On the second step, a similarity relation is built on Voronoi sets Å that is, a set of un-
ordered pairs (i, j) ∈ E. Having a set of Voronoi sets and a set of pairs, we can deˇne a graph
G = 〈V, E〉 with V being a set of vertices (set of indices corresponding to Voronoi sets) and
E being a set of edges deˇned previously. For each edge a weight wi,j is assigned, which
increases monotonically with distance between clusters i and j (which means that clusters are
less similar).

On the third step, the set of Voronoi regions is partitioned by G graph cut with Minimal
Spanning Tree relative to minima method, which is the ˇnal result.

Voronoi Regions. A partitioning of Euclidean space is deˇned by a set of points Å a
codebook, and points are called Voronoi region centers. Voronoi cell is a region of vector
space, where all points are closer (by Euclidean distance) to its center rather than to the center
of any other Voronoi cell.

There exist many algorithms for Voronoi partitioning, e.g., K-means [2], and algo-
rithms that are based on it Å fuzzy K-means [3], neural methods (Kohonen Self-Organizing
Maps [4], Neural Gas, Growing Neural Gas [5]). The listed algorithms are able to handle with
sample as well, not only with an explicit density function. Stochastic ones have complexity,
independent of sample size, and thus can be used with big data samples.

Similarity Relation. For similarity relation on Voronoi regions one can use at least two
strategies: Delaunay triangulation [6] and complete graph. In the former case, the relation
is built, where a pair (i, j) is included in E iff polyhedra i and j have common faces. The
important implication is that all edges of Minimal Spanning Forest relative to minima [7] of
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complete graph are included in E, while skipping vast amount of edges, which may reduce
complexity on the third step of our multistep algorithm without changing the result.

The Watershed. The algorithms listed on the previous step build such a Voronoi parti-
tioning that regions volume 1/q(x) tend to decrease with increasing distribution density p(x):
q(x) = C

[
p(x)

n
n+2

]
, with n being space dimensionality. The distance between region centers

also decreases, thus weights wi,j of the edges connecting these regions decrease too. This
heuristics allows us to propose a hypothesis that wi,j are lower at the maxima of p(x) and
higher among periphery.

This in turn allows us to reduce the problem to a graph cut, where each component
includes exactly one edge with locally minimal weight, and edges with high weight are
removed. This is equivalent to Minimal Spanning Forest relative to minima, which is well
studied in, e.g., [7] as an edge watershed method.

The Final Notes on the Watershed. As a watershed result, some false clusters are usually
identiˇed as small perturbations in edge distances which occur due to stochastic nature of
sample and utilized quantization algorithm. Thus a fourth step, post-merging, should be done.
One of possibilities is usage of border dynamics [8], in which each cluster (which is called
basin) is assigned a measure, describing its signiˇcance, as well as an order relation which
deˇnes to which cluster this one has to be merged if it is too insigniˇcant.

EXAMPLE OF SYNTHESIZED DATA CLUSTERING

Particularly interesting clustering cases that are traditionally hard to clusterize are classes
that have non-convex twisted form in a feature space. Here we present two spiral classes
in the ˇgure, a. It is interesting to note that these spirals are themselves non-uniform Å
distribution density between their heads is higher than density along their tails. Such a case
would be hard to deal with using, e.g., single linkage as in [9]. By our algorithm these spirals
are separated successfully as in the ˇgure, b. This is possible due to high localization of data
that watershed uses. Thus, relatively high distribution density between heads does not prevent
clustering due to the lack of opaqueness on the tails.

Clustering example for two spirals: a) distribution density in feature space; b) ˇnal segmentation
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CONCLUSIONS

A method for Euclidean space clustering is presented that is able to handle big data
through its sequential simpliˇcation. As a result, analyst that works with data can acquire
more qualitative information about the type and structure of data distribution.
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