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The effects of the Coulomb-like tensor (CLT), Yukawa-like tensor (YLT) and generalized tensor
(GLT) interactions are investigated in the Dirac theory with the Schioberg and Manning—Rosen potentials
within the framework of spin and pseudospin symmetries using the Nikiforov—Uvarov method. The
bound state energy spectra and the radial wave functions have been approximately obtained in the case
of spin and pseudospin symmetries. We have also reported some numerical results and figures to show
the effects of these tensor interactions.

B p 6ote uccienyorcs 3eKThl KyJTOHIOTOOHOTO, 0K B MOXOOHOrO W 0OO0OIIEHHOTO TEH30PHBIX
B3 uMozeicTBiil B Teopun Jup K ¢ moteriu 1 Mu [leGepr u M HHUHT —Po3eH B p MK X CIIMHOBOWM
U TICEBIOCIIMHOBOM CUMMETpUil ¢ nomoiipio Meron Hukugopos —YB pos . [omydeHsl npubIuxKeHHbIE
CIIEKTPbl SHEPIMU CBS3 HHOTO COCTOSIHUSL M P JM JIbHBIE BOJHOBbIE (PYHKIHHM B CIyd € CIHHOBOH U
NICEBIOCITUHOBOU cUMMeTpuii. T KXe IPUBOIITCS HEKOTOPbIE YHUCIEHHbBIE PE3Y/IbT Thl U PUCYHKH, YTOOBI
NPOWLTIOCTPUPOB Th 3heKThl HTHX TEH30PHBIX B3 UMOIEHCTBHIA.

PACS: 03.65Ge; 03.65Pm; 03.65Db

INTRODUCTION

Within the framework of the Dirac theory, the spin symmetry occurs when the differ-
ence of the potential between the repulsive Lorentz vector potential V(r) and attractive
Lorentz scalar potential S(r) is a constant, that is, A(r) = V(r) — S(r) = const. On the
other hand, the pseudopsin symmetry arises when the sum of the potential of the repul-
sive Lorentz vector potential V' (r) and attractive Lorentz scalar potential S(r) is a constant,
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that is, 3(r) = V(r) + S(r) = const [1-6]. The solutions of the Dirac equation under
pseudospin and spin symmetries with a number of potential models have been investigated
by many researchers. These potentials include the Manning—Rosen [7], Eckart [8], Hyller-
aas [9], Deng—Fan [10], Mdbious square [11], Tietz [12], hyperbolical [13], Yukawa and
inversely quadratic Yukawa [14, 15] potentials. The spin and pseudospin symmetries under
various phenomenological potentials have been investigated using various methods, such as the
Nikiforov—Uvarov (NU) method [16], supersymmetric quantum mechanics (SUSYQM) [17],
and others [18]. On the other hand, we are now almost sure that the spin and pseudospin
symmetries of the Dirac equation play a significant role in nuclear and hadronic spec-
troscopy [19,20]. The tensor interaction has attracted a great attention as it removes the
degeneracy between the doublets [20]. In most of studies, due to the mathematical struc-
ture of the problem, the tensor interaction is considered as the Coulomb-like [19,20] or
Cornell interaction. Hassanabadi et al. were the first who introduced the Yukawa tensor
interaction [21]. The investigation has shown that tensor interaction removes the degeneracy
between two states in the pseudospin and spin doublets. The effect of tensor coupling under
spin and pseudospin symmetries has been studied only for the Coulomb-like interaction until
recently that Hassanabadi et al. [21] introduced the Yukawa tensor interaction.

In the present study, we obtain the approximate analytical solutions of the Dirac equation
for the scalar and vector Schidberg and Manning—Rosen potentials together with the Coulomb-
like tensor (CLT), Yukawa-like tensor (YLT) and generalized tensor (GLT) potentials within
the framework of spin and pseudospin symmetry limits.

The paper is organized as follows. In Sec.1, we review the NU method. Section 2 is
devoted to the Dirac equation for spin and pseudospin symmetries. We present the solutions
of the Dirac equation under the Coulomb tensor interaction in Sec.3. Solutions of the Dirac
equation under the Yukawa tensor interaction are presented in Secs.4 and 5. Special case of
the potential is discussed in Sec. 6. Finally, we give a brief conclusion.

1. THE NIKIFOROV-UVAROV METHOD

The NU method can solve the second-order differential equation of the form [16]:

7(s) 7 (s)
o (s) o2 (s)
where o (s) and & (s) are polynomials, at most of the second degree, and 7 (s) is the first-
degree polynomial. To make the application of the NU method simpler and more direct, we

introduce a more compact presentation of the idea. In order to do this, we rewrite Eq. (1) as
follows [22]:

s+ (3225 ) vl + (‘5152 ud ‘53> bels)=0, @

(1—c3s 52 (1 — c3s)

Y () + P () +

¥n (s) =0, (1)

in which
Comparing Eq. (1) with Eq. (2), we obtain the following identifications:

T(s)=c1—cs, o(s)=s(1—cs5), G(s)=—&5"+&s— & @
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Following the NU method, we obtain the following required parameters:
(i) The relevant constant

1 1
0425(1—01), 05:5(02—203), ce = c2 + &1,

2 2
c7 =2cqc5 — &2, cg=cy+E&3, €9 = cC3cr+ C508 + Ca,

cio =c1+2ca+2v/cg, ci11=ca—2¢c5 +2(\/cog+c3v/cg), c12 =ca+ /s,
c13 = ¢5 — (/g + c34/¢3) .

