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FRACTIONAL NONTOPOLOGICAL QUANTIZATION
OF THE MAGNETIC FLUXES IN THE U(1) GAUGED

PLANAR SKYRME MODEL

Ya. M. Shnir 1
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We discuss a U(1) gauged version of the (2 + 1)-dimensional planar Skyrme model supplemented
by the Maxwell term. We show that there exist a variety of static multisoliton conˇgurations coupled
to the noninteger 	uxes of magnetic ˇeld, which revert to the usual planar Skyrmions in the limit of
the gauge coupling constant vanishing. The structure of the multisoliton solutions of the model strongly
depends on the particular choice of the potential term which may break the rotational invariance. We
investigate the dependency of the shapes, masses, and magnetic 	uxes of the gauged planar Skyrmions
with broken symmetry on the gauge coupling constant. We further ˇnd that in the strong coupling
limit the magnetic 	uxes, associated with the parton components of the solitons, became quantized in
fractional units of topological charge.

� ¸¸³ É·¨¢ ¥É¸Ö U(1) ± ²¨¡·μ¢μÎ´ Ö ¢¥·¸¨Ö (2 + 1)-³¥·´μ° μ¡μ¡Ð¥´´μ° ¶² ´ ·´μ° ³μ¤¥²¨
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Éμ¶μ²μ£¨Î¥¸±μ£μ § ·Ö¤ .

PACS: 03.75.Lm; 12.39.Dc

INTRODUCTION

The Skyrme model is a nonlinear O(4) sigma model in d = 3 + 1 dimensions with topo-
logically stable soliton solutions [1]. It can be derived from the expansion of the low-energy
effective Lagrangian in the large Nc limit [2], then the topological charge of the multisoliton
conˇguration is set into correspondence to the physical baryon number. Under certain as-
sumption, the semiclassical quantization of rotations and isorotations of the Skyrmions allows
us to get a good approximation to the isospinning atomic nuclei and describe the correspond-
ing excitations [3]. Recently, the Skyrme model was successfully applied to the description
of the rotational excitation bands of light nuclei [4].
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A peculiar feature of the Skyrme model is that the corresponding soliton solutions do not
saturate the topological lower bound. In order to attain it and get a linear relation between
the masses of the Skyrmions and their topological charges, one has, for example, to reduce
the model to the BPS Skyrme model [5]. Furthermore, the contribution of the Coulomb
electromagnetic energy is necessary to get a good agreement between the binding energies
of heavy nuclei and the predictions of the reduced BPS Skyrme model [6]. Therefore, it
is physically natural to extend the model by gauging it to describe various electromagnetic
processes of nucleons.

The U(1) gauged Skyrme model was originally proposed in [7], later the axially-symmetric
gauged Skyrmions were considered in [8, 9]. It was noticed that the gauging of a U(1)
subgroup and the inclusion of a Maxwell term in the Lagrangian may stabilize the solitons
even if the Skyrme term is dropped [10], furthermore, the BPS energy bound becomes
saturated.

The planar reduction of the nonlinear sigma model is known as baby Skyrme model [11,
12], which resembles the basic properties of the genuine Skyrme model in many aspects. The
corresponding Lagrangian includes the usual sigma model term, the Skyrme term, which is
quartic in derivatives of the ˇeld, and the potential term which does not contain the derivatives.
This low-dimensional model has a number of applications, e.g., in condensed matter physics,
where Skyrmion conˇgurations were observed experimentally [13], in the description of the
topological quantum Hall effect [14, 15], or in brane cosmology, where the solitons of the
model induce warped compactiˇcation of the 2-dimensional extra space [16]. Also it was
found that there is the restricted baby Skyrme model in 2 + 1 dimensions which has BPS
soliton solutions saturating the Bogomolny bound [17].

Similar analysis of the gauged baby Skyrmions [18] reveals very interesting features of
the corresponding solitons which carry a nonquantized nontopological magnetic 	ux. Further,
if the ChernÄSimons term is additionally included in the Lagrangian, the planar Skyrmions
become electrically charged [19]. Recently, the properties of the soliton conˇgurations in
the gauged BPS baby Skyrme model were investigated [20]. An interesting observation is
that in the strong coupling limit the magnetic 	ux becomes quantized, though there are no
topological reasons for that [18,27].

Another peculiarity of the planar Skyrme model is related with the particular choice of
the potential term. It gives a mass to the excitations of the scalar ˇeld, therefore, in the
context of the usual Skyrme model it is referred to as ©pion mass termª [21]. Although in
(3 + 1)-dimensional Skyrme model this term is optional, its presence might strongly affect
the structure of the solution conˇgurations [22].