)

(ii) The essential polynomial functions
m(s) = ca+css — [(Veo +e3v/es) s — Ves ], (6)
k= — (c7 + 2c308) — 2y/Cs0p, %
7(s) =c1+2c4 — (c2 = 2¢5) s = 2[(V/eo + c3v/cs) 5 — V/es ], ®)
7 (5) = —2¢5 — 2 (/G + c31/G5) < O. ©)

(iii) The energy equation
con—(2n+1)cs+ (2n+ 1) (Vg + csv/csg) +n (n — 1) ez +cr +2c3c8 +24/cscg = 0. (10)

(iv) The wave functions

p(s) =5 (1—czs)™, (11)
10} (S) = g€12 (1 — 038)013, c12 >0, c13>0, (12)
Yn (s) = PLroe) (1 = 2¢35),  c19> —1, e3> —1, (13)
c c 71,21—170 —1
Yk (5) = Nnnscn (1 - 635)_612_ C133 Pn< " 3 " ) (1 — 2(335), (14)

where P,(l”’”) (x), uw>—1,v > —1, and = € [-1, 1] are the Jacobi polynomials with

(a+1),
n

PA)(1 - 25) = Fi(-n1+a+8+na+ls), (1)

and N, is the normalization constant. Also, the above wave functions can be expressed in
terms of the hypergeometric function via

Y (8) = Nps™? (1 — ¢38)"* 9 F1(—n, 1+ c10 + c11 + 1510 + 15 ¢358), (16)

where ¢12 > 0, ¢33 > 0 and s € [0,1/c3], ¢35 # 0.
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2. THEORY OF THE DIRAC EQUATION

The Dirac equation for spin-1/2 particles moving in an attractive scalar potential S(r), a re-

pulsive vector potential V(r) and a tensor potential U(r) in the relativistic unit
(h=c=1)is

la-p+B(M+5(r) —ifa-?U(r)] ¢(r) = [E = V(r)]$(r), a7

where F is the relativistic energy of the system; p = —iV is the three-dimensional momentum
operator and M is the mass of the fermionic particle. «, 3 are the 4 x4 Dirac matrices given as

(7). -0

where [ is the 2 x 2 unitary matrix and o; are the Pauli three-vector matrices:

al—<(1’ (1)) 02_<? _(f), 03—@ _01). (19)

1 1
The eigenvalues of the spin-orbit coupling operator are x = (j + 5) =0, k=— (j + 5) <0
1
for the unaligned j = 1—5 and the aligned j = l+§ spin, respectively. The set (H, K,J?, JZ)

forms a complete set of conserved quantities. Thus, we can write the spinors as

1(amw%&m0,

Ynn(r) = — (G (r) Y}, (0,

(20)

where F,,.;(r), Gn.(r) represent the upper and lower components of the Dirac spinors.

l l . . . . . . .
Y, 0, 0), ij(O., ) are the spin and'pseu.df)spln spherical harmonics and m is the projection
on the z-axis. Using the well-known identities,

(-A)(c-B)=A-B+io-(A-B), o'~p—a~73<f'~p—|—ia7;L>, Q1)

as well as the relations

(0-L) Y}, (0.9) = (k= ) YL, (6,0),
(0-L)Y},(0.9) = —(k—1) Y7 (0, 9), )
(0 7)Y}, (0,9) = =Y}, (0, 9),
(o) Y} (0.0) = Y (0.0).
we find the following two coupled first-order Dirac equations:
(dii 4 ; - U(r)> Fpw(r) = (M + Epp — A(1)) Gy (7), (23)

(35 = 24 U0)) Gunlr) = (M = B+ 30) Fonlo) 9
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where

A(r) =
Y(r) =

V(r)—S(r), (25)
V(r)+ S(r). (26)

Eliminating F,,,;(r) and G, (r) in Egs. (23) and (24), we obtain the second-order Schrodinger-
like equation

[ @ ketl)  2U(r) dU(r) U2(r) — (M + Ep — A(r)) |

dr? 72 r dr
dA(’I") d K ; nn(r) = 07
dr (% T (T))

| (M= B+ %)) + (M + Enp — A1) |

@7)
i j—; ) ﬁ(ﬁr; D, Qfdi(r) . dt;(ﬂﬂ CU2r) = (M + B — A@) ]
1 AL
| (M = Ep +3(r)) + (M — En,, +3(1)) -
(28)

where k(k — 1) = I(I+ 1) and k(k + 1) = 1(I +1).

3. PSEUDOSPIN AND SPIN SYMMETRY LIMITS UNDER CLT INTERACTION

In this section, we intend to investigate the Dirac equation with the Schidoberg and
Manning—Rosen potentials in the presence of the Coulomb-like tensor interactions.

3.1. Pseudospin Symmetry in the Dirac Equation with CLT Interaction. The pseudospin
symmetry occurs in the Dirac equation when dX(r)/dr = 0 or equivalently X(r) = Cps =
const. To investigate the approximate analytical solution of the Schidoberg and Manning—
Rosen potentials, we define the Manning—Rosen potential [7] and the Schidberg potential [23],
respectively, as

Ve = Do (1 — o coth (8r)) + Dy (1 — o coth (8r))? =

D Dae—267 D D o267 2
— Dy <—2+ 3¢ )+D1 (—2+ 82 ) , (29)

1— e—2[3r 1— e—2[3r
~ B2 [ala—1)e 4 Ae 20"
VMR = — 30
MR 2Mb2 ( (1 _ e_QﬁT)Q 1 _ 67257" ? ( )

where A and « are two constants and the parameter [ characterizes the range of the potential.
Dq,0 and Dy = (1 — o), D3 = (1 4+ o) are some parameters representing the molecular
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properties [24]. We consider the sum of the scalar and vector potentials as

1— e—2[3r 1— e—2[3r

2 _ —408r —20r
n I (a(a 1)e _Ae ) 31)

- Dy + D3 e~ 287 Dy + D3e287\”
A(r) = Vae + Vamr = Do <i>+D1 (&) +

2Mb? \ (1 —e207)? 1—e 267
in addition to the Coulomb tensor interaction term [25],
U(r)=-—, r2>2R, (32)

with
2
H = M7 (33)
47‘(60
where R. is the Coulomb radius, z, and z; denote the charges of the projectile a and the
target nuclei b, respectively.

Substituting the above equations into Eq. (28) yields

d? 1) 2 Dy + D3 e~ 207 Do + Dsg e~ 207 2
{ﬁ — 2~ s T Pps | Do (—1 —o ) PO

v s R |ala—1)e ™4  Ae287
PS\ 90 Ip2 (1 i e,gﬁr)2 1 —e—26r

} Gho(r)+

) G =0, (34)

where

0= (/@(/@—1)+2/@HC+H3—HC) = (k+H.)(k+H.—1) = ns(ns—1) = 0w = (k+H.), (35)
eps = (M + EPS.) (M — EFS, + Chs), (36)

Bps = (M — EPS, + Cps). (37)

It is well known that the above equation cannot be solved exactly due to the centrifugal
term r~2. In order to get rid of the centrifugal term, we make use of the following approxi-
mation [26]:

1 432 =207

—~ . 38
72 (1 — em26r)? (38)

Substituting Eq. (38) into Eq. (34) in view of the transformation, y = e~ 29", yields

dQGELf,,i (1—3s) dGP, . 1

_ P82 Psg _ PSy aps 39
dr? S(].—S) dr 52(1—8)2( p1 8" +pys p3) n,k ) (39)
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where
ps __ 6I%S + 6pSD0D3 o 5psD1D?2, o 5psh2a(a - ]-) - ﬂpSHQA (40)
Pr =\ 43 43 43° 832 Mb? 8FEMB2 |
2 2
ps __ 6ps 5psDO(D3 - D2) 5psD1D2D3 i 6psh A 41
P = <252 + 432 + 232 0 8B2Mb2 | 4D
ps _ 61275 o 5psD0D2 o 5psD1D% (42)
’ 452 432 452 '

3.2. Spin Symmetry in the Dirac Equation with CLT Interaction. In the spin symmetry
limit case, we use the following scalar, vector and tensor potentials:

2
Dy + D3 e~ 267 Dy + Dsg e~ 2hr
Y(r) = Dy <—1 o2 + Dy e ) *

2 -1 —408r A —20r
n I3 ala—1)e o e - @3
2Mb% \ (1 —e267) 1—e 2067

Alry=0Cy, U(r)=-—.
Substituting Eq. (43) into Eq. (27) yields,

d? Nk — 1) 2 D2+D36726r D2+D36726r 2
{W‘T‘gs_ﬂs Do\ e )T\ 7o — X

h? (a(a —1)e 4 Ae20r )

X Fn,fi(r) — B l2Mb2 (1 _ 6*257“)2 1 207 an(r) =0, (44

where

y=k(k+1)+2cH.+ H. + H? =
=+ H)(k+He+1)=nc(ne —1) = ne = (+ H+1), (45)
ei=(M=E, ) (M+E;,,~C), Bs=(M+E,, -C)
By using the approximation of Eq. (38) for the centrifugal term in Eq. (44), we obtain the

following second-order differential equation, in view of the z = e~2°" transformation,

EF, (1-z) dFS . i
n,k n,K s S, _ 8\ FS -0 46
dr? Z(l — Z) dr + 2;2(1 _ 2)2 ( P17~ + P2z P3) n,n('z) ’ (46)

where
s 52 ﬁleD?Q, ﬁsDODB ﬁsf:LQOé(Oé - 1) BSFLQA
p1= 5+ 2 2 2 NTh2 22 ) (47)
443 43 43 8B2Mb 832 Mb
s _ (22 BsDo(Ds—Ds) 2B,D1D:D3  B*A v 48)
P2 =\ 432 432 43 8FEM 1)’

262 B,DoDy  BsD1D}
s _ s : : . 49
p3 (452 + 452 + 4ﬂ2 ( )
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3.3. Pseudospin and Spin Symmetry Solutions with CLT Interaction. We will solve the
solutions of Egs. (39) and (46) by using the parametric generalization of the NU method in
the subsequent subsection.

3.3.1. Pseudospin Symmetry Solution with CLT Interaction. Now, comparing Eq. (2) with
Eq. (39), we obtain

a=1, a=1, =1, &L= &=p, &=p;. (50)
Other parameters can be obtained from Eq. (5) as
1 1 .
cqe =0, 652_55 Ce = Z+p11)g7 C7:_pgg7

(51)

1
g =p5, co=—+pl+ps —ph, cro=1424/p8,
1 ps ps ps ps
611:2“‘2 _+p1 +p3 _p2+ pg

4
4 ) Ci2 = \/ p§S7

1 1 s s : s
13 = =5 (\/Z+p?‘+p§ — P+ p§>-

Substituting Egs. (50) and (51) into Eq. (10) yields

1 1 _
"2+(n+§) +(@2n+1) (\/Z+p‘f5+pgs—p§‘+ p§S>—

S ]- S S S
— P8+ 208" + 2\/p§‘ (Z + o0+ s~ p§*> =0. (52

From Eqgs. (14) and (15) the lower component of the wave functions is as follows:

ps _ ATPS o—2B+/pSr
G (r)anﬁe 37X

n,K

(1 o2y BVIRTREIT pVAERVIRATA=) oy (s3)

and the other component of the wave function can be obtained as

1 d k H
FPs - - (= _ZT_ = ps 4
n7)§(r) M — Erpz,s,'{ + Cps (d?“ r T ) Gn7’€(7‘)7 (5 )

where VPS5 is the normalization constant and EY°,. # M + Cps.