On the other hand, the form of the potential term in the baby Skyrme model is largely
arbitrary, there are different choices related with various ways of symmetry breaking [23Ä26].
In particular, a suitable choice for the potential term allows us to separate the individual
constituents of the planar Skyrmions, each of them being associated with a fractional part of
the topological charge of the conˇguration [25,26].

In this paper we discuss the topologically stable static soliton solutions of the full coupled
gauged baby SkyrmeÄMaxwell system with symmetry breaking potential, which carry arbitrary
magnetic 	ux. We study numerically the dependence of masses of these constituent solitons
and the corresponding magnetic 	uxes on the gauge coupling constant, both in perturbative and
in the strong coupling limits. In the latter case we observe an effective fractional quantization
of the magnetic 	uxes associated with each of the partons.
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1. THE MODEL

A gauged version of the O(3) σ-model with the Skyrme term in 2 + 1 dimensions [12]

L = ∂μφ · ∂μφ − 1
4
(∂μφ × ∂νφ)2 − U [φ], (1)

where φ = (φ1, φ2, φ3) denotes a triplet of scalar ˇelds which satisfy the constraint |φ|2 = 1.
Topological restriction on the ˇeld φa is that it approaches its vacuum value at spacial

boundary, i.e., φa
∞ = (0, 0, 1). This allows a one-point compactiˇcation of the domain space

R
2 to S2, and the ˇeld of the ˇnite energy solutions of the model is a map φ : R

2 → S
2 which

belongs to an equivalence class characterized by the topological charge B = π2(S2) = Z.
Explicitly,

B =
1
4π

∫
φ · ∂1φ × ∂2φ d2x. (2)

Note that the ˇrst two terms in the functional (1) are invariant under the global O(3)
transformations, this symmetry becomes broken via the potential term. The standard choice
of the potential of the baby Skyrme model is [12]

U [φ] = μ2[1 − φ3]. (3)

Thus, the symmetry is broken to SO(2) and there is a unique vacuum φ∞ = (0, 0, 1). The
corresponding solitons of degree B = 1, 2 are axially symmetric [12], however, the rotational
symmetry of the conˇgurations of higher degree becomes broken [28].

The traditional approach to study the solitons of the model (1) is related with separation
of the radial and angular variables [12, 28]; thus, the consideration becomes restricted to the
case of rotationally invariant conˇgurations and the corresponding EulerÄLagrange equations
are reduced to a single ordinary differential equation on radial function f(ρ). However, a
more detailed analysis reveals that the higher charge B � 3 baby Skyrmions may not possess
rotational symmetry [12, 29]; starting from some critical value of the mass parameter μ,
the global minimum of the energy functional corresponds to the conˇgurations with discrete
symmetries.

The resulting symmetry of the multiskyrmion conˇguration depends on the particular
choice of the potential term. In the model with double vacuum potential (or ©easy-axisª
potential) [11,30]

U [φ] = μ2(1 − φ2
3), (4)

the multisoliton solutions are rotationally invariant over the entire range of values of the mass
parameter μ. The most general case of the one-parametric potential

U [φ] = μ2(1 − φ3)s, (5)

with 0 < s � 4, was considered in [24]. Since the ©oldª potential (3) corresponds to
the attractive force acting between the solitons, while the ©holomorphicª potential U [φ] =
μ2(1 − φ3)4 is repulsive [31, 32], the parameter s in the potential (5) is responsible for the
balance of the repulsive and attractive interaction between the Skyrmions. Clearly, one can
consider the linear combination of the ©oldª and ©holomorphicª potentials [26]

U [φ] = μ2
[
λ(1 − φ3) + (1 − λ)(1 − φ3)4

]
, λ ∈ [0, 1], (6)
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which corresponds to a short-range repulsion and a long-range attraction between the solitons.
The resulting conˇguration is no longer rotationally invariant (cf. Fig. 1).

Note that all these potentials (3), (4), (5), and (6) are rotationally invariant. Another
possibility is related with the choice of symmetry breaking potentials [23,25,33]. In this case
the individual charge one skyrmion is not axially symmetric, furthermore, it is composed of
a few partons. Indeed, one can directly introduce a potential term which would violate the
O(2) invariance of the baby Skyrme model [23, 25, 33], for example, Ward considered the
potential

U [φ] = μ2(1 − φ2
3)(1 − φ2

1), (7)

which breaks the symmetry to the dihedral group D2; thus, the single charge one soliton is
composed of two constituents, each being associated with topological charge 1/2 (cf. Fig. 1).