3.3.2. Spin Symmetry Solution with CLT Interaction. Applying the same procedure to
Eq. (46) for the spin symmetry limits, the energy eigenvalues equation and the correspond-
ing upper wave function of the Dirac theory for the combined generalized Schidberg and

Manning—Rosen potentials in the presence of the Coulomb tensor interaction are obtained as

1 1
n2+<n+§> +(2n+1) <\/Z+pf+p§—p§+\/p§>—

1
—p3+2p§+2\/p§ <1+p‘i+p§—p5> =0, (59
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E’ (r)=N; e 20VPET

n,K n,K

« (1 — o~ 2ory S VIRTA=08 p(AVARRRAZA) (| oy

(56)
where IV is the normalization constant.
The other component of the Dirac spinor can be found as
1 d k H
G? =— | —+—4+— | E} . 57
n,n(r) M"‘ETS)/R _ CS (d?“ + r + r ) n,/{(r) ( )

4. PSEUDOSPIN AND SPIN SYMMETRY LIMITS UNDER YLT INTERACTION

In the following section, we intend to investigate the Dirac equation with the Schidberg and
Manning—Rosen potentials in the presence of the Yukawa-like tensor interactions. The present
Yukawa potential as the tensor term in the Dirac equation also removes the degeneracies in
addition to the Coulomb tensor interaction. Therefore, it is necessary to investigate this
potential model with the Yukawa potential as tensor interaction term.

4.1. Pseudospin Symmetry in the Dirac Equation with YLT Interaction. The pseudospin
symmetry occurs in the Dirac theory as dX(r)/dr = 0 or equivalently X(r) = Cps = const.
In order to find the approximate analytical solution of the Dirac equation under the pseudospin
symmetry limit, we take the difference of the scalar and vector potentials as the combined
generalized Schidberg and Manning—Rosen potentials

2
Do + D5 e 20T Do + D5 e 20T
Al = Do < e )P T ) T

K2 ala—1)e 48" Ae—207
+ 5 ( ) 5 — — (58)
2Mb (1 —e—267) 1 —e—28r
in addition to the Yukawa tensor interaction
Vy e Pr
U(r) = —2"—, (59)
r

where V4~ is the Yukawa parameter. Inserting Eqgs. (58) and (59) into Eq. (28) yields

2 —1) 2V e Ble T Ve BT VEe2r
{__n(n ) _ 26V e™™  pVyen™  Wye ™ Vye }Gps (r)+
dr? r2 72 T r2 r2 ok
Do + D3 e 20" Do+ Dye28m\?
2 2 3 2 3
+ {_Eps + ﬁps DO ( 1_ 67267’ + Dl 1_ 67267’

+

h? <a(a —1)e 41 Ae20r )

2MB? \ (1 —e20m)  1—e 20

} Gix(r) =0, (60)

where €2, = (M + EFS,) (M — EFS, 4 Cps) and fps = (M — EBS, + Cps).
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Again Eq. (60) cannot be solved exactly by any known method because of the centrifugal
term 1/72. In order to get the approximate solution of Eq.(60), we use Eq.(38) and the
following approximation [27]:

1 4632 =P

—_—~ . 61
7/!2 (1 _ e_QﬁT)Q ( )

Substituting Eq. (61) into Eq. (60) and applying the transformation s = e~2°", we get

dGR (1-5) dG73, 1 ps 2 p ps
> ) A ps S. s) (s -0 62
ds? S(]. — S) ds T 52 (1 _ 8)2 ( NS +72 $—73 ) n,n(s) ; ( )
where
2 2
ps __ EPS 1 5psD0D3 N ﬂpleD;g .
M= <4ﬁ2 + Wy (VY + 5 + 432 432

ﬁpshQA BpshQO‘(a — 1)) (63)

S 8Mb: 832 Mb?
V5 = (—ﬁ(ﬁ —-1)— (2% — ;) W+

_|_€_12’S + BpsDo(D3 — D2)  BpsD1D2D3 B Bpsh? A 4
2/ 432 232 832Mb2 )’
ps _ 51235 BpsDoD2 ﬁpleDg
5 \de2 4 42 (65)

4.2. Spin Symmetry in the Dirac Equation with YLT. In the spin symmetry limit case,
we use the following scalar, vector and tensor potentials:

—20r
A(r)=Ch, S(r) = Dy (%>

1 —e—26r

Dy + Dge—26m\° h? ala—1)e4Pr Ae—2687
+Dy | 2 + (a-1) - —= |, (66)
1—e 267 2Mb (1 —e—26r) 1—e 207

U(r)=——>7", (67)
which transform Eq. (27) into the form

d*F3 . (1—s) dF} 1
: — +
dr? s(1—s) dr s2(1 — s)?

(—ois® + 055 —0f) Fi . (s) =0, (68)



Approximate Arbitrary k-State Solutions of the Dirac Equation 797

where
s 62 1 /331)01)3
71 (4/32 ( 2) 4/32
B,D1D%  R2Bsala —1 126, A
+— 13 s ) - , (69)
432 832 Mb? 832 M b2

2
o5 = (i;; —k(k+1)— (2%—1— ;) Vy —
_ BsDo(D3 — D2)  BsD1D2Ds h?3s A (70)
15 27 RFMR2 )

s EE 55D0D2 55D1D%
0'3<462+ 152 + 152 > 71)

5. PSEUDOSPIN AND SPIN SYMMETRY SOLUTIONS WITH YLT

In this section, we intend to investigate the solutions of Eqs. (63) and (68) for pseudospin
and spin symmetry using the parametric generalization of the NU method.
5.1. Pseudospin Symmetry Solution. Comparing Egs. (63) and (2), we obtain

a=1 =1 ag=1 =%, &L=%, &= (72)
and other parameters are obtained as follows:
c4=0, ¢= —%7 ce = i +7° =%,
cs=75, C9= i W -
i (73)
cro =1+2¢/7° 11 =242 \/Z 1+ =+ 7§S> ,

1 1
2 =\75 s =5 <\/Z T V‘ES) '