In Fig. 1, we present the plots of the energy density distributions of the B = 2 baby
Skyrmion in the model with potentials (3), (4), and (7), respectively. Further generalization
of this approach [25] yields the solution of the baby Skyrme model of degree B = m ∈ Z,
whose energy density distribution represents a ©necklaceª, a ring with 2m half-Skyrmions
which is symmetric with respect to the dihedral group D2m.

Now we introduce a U(1) gauge ˇeld Aμ deˇning the covariant derivative of the scalar
ˇeld as (cf. [10,18,34])

Dμφa = ∂μφa + gAμεabcφ
bφc

∞, (8)

where g is the gauge coupling constant. Note that the ˇeld conˇguration has ˇnite energy if
Dμφa → 0 as r → ∞.

Fig. 1. Energy density plots of the B = 2 baby Skyrmions in the model with potentials (4), (6), and (7),

respectively, at μ2 = 0.1 (from a to c)
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The total Lagrangian of the gauged baby SkyrmeÄMaxwell model with symmetry breaking
potential (7) then can be written as

L =
1

32π2
√

2

(
−1

4
FμνFμν + DμφaDμφa−

− 1
2
(εabcφ

aDμφbDνφc)2 − μ2(1 − φ2
3)(1 − φ2

1)
)

, (9)

where we introduced the usual Maxwell term, and the ˇeld strength tensor is Fμν =
∂μAν − ∂νAμ.

Note that the symmetry breaking potential (7) is not invariant with respect to the gauge
transformations deˇned via (8). However, the model preserves a symmetry under combined
gauge-rotational symmetry.

The EulerÄLagrange equations can be written as

∂μFμν = jν = εabcφ
aDνφbφc

∞ + εabcD
μφaφbDνφc(Dμφkφk

∞), (10)

where jν is the electromagnetic current.
In 2 + 1 dimensions we can consider purely magnetic ˇeld generated by the axially

symmetric Maxwell potential

A0 = Ar = 0, Aθ = a(r, θ), (11)

where a(r, θ) is an arbitrary function, and the gauge ˇxing condition is used to exclude
the radial component of the vector-potential. Note we do not use the rotationally-invariant
parameterization given by the ansatz

φ1 = sin f(r) cos (Bθ), φ2 = sin f(r) sin (Bθ), φ3 = cos f(r). (12)

However, we applied it to generate initial conˇgurations in the given topological sector.
Indeed, if input proˇle function is deˇned as f(r) = 4 arctan e−r, this corresponds to the
conˇguration of degree B with usual boundary conditions on the proˇle function f(r), i.e.,
f(0) = π, f(∞) = 0. Then the triplet of the scalar ˇelds was considered as a set of dynamical
variables in the full unrestricted system of the ˇeld equations.

The complete set of the ˇeld equations, which follows from the variation of the action of
the baby SkyrmeÄMaxwell model (9), can be solved when we impose the boundary conditions.
As usually, they follow from the regularity on the symmetry axis and symmetry requirements,
as well as the condition of ˇniteness of the energy and the topology. In particular, we have
to take into account that the magnetic ˇeld is vanishing on the spacial asymptotic. Explicitly,
in agreement with (12), we impose

φ1

∣∣
r→∞ → 0, φ2

∣∣
r→∞ → 0, φ3

∣∣
r→∞ → 1, ∂ra

∣∣
r→∞ → 0 (13)

at inˇnity and

φ1

∣∣
r→0

→ 0, φ2

∣∣
r→0

→ 0, φ3

∣∣
r→0

→ −1, a
∣∣
r→0

→ 0 (14)

at the origin. The condition of regularity of the ˇelds on the symmetry axis yields

∂θφ1

∣∣
θ→0,π

→ 0, φ2

∣∣
θ→0,π

→ 0, ∂θφ3

∣∣
θ→0,π

→ 1, ∂θa
∣∣
θ→0,π

→ 0. (15)
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2. NUMERICAL RESULTS

The numerical calculations are mainly performed on an equidistant grid in polar coordi-
nates r and θ, employing the compact radial coordinate x = r/(1+r) ∈ [0 : 1] and θ ∈ [0, 2π].
To ˇnd solutions of the EulerÄLagrange equations, which follow from the Lagrangian (9) and
depend parametrically on coupling constant g, we implement a simple forward differencing
scheme on a rectangular lattice with lattice spacing Δx = 0.01. Typical grids used have sizes
120 × 70. The resulting system is solved iteratively until convergence is achieved.

All numerical calculations have been performed by using the professional package
CADSOL, which uses a NewtonÄRaphson ˇnite difference method with an arbitrary grid
and arbitrary consistency order (a detailed description of this package is given in [35]). This
code solves a given system of nonlinear partial differential equations subject to a set of
boundary conditions on a rectangular domain. Apart from some initial guess for the solution,
CADSOL requires also the Jacobian matrices for the equations with respect to the unknown
functions and their ˇrst and second derivatives, and the boundary conditions. This software
package provides also error estimates for each function, which allows one to judge the quality
of the computed solution. The relative errors of the solutions we found are of the order of
10−4 or smaller. We also introduce an additional Lagrangian multiplier to constrain the ˇeld
to the surface of unit sphere.

Each of our simulations began at g = 0 at ˇxed value of μ, then we proceed by making
small increments in g.

In Fig. 2, we have plotted the graphs of energy of gauged static baby Skyrmion deˇned
by the functional (9) and magnetic energy as function of the gauge coupling. Here we used
the normalized units of energy per unit charge.

As the gauge coupling increases from zero, the energy of the gauged planar Skyrmions
decreases since the magnetic 	ux is formed. The effect it causes is to squeeze the conˇguration
down, as shown in Fig. 3, where we exhibited the energy density plots and contour plots of
the gauged B = 1, 2, 3, 4 baby Skyrmions in the model with potential (7) at g = 0 and g = 1,
respectively.

Note that as the coupling remains smaller than one, the electromagnetic energy Eem is
increasing, however, in the strong coupling limit its contribution begins to decrease as g con-

Fig. 2. The normalized energy E of the B = 1, 2, 3, 4 gauged baby Skyrmions (a) and the corresponding

magnetic energy (b) as a function of the coupling constant g at μ = 1
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tinues to grow, see Fig. 2, b. We can understand this effect if we note that the conventional
rescaling of the potential Aμ → gAμ leads to F 2

μν → (1/g2)F 2
μν . Thus, the very large gauge

coupling effectively removes the Maxwell term leaving the limiting conˇguration of gauged
planar Skyrmions coupled to a circular magnetic vortex of constant 	ux. Apparently, in such
a limit the strong coupling with a vortex yields an effective potential term which, unlike the
usual symmetry breaking term in (9), affects the ˇeld components φ1 and φ2. An interplay
between such an effective potential and the mass term may drastically affect the stability of
the conˇguration.

Thus, the solitons carry magnetic 	ux Φ =
∫

d2xB, which is in general nonquantized.
The 	ux of the gauged baby Skyrmions is associated with the position of the solitons, it
is orthogonal to the x−y plane [18]. In the usual model with rotationally invariant poten-
tial (4) there is a single magnetic 	ux through the center of the soliton, in the model, where
the rotational invariance becomes violated, each unit charge constituent of the multisoliton
conˇguration is coupled to a 	ux.

An interesting observation is that, as the gauge coupling becomes stronger, the mag-
netic 	ux of the degree n baby Skyrmions grows from 0 to −2πn, i.e., in the strong
coupling regime the magnetic 	ux is quantized though there are no topological reasons
for it [18].

Indeed, in Fig. 4 we display the results of our numerical calculations of the integrated
magnetic ˇeld of the gauged planar Skyrmion through the x−y plane. The density distribution
of the magnetic ˇeld of the B = 1, 2, 3, 4 gauged planar Skyrmions in the model (9) at g = 1
is displayed in Fig. 5.

Evidently, this is the ˇeld of the circular vortices which encircles the partons.
As the gauge coupling increases, the radius of each vortex is getting smaller and the mag-

nitude of the magnetic ˇeld increases signiˇcantly. Effectively, using the Maxwell equation
∇×B = j, one can set this magnetic ˇeld into correspondence with a circular electric current
j (10). In the strong coupling limit the integrated total magnetic 	ux of the gauged planar
Skyrmion through the x−y plane becomes quantized in units of 2π (see Fig. 4). However,
each parton is now associated with the fractional 	ux which in the model with D2 symmetry
breaking potential (7) is just half of integer. Evidently, since in the model with easy plane

Fig. 4. The magnetic 	ux through the x−y plane as a function of the coupling constant g for the

solutions of degree Q = 1, 2, 3, 4 at μ = 1
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Fig. 5. Magnetic ˇeld distribution in the x−y plane for the solutions of degree B = 1, 2, 3, 4 at g = 1

potential [25] the symmetry is broken to DN and each parton bears a fractional topolog-
ical charge B/N , in the strong coupling limit the corresponding 	uxes will be effectively
quantized in units of fractional 	ux Φ/N .