Substituting Egs. (72) and (73) into Eq. (10) gives the energy eigenvalues as

1 ]‘ S S S S
n(n+1)+5+@2n+1) <\/Z+7{’ +73 = + 7};)—

pS
S S S _ps S\ 2 S_ ps 7
-7+ 2 +2\/—7§7§ +OF) W =0 (74

From Eq. (14) the lower and upper components of the wave function are obtained as follows:
GR(r) = NES e 2V

1 I, PS, _ PS__Ds 24/75% 24/ 2 P54 D% 0"
% (1—6_26r)2+ 2t71 3 2 Pn( V3 1771 TV3 —72 )(1—26_25T), (75)
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1 d kK
[ps - - (Zz=_Z ps
n,l{(r) M _ E;:Sﬁ + Cps (dr r + U(T)) Gn,n(’r)) (76)

where EL®. # M + Cops.
5.2. Spin Symmetry Solution. Also, comparing Egs. (68) and (2), we obtained

(31:1, 62:1, 6321, flzof, EQZUS, €3=U§. (77)

From Eq. (5) other parameters are obtained as follows:

_0 — 1 — 1 S — S _ S
cq4 =V, 65__57 66_Z+01; Cr = —0y, g = 03,
cg=—+o0]+05—0; cio=1+24/03,

4

(78)

1
611:2+2<\/Z+Uf+0§—05+\/0§>, c12 = /03,

1

1
013:—5— <\/Z+U‘f+0§—a§+\/a§>.

Substituting Egs. (77) and (78) into Eq. (10) gives the energy eigenvalues as

1 1
n(n+1)—|—§+(2n+1) (\/Z—i—a‘f—kag—ag-k\/;g)_

1
—a§+2a§+2\/o§ (1+of+0§—05> =0. (19

Finally, we obtain the upper and lower wave functions as

Fo(r) = Nyl e VT (1 e2n) VAT e

24/05,2¢/ 1 +0?+05—03
~ Pn( \/_3 ztoi+o3 z)(l _ 26—257‘)7 (80)

s — 1 i E_ S
Ginl) = 5155 (g *+ == U0)) Pl 1)

n,K

6. PSEUDOSPIN AND SPIN SYMMETRY LIMITS UNDER GLT INTERACTION

In the following section, we intend to investigate the Dirac equation with the Schidberg and
Manning—Rosen potentials in the presence of GLT interactions. The present GLT potential
as the tensor term in the Dirac equation also removes the degeneracies in addition to the
Coulomb-like and Yukawa-like tensor interactions. Thus, it is pertinent to investigate this
potential under consideration with GLT as interaction term.
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6.1. Pseudospin Symmetry in the Dirac Equation with GLT. The pseudospin symmetry
occurs in the Dirac theory as dX(r)/dr = 0 or equivalently ¥(r) = Cpg = const. In order to
find the approximate analytical solution of the Dirac equation under the pseudospin symmetry
limit, we take the difference of the scalar and vector potentials as the combined Schidberg
and Manning—Rosen potentials

2
Do + D5 e 20T Do + D5 e 20T
A(r) = Dy <—1 L Dy (=) +

B2 |ala—1)e 4 Ae 207
IMD2 [ (1= o-26r)’ T 1207 (82)
In addition, we proposed a novel generalized tensor interaction of the form
U(r) = —Uc(r) + Uy(r)), (83)
where, Uc(r) and Uy (r) are the Coulomb-like and Yukawa-like potentials defined as
Uc(r) = —%, Uy(r) =~V (84)

—
If we identify Uc(r) as the standard Coulomb potential, the potential parameter H, is the
Coulomb parameter and V3 is the Yukawa parameter.

Substituting Eq. (84) into Eq. (83), we obtained our proposed Generalized Tensor Interac-
tion (GTI) as

U(r) = —% (He+ Ve 7). (85)

Substituting the above equations into Eq. (28) yields

dr? r2 72 r2 72
2y ke Pr Vye ™ Vye P 2H.Vye Pr VZe 287
><<— L P R S NEEpA A )Gf;(m

r2 r

2 _ 2
[ & k(k=1) 2kH, + H. HF (M +ER,) (M — E, + cps)} GPs,.(r)x

r r

Dy + Dge=20r Dy + Dge=20r

[DO (42 = e > + D ( : +—i§6

—l—(M—EpS —l—C) 1—e20" 1—e20"
n,K ps h2 <Ot(04 _ 1) 67457" A672ﬁr )

2MB? \ (1 —e20m)2 1—e 20

> g Grs.(r) = 0.

(86)

It is well known that the above equation cannot be solved exactly due to the centrifugal
term 2. In order to get rid of the centrifugal term, we make use of Eq. (38) and Eq. (61).

—1) 2kH. H. H? BVoe @  VZe 2P7
By using approximation (38) for (LQ), /<;2 ST s Ve and —¥ 62 ), and
5 TV T EH ‘7; ol r
214 —Br —Br . —Br )
approximation (61) for ( YH; , Y62 and );e ) as well as applying the
r r r

transformation s = e~ 20", we obtain

d?Grs (1—s) dGP* 1
+

n,K n,K

ds? s(l—s) dr s2(1—s)°

[X1"s” + x5 — x5 G =0, (87)
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where
2 2 2 2
ps __ Eps BPSDOD3 _ ﬁpleDg V V 1 _ h ﬁpsa(a — 1) _ h BpgA 88
XU =g T T e . T\t MR s oY)
ps _ 281275 + 2ﬁpsl)ll)21)3 + BpsDO(D3 - DQ) _
X2 = e 132 437
2 Bps A 3
— W - W (2H+2Hc—§) — (M — 1), (89)
g2 <DoD <D D3
xp =i PemloD2 GOl (90)
45 45 45
g2, =M?—E., + (M + Eny) Cps, 91)
ﬁps = (M - Em-i + Cps)7 (92)
H2—|—2/<;Hc—|-/<;(/<;—1)—Hc:nn(nn—l)ﬁnﬁ:(/<;+Hc). (93)

6.2. Spin Symmetry in the Dirac Equation with GLT. In the spin symmetry limit
condition, we take the sum potential ¥(r) as the hyperbolical potential, the difference potential
A(r) as the constant and the tensor potential U(r) as the GTI term. Thus, we have the
following:

2
Do + D5 e~ 2hr Doy + D5 e~ 2hr
=) =Do < e )P T ) F

2 [ala—1)e 4 Ae 20" o)
Yz < (1—e—20r)? Tl _e-26r | A(r) = Cs,

1
U(r) = - (He+ Vy e ).
Substituting Eq. (94) into Eq. (27) yields

2 2
d__ﬂ(ﬂ—i_l)_2I€HC—&—i—(M‘f'Enn_CS)(M_En”)_

dr? r2 72 r2 72
2
D2 + D3 6_267" D2 + D3 6_267"
M B = Go) lDO () oo () + e

K2 <a(a -1 e 40T Ae 207 )1
+

2MB? \ (1 —e20m)? 1—e 20

2kVy e P" Vye " Ve T 2H Vye T VZe 20T
_< K Y2€ +ﬂ ve 7 Y62 n ve " | Ye2 )an(r)_o.

(95)

r r r r2 r

k(k+1) 2kH, H, H? BVye P" V2 e 20r

P20 2 20 g2 r and 2 )’

2V ke P Vye Pr d 2H Vy e B"
an

r2 ’ r2

By using approximation (38) for (

and approximation (62) for ( ), the above second-order
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differential equation via the transformation y = e~2°" appears as

d?F; (1—y) dF; 1 )
n,K n,K __f£s s _ S Fs —
dy? + y(1—y) dy + y2(1—y)? (=fiy* + f3y— f3) B« (y) =0,
where
. € BDiD} B.DyDs 1\  h2Bala—1)  h2BA
=gt @ @ W (VY - §> TR R
s 22 28,D1DsD3  B3,Do(Ds — Do)
f2 - 432 - 432 - 432 +
h?B, A 3
+ 78Mi262 - W (2/<; +2H, + 5) —Ap(A = 1),
fs _ 6? + ﬂSDlD% + ﬂSDODQ
3

432 432 432

55 = M2 - (E:U{)Q + (E'rgzn - M)CS’
Bs = (M + E;,, — Cs),
H? 4 2kH. +k(k— 1)+ H. = A(A — 1) = A = (k + H. + 1).

(96)

7)

(98)

99)
(100)

(101)
(102)

6.3. Pseudospin and Spin Symmetry Solutions. We will solve Egs. (8§7) and (96) by using

the parametric generalization of the NU method in the subsequent subsection.

6.4. Pseudospin Symmetry Solution. Now, comparing Eq. (2) with Eq. (89), we obtain

c1 = 17 Cy = 1) c3 = 1) 51 = Xlljsa §2 = XSS) §3 = ng
Other parameters can be obtained from Eq. (5) as

1 1
Cq4 = 0; Cs = _57 Ce = Z +X11)S7 Cr = _XIQ)Sa

1
s =Xx5, 09:1+x‘fs+x§fs—x§s, cio =1+ 2y/x%°,

1
c11=2+2 <\/Z FXT XS XS x§S> ;2 =\/x5

1 1
i3 = —5 = <\/Z+x‘f5+xgs—x§s+ x§S>-

Substituting Egs. (103) and (104) into Eq. (10) yields

1 1
n? + <n+ 5) +(2n+1) <\/— +x S -+ xé’s) — x5+ 2x5

4
ps 1 ps ps ps
+ 24/ x3 1A s e =0.

(103)

(104)

(105)
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This equation determines the energy eigenvalues. From Eqgs.(14) and (15) the lower
component of the wave functions is as follows:

— ps
GE (1) = Vg e VAT

e_ggr)%-i- T xS x5 P(Q\/ngﬂx/%+><§’S+x§s—x§’5)
n

x (1 (1—2e72°")  (106)

and the other component of the wave function can be obtained as

1 d kK
ps = — _ Ps
Fn,fi(r) M _ ETI’)L?H + Cps <d7“ r + U(T)) Gn,ﬁ(r)ﬂ (107)

where NJ5, is the normalization constant and EL® # M + Cps.

6.5. Spin Symmetry Solution. We applied the same procedure of Eq.(87) to Eq.(96)
for the spin symmetry limits to avoid repetition. The energy eigenvalues equation and the
corresponding upper wave function of the Dirac theory for the Schiéberg and Manning—Rosen
potentials in the presence of generalized tensor interaction are obtained as

w i (nt3)+ et <\/§+ff+f§—f5+ f§> -2+

1
+2\/f§ (Z +fi+f3 —f§> =0, (108)

FS

(1) = N e 2oV

~20r) b %+ff+f§*f5Pn(2\/f_§72 i+ff+f§—f5)(

x(1—e 1—2e72). (109)