CONCLUSIONS

The main purpose of this work was to present a new type of gauged solitons in the planar
SkyrmeÄMaxwell theory. In the model with dihedral symmetry the individual solitons are
composed out of the constituents with fractional topological charge. Interestingly, since the
original (3 + 1)-dimensional Skyrme model is posed to describe hadrons, such constituents
may be considered as an analogue of constituent ©quarksª in the effective low-energy theory.

Similar to the corresponding solutions in the Skyrme model and FaddeevÄSkyrme mo-
del [27], they are topologically stable and in the weak coupling regime they carry a nonquan-
tized magnetic 	ux which is orthogonal to the x−y plane and penetrates the Skyrmion. In
the strong coupling limit the magnetic 	ux, associated with the partons, becomes quantized
in fractional units of topological charge.

We conˇrm that the mass of the static conˇguration decreases when the electromagnetic
coupling constant is increased; thus, a baby Skyrmion can lower its mass by interacting with
the electromagnetic ˇeld.

Finally, note that the planar Skyrmions appear as quasiparticles in various systems, in
particular, they are natural objects at the description of the integer quantum Hall effect [15].
The vortices coupled to the planar Skyrmion constituents in the strong coupling limit may carry
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fractionally quantized magnetic 	ux. Vortices of this type may appear in multicomponent
superconductors [36]; thus, as avenues for further research, it would be interesting to extend
the solutions in this work to the effective condensed matter systems.

Acknowledgements. The author is grateful to Derek Harland, Nick Manton, Martin
Speight, and Andrzej Wereszczy
nski for useful discussions and valuable comments.

REFERENCES

1. Skyrme T.H. R. A Nonlinear Field Theory // Proc. Roy. Soc. London A. 1961. V. 260. P. 127Ä138.

2. Witten E. Global Aspects of Current Algebra // Nucl. Phys. B. 1983. V. 223. P. 422Ä432; 433.

3. Adkins G. S., Nappi C. R., Witten E. Static Properties of Nucleons in the Skyrme Model // Ibid.
V. 228. P. 552.

4. Manko O .V., Manton N. S., Wood S.W. Light Nuclei as Quantized Skyrmions // Phys. Rev. C.
2007. V. 76. P. 055203.

5. Adam C., Sanchez-Guillen J., Wereszczynski A. A Skyrme-Type Proposal for Baryonic Matter //
Phys. Lett. B. 2010. V. 691. P. 105.

6. Adam C. et al. Bogomol'nyiÄPrasadÄSommerˇeld Skyrme Model and Nuclear Binding Energies //
Phys. Rev. Lett. 2013. V. 111. P. 232501.

7. Callan C. G., Jr., Witten E. Monopole Catalysis of Skyrmion Decay // Nucl. Phys. B. 1984. V. 239.
P. 161.

8. Piette B. M. A. G., Tchrakian D.H. Static Solutions in the U(1) Gauged Skyrme Model // Phys.
Rev. D. 2000. V. 62. P. 025020.

9. Radu E., Tchrakian D.H. Spinning U(1) Gauged Skyrmions // Phys. Lett. B. 2006. V. 632. P. 109.

10. Schroers B. J. Bogomolny Solitons in a Gauged O(3) Sigma Model // Phys. Lett. B. 1995. V. 356.
P. 291.

11. Bogolubskaya A. A., Bogolubsky I. L. Stationary Topological Solitons in the Two-Dimensional
Anisotropic Heisenberg Model with a Skyrme Term // Phys. Lett. A. 1989. V. 136. P. 485Ä488;
Bogolubskaya A. A., Bogolubsky I. L. On Stationary Topological Solitons in a Two-Dimensional
Anisotropic Heisenberg Model // Lett. Math. Phys. 1990. V. 19. P. 171.

12. Piette B. M. A. et al. A Modiˇed MottolaÄWipf Model with Sphaleron and Instanton Fields // Phys.
Lett. B. 1994. V. 320. P. 294Ä298;
Piette B. M. A., Schroers B. J., Zakrzewski W. J. Multisolitons in a Two-Dimensional Skyrme
Model // Z. Phys. C. 1995. V. 65. P. 165Ä174.