Equation (109) determines the energy eigenvalues of the spin symmetry, and N, . is the

normalization constant. The other component of the Dirac spinor can be found as

s B 1 d kK s
Gi(r) = MiE O, (% +to- U(T)> Fy (). (110)

n,K

7. NUMERICAL RESULTS

In this section, we discuss the effect of the tensor interactions on the wave functions and
energy of the Dirac equation. In our calculations, we have taken M =5, 8 = 0.1, Dy = —1,
Dy =-0.5,Dy=-03,D3=-09,aa=2,b=1, A= —0.5, Cps = —5 for the pseudospin
symmetry limit and M =5, 6 =0.1, Dy = -1, D; = —0.5, Dy = —0.3, D3 = 0.9, a = 2,
b=1, A= —0.5, Cs =5 for the spin symmetry limit.
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7.1. The Effect of the Coulomb-Like Tensor Interaction. To show the effect of the
Coulomb-like Tensor Interaction (CTI) on the energy eigenvalues and the wave functions
of the system, we have calculated numerical results for different states both in pseudospin
symmetry and spin symmetry limits in Tables 1 and 2, respectively. We can see that there
are degeneracies among energy levels in the absence of CTI such as (1ps/2, 0f5/2), (1512,
0ds/2), . . . in pseudospin symmetry and (Ops 2, Op1/2), (0ds /2, 0d3/2), . . . in the spin symmetry
limits and, when the CTI appears, these degeneracies remove. Figure 1 shows the effect of
CTI on the components of the Dirac spinors. The effect of the parameters H and [ on the
energy of the pseudospin symmetry limits for 1ps/o, 0f5/2, 1ds/2, 0g7/2 and spin symmetry
limits for Ods /2, 0d3/2, 0f7/2, 0f5/2 is plotted in Figs.2 and 3. It is clear that when H = 0,
(1ps/2, 0f5/2) and (1ds /2, 0g7/2) ((Ods 2, Ods/2) and (0f7 /2, 0f5/2)) are degenerated in the
pseudospin symmetry (spin symmetry).

Table 1. The energy of the pseudospin symmetry in the presence and absence of CTI

['| n,x | State EY =0y | Eronio—os | — Lk | State | EX o o L EX g o)
1|1, -1]1sy/2 | —4.608653315 | —4.600841083 0,2 0ds3,o | —4.608653315 | —4.618940601
201, -2 1psg/p | —4.631144681 | -4.618940601 0,3 Ofs/2 | —4.631144681 | —4.644655207
311,-3]|1ds5/2 | -4.658858604 | —4.644655207 0,4 0g7/2 | —4.658858604 | —4.673175985
411, 4| 1f7/2 | —4.687088176 | -4.673175985 0,5 Ohg/2 | —4.687088176 | -4.700148773

Table 2. The energy of the spin symmetry in the presence and absence of CTI

l| nk | State | B} g.—oy | Bnsemos) | | State | Ep ooy oy | B wo—o.s)
1]0,-2 | Ops | 4789457980 | 4.621780059 | 0, 1 | Opy o | 4.789457980 | 4.925299124
21 0,-3 | 0ds/z | 5027073504 | 4925299124 | 0,2 | Ods /s | 5.027073504 | 5.101155481
30 0,4 | 0f;/n | 5154405031 | 5.101155481 | 0,3 | Ofs/ | 5.154405031 | 5.192262398
410,-5 | Ogg/z | 5218681837 | 5.192262398 | 0,4 | Ogr/» | 5.218681837 | 5.236461226
Lsip 0
0.0010 /\ P32 A I
i H —— F5 (H.=0
0.0008 / \\ 0.003 ; 74 A He=0)
0.0006 )\ s
0.0004 \\ 0.002
0.0002 - 4 “\
o—\//;\ ---- = 0.001 -
9 j (s =
-0.0002 | ; gPSEZ ¢ 8)5)
00044 Vg T 0 (H = 0 01
1 \ I an. (Hc: 0)
~0.0006 __ \/ - ngh (Hrzz 0'5)
_0.0008 T T |\ T T T T T T T T T T T T T T T T _0.001 T T T T T T T T T T T T T
0 5 10 15 , 20 0 5 10 . 15

Fig. 1. Wave functions in the pseudospin and spin symmetry limits in the presence and absence of CTI
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Fig. 3. Energy spectra in the pseudospin and spin symmetries versus (3 for CTI

7.2. The Effect of the Yukawa-Like Tensor Interaction. In Tables 3 and 4, the energy of
the Dirac equation in the absence and presence of the Yukawa-like Tensor Interaction (YTI)
is reported. It is obvious that when Vy = 0.5, we have degeneracies between (1p3/2, 0d3/2),
(1ds/2, 0fs/2) and (0g7/2,1f7/2) in the pseudospin symmetry and between (0p;/2, 0ds/2),

Table 3. The energy of the pseudospin symmetry in the presence of YTI

U nok | State | BP0 mn(vy—1) |7~ Lk | State | ERT o (Vy=1)

1|1, -1]1sy1/2 | —4.598964392 | -4.590151550 0,2 0ds3 /o | —4.617230119 | —4.626318669
211, -2 1psg/e | —4.617230119 | -4.603198793 0,3 Ofs/2 | —4.643186449 | —4.654834634
311,-3|1ds5/ | -4.643186449 | —4.626318669 0,4 0g7/2 | —4.671989498 | —4.683941811
411, 4| 1f7/2 | —4.671989498 | -4.654834634 0,5 Ohg 2 | —4.699256858 | —4.709724270




Table 4. The energy of the spin symmetry in the presence of YTI

Approximate Arbitrary k-State Solutions of the Dirac Equation 805

l | n,k | State Efl,n(vy:(m) E’Z,K,(Vy:l) n,k | State E;K(Vyzoj) EZ,H(vyzn
1]0,-2 | Opsja | 4621780059 | 4.436480125 | 0, 1 | Opy o | 4925299124 | 5.021208859
21 0,-3 | 0ds/y | 4925299124 | 4778475420 | 0,2 | Ods/» | 5.101155481 | 5.151282885
3(0,-4 | 0fs/2 | 5101155481 | 5.021208859 | 0,3 | Ofs/» | 5.192262398 | 5.217118910
40,-5| 0go | 5192262398 | 5.151282885 | 0,4 | Ogr/n | 5236461226 | 5.246962866
Lsy

0.0010 0p32

0.0008 -

0.0006

0.0004

0.0002
000021 3 g —— OnlVy=0
00004y g -- FR(Vy=05)
~0.0006 W x G (Vy=05)
~0.0008 +———4———————1——T T