13. Yu X. Z. et al. Real-Space Observation of a Two-Dimensional Skyrmion Crystal // Nature. 2010.
V. 465. P. 901Ä904.

14. Neubauer A. et al. Topological Hall Effect in the A Phase of MnSi // Phys. Rev. Lett. 2009. V. 102.
P. 186602.

15. Girvin S.M. The Quantum Hall Effect: Novel Excitations and Broken Symmetries // Aspects
Topologiques de la Physique en Basse Dimension. Topological Aspects of Low-Dimensional Sys-
tems. Berlin; Heidelberg: Springer, 1999. P. 53Ä175.

16. Kodama Y., Kokubu K., Sawado N. Localization of Massive Fermions on the Baby-Skyrmion Branes
in 6 Dimensions // Phys. Rev. D. 2009. V. 79. P. 065024.

17. Adam C. et al. Investigation of Restricted Baby Skyrme Models // Phys. Rev. D. 2010. V. 81.
P. 085007.

18. Gladikowski J., Piette B. M. A. G., Schroers B. J. SkyrmeÄMaxwell Solitons in (2+1)-Dimensions //
Phys. Rev. D. 1996. V. 53. P. 844.



Fractional Nontopological Quantization of the Magnetic Fluxes 753

19. Loginov A. Yu. Rotating Skyrmions of the (2+1)-Dimensional Skyrme Gauge Model with a ChernÄ
Simons Term // J. Exp. Theor. Phys. 2014. V. 118, No. 2. P. 217Ä226.

20. Adam C. et al. Magnetothermodynamics of BPS Baby Skyrmions // JHEP. 2014. V. 1411. P. 095.

21. Adkins G. S., Nappi C. R. The Skyrme Model with Pion Masses // Nucl. Phys. B. 1984. V. 233.
P. 109.

22. Battye R., Sutcliffe P. Skyrmions and the Pion Mass // Nucl. Phys. B. 2005. V. 705. P. 384Ä400.

23. Ward R. S. Planar Skyrmions at High and Low Density // Nonlinearity. 2004. V. 17. P. 1033Ä1040.

24. Hen I., Karliner M. Rotational Symmetry Breaking in Baby Skyrme Models // Nonlinearity. 2008.
V. 21. P. 399Ä408.

25. Jéaykkéa J., Speight M., Sutcliffe P. Broken Baby Skyrmions // Proc. Roy. Soc. London A. 2012.
V. 468. P. 1085Ä1104.

26. Salmi P., Sutcliffe P. Aloof Baby Skyrmions. arXiv:1409.8176 [hep-th].

27. Shnir Y., Zhilin G. Gauged Hopˇons // Phys. Rev. D. 2014. V. 89. P. 105010.

28. Piette B. M. A., Schroers B. J., Zakrzewski W. J. Dynamics of Baby Skyrmions // Nucl. Phys. B.
1995. V. 439. P. 205Ä235.

29. Foster D. Baby Skyrmion Chains // Nonlinearity. 2010. V. 23. P. 465.

30. Weidig T. The Baby Skyrme Models and Their Multiskyrmions // Nonlinearity. 1999. V. 12. P. 1489.

31. Leese R. A., Peyrard M., Zakrzewski W. J. Soliton Scatterings in Some Relativistic Models in
(2 + 1)-Dimensions // Nonlinearity. 1990. V. 3. P.773.

32. Sutcliffe P. The Interaction of Skyrme-Like Lumps in (2 + 1) Dimensions // Nonlinearity. 1991.
V. 4. P. 1109.

33. Jaykka J., Speight M. Easy Plane Baby Skyrmions // Phys. Rev. D. 2010. V. 82. P. 125030.

34. Adam C. et al. The Gauged BPS Baby Skyrme Model // Phys. Rev. D. 2012. V. 86. P. 045010.

35. Schéonauer W., Wei� R. Efˇcient Vectorizable PDE Solvers // J. Comp. Appl. Math. 1989. V. 27.
P. 279;
Schauder M., Wei� R., Schéonauer W. The CADSOL Program Package. Interner Bericht Nr. 46/92.
Univ. Karlsruhe, 1992.

36. Babaev E., Jaykka J., Speight M. Magnetic Field Delocalization and Flux Inversion in Fractional
Vortices in Two-Component Superconductors // Phys. Rev. Lett. 2009. V. 103. P. 237002.

Received on December 25, 2014.