0 5 10 15 , 20

Fig. 4. Wave functions in the pseudospin and spin symmetry limits in the presence and absence of YTI

, fm !

ps(YTI)
n,K

0.6 0.8 Vy 1

Fig. 5. Energy spectra in the pseudospin and spin symmetries versus Vy for YTI

(0d3/2, 0f7/2) and (0f5/2, 0gg/2) in the spin symmetry. For Vi = 1 there are degeneracies
between (1ds /2, 0ds/2) and (0fs/2, 1f7/2) in the pseudospin symmetry and between (Opy /2,
0f7/2) and (0d3/2, 0gg/2) in the spin symmetry. For V3 = 0, 0.5, 1 we have plotted the wave
functions of the pseudospin and spin symmetries of the Dirac equation in Fig.4. To show the
effect of parameters V3~ and 3 on the energy of the system, we have presented Figs.5 and 6.
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Fig. 6. Energy spectra in the pseudospin and spin symmetries versus (3 for YTI
Table 5. The energy of the pseudospin symmetry in the presence of GTI
lin, k| State EE?H(HU:VYZO.5) ES;(HC:Vy:O.m) n — 1, k| State ESTN(HCZVYZO-@ EE?H(HL':VY:O-75)
11, —1{1s1 /2| —4.594034713 -4.590651427 0,2 |0ds/o| —4.629547878 | -4.641892062
2|1, =2|1pg/e| —4.606848084 | —4.597311362 0,3 |0f5/2| —4.657527906 | —4.670943114
3|1, -3|1d5 2| —4.629547878 | —4.615723251 0,4 |0g7/2| —4.686048811 -4.698469156
4|1, —4(1f7/2| —4.657527906 | —4.641892062 0,5 |Ohg/a| —4.711241559 | —4.721170141
Table 6. The energy of the spin symmetry in the presence of GTI
Lin,k |State | B ogo—vy =0.5) | En k(Ho=vy =0.75) | K| State | Ep g —vy —0.5) | B w(Ho=Vy =0.75)
10, -2|0ps/2| 4.455746153 4.370885519 |0, 1|{Opy1/2| 5.027073504 5.099553937
210, -3]0d5,2| 4.789457980 4.616217022 |0, 2|0ds/2| 5.154405031 5.191426720
3|0, -4|0f7/2| 5.027073504 4.922303782 |0, 3|0f5/2| 5.218681837 5.236077381
410, -5|0g9/2| 5.154405031 5.099553937 |0, 4|0g7/2| 5.247572613 5.253316145
UZV
1 % _ s - -
0.004 | F:”‘ (He=Vy=0)
B ;‘ :’k 4 Gh,& (H( VY:()‘S)
0.003 4 i /’% — G (H.=Vy=0)
T :/ W Fy . (H,=Vy=0.75)
0002941 3\« Fiu(H.=Vy=05)
k 7,;(
L A B

0 5 10 15 20

T

Fig. 7. Wave functions in the pseudospin and spin symmetry limits in the presence and absence of GTI
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7.3. The Effect of Generalized Tensor Interaction. Equations (52), (55), (74), (79), (105)
and (108) determine the energy of the pseudospin and spin symmetries of the Dirac equations
in the presence of GTI. For H. = Vy = 0.5, 0.75 we have calculated the energy of the system
and presented it in Tables 5 and 6. It is illustrated that there are no degeneracies between the
energy levels. Figure 7 shows the lower and upper components of the Dirac spinors under
the pseudospin and spin symmetry limits. By taking H. = 0.5, we have plotted the behavior
of the energy of the system versus Vy in Fig. 8 for both the pseudospin symmetry and spin
symmetry. When Vy = 0, (1d5/2, 0f5/2) in the pseudospin symmetry and (0ds/2, 0f7/2) in
the spin symmetry are degenerated. In Fig.9, by choosing V3 = 0.5, we have presented the
effect of H., on the energy of the pseudospin symmetry and spin symmetry. We can see
that in the case of H. = 0, we have degeneracies between (1ds/2, 0f5/2) in the pseudospin

001 _— 0087 o
0024 _——7 ‘ 0.07 7 T
T
E
g
O
A<
S
0 0.2 0.4 0.6 0.8 Vy 1 0 02 04 06 08 Vy 1
Fig. 8. Energy spectra in the pseudospin and spin symmetries versus Vy for GTI
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T T T T T T T T T ]

0 0.2 0.4 0.6 0.8 H, 1 0

Fig. 9. Energy spectra in the pseudospin and spin symmetries versus H. for GTI
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Fig. 10. Energy spectra in the pseudospin and spin symmetries versus 3 for GTI

symmetry and (0ds/2, 0f7/2) in the spin symmetry. And, finally, the effect of parameter (3
on the energy of the system is shown in Fig. 10. It is seen that as [3 increases, the energy of
the pseudospin (spin) symmetry decreases (increases).

CONCLUSIONS

We have used the NU method to obtain the approximate solutions of the Dirac equation
for the combined Schioberg and Manning—Rosen potentials within the framework of spin
and pseudospin symmetry limits. Based on the knowledge, it should be noted that the Dirac
equation with these potentials under the Coulomb, Yukawa and generalized tensor interactions
had not been considered before using the NU method. We have obtained explicitly the
energy levels in a closed form and the corresponding wave functions expressed in terms
of the Jacobi polynomials for these potentials besides the Coulomb-like, Yukawa-like and
generalized tensor interactions within the spin and pseudospin symmetry limits. We have also
computed the numerical results of our work and it shows that the present of the Coulomb,
Yukawa and generalized tensor terms removed the degeneracies between two states in spin
and pseudospin doublets. Finally, the results of our work find many applications in both
nuclear and hadron physics, and therefore provide more general solutions compared to other
previous works in [28] and [29].
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