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LIGHT-LIKE WILSON LINE IN QCD
WITHOUT PATH ORDERING

G. C. Nayak!
665 East Pine Street, Long Beach, New York 11561, USA

Unlike the Wilson line in QED, the Wilson line in QCD contains path ordering. In this paper, we
get rid of the path ordering in the light-like Wilson line in QCD by simplifying all the infinite number
of noncommuting terms in the SU(3) pure gauge. We prove that the light-like Wilson line in QCD
naturally emerges when path integral formulation of QCD is used to prove factorization of the soft and
collinear divergences at all orders in coupling constant in QCD processes at high-energy colliders.
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INTRODUCTION

In the Feynman diagrams the infrared divergences appear whenever the energy-momen-
tum k* involved with the massless particle becomes very small. Similarly, the collinear diver-
gences occur when the momenta k, p of two massless particles become parallel in the region
0 < k < p. Typically, the soft and collinear divergences occur in the Feynman diagrams
due to momentum integration in the quantum loop diagrams involving massless propagators
and due to momentum integration in the Feynman diagrams involving emission/absorption of
massless particles. In quantum electrodynamics (QED) the massless particle is photon, and
in quantum chromodynamics (QCD) the massless particle is gluon. The soft and collinear
divergences are more severe in QCD than those in QED, because massless gluons interact
with each other, whereas massless photons do not interact with each other. Since massless
particle is always light-like, one finds that the soft and collinear divergences can be described
by the light-like Wilson line.

However, the physical quantities measured are all soft and collinear divergences free.
Hence, it is important to prove that all the noncanceling soft and collinear divergences in
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the perturbative Feynman diagrams are factorized in the definition of the (physical) gauge-
invariant nonperturbative quantities in QCD, such as in the definition of the parton distribution
function and fragmentation function at high-energy colliders, because the soft and collinear
limit corresponds to long-distance regime. This is done by supplying the Wilson line in the
definition of the parton distribution function and fragmentation function [1]. The factorization
refers to separation of the short-distance effects from the long-distance effects in quantum
field theory.

The proof of factorization theorem in QCD is very nontrivial by using the diagrammatic
method of QCD [2,3], but it is enormously simplified by using the path integral method of
QCD [4,5]. The main idea behind the path integral method of QCD to prove factorization
is to study the soft and collinear behavior of nonperturbative correlation function, such as
0]p(z) (') (a")p(2) .. .|0) in QCD, due to the presence of the light-like Wilson line
in QCD. Note that the light-like quark with the light-like four-velocity [* produces the
SU(3) pure gauge potential at all the time-space points x*, except at the spatial position
x transverse to the motion of the quark at the time of the closest approach [2,6,7]. The
soft and collinear divergences in the Feynman diagrams in QCD can be studied by using the
eikonal approximation for the propagators and vertices [1,2,8-15]. Hence, due to the eikonal
approximation for the soft and collinear divergences arising from the soft and collinear gluon
interactions with the light-like quark, the light-like quark finds the gluon field A#%(z) as the
SU(3) pure gauge [4,5]. The U(1) pure gauge

A¥(z) = OHw(x) (1)
gives the light-like Wilson line in QED

zy
exp ie/dz“Au(x) , 2)

which is used to study factorization of the soft and collinear divergences in QED [8, 13]. In
QCD, the SU(3) pure gauge

_ !

T% A ()
g

[0"U (2)]UH(z), Ulx) = et "), 3)

gives the light-like Wilson line in QCD

T
P exp igT“/dz“AZ(x) , 4)

Zi

which is used to study factorization of the soft and collinear divergences in QCD [4,5]. Note
that, unlike the Wilson line in QED in Eq.(2), which does not contain path ordering P, the
Wilson line in QCD in Eq. (4) contains path ordering P.

In this paper, we get rid of path ordering P in the light-like Wilson line in QCD by
simplifying all the infinite number of noncommuting terms in the SU(3) pure gauge in Eq. (3).
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We find that the light-like Wilson line in QCD without path ordering is given by

Tf

Pexp g / Aot Au(@)T7 | = exp {ig r [2l~D[{4(£Ef>]Z. d[gfl;mf)]r} *

. 1 dlgA(z:)]]"
“XP{ZQT%-D[A(%)]Z' 1 H ©

where the right-hand side of the above equation does not contain path ordering P. In Eq. (5),
D[A] is the covariant derivative, [ is the light-like four-velocity, and A*“(z) is the SU(3)
pure gauge in QCD, which, unlike the U(1) pure gauge A*(z) in QED, contains infinite
powers of g [6].

Since the light-like Wilson line in QCD does not depend on the path but depends only
on the end points [4,5], we find from Eq. (5) that the non-Abelian phase or the gauge link in
QCD without path ordering is given by

P exp fig/d)\l A +INTY| =exp {z’gT“ [ ! l- d[gA(z)]] } ) (6)
0

20 - D[A(z)] dg

which is used to study factorization of the soft and collinear divergences in QCD, where the
right-hand side of the above equation does not contain path ordering P.

In this paper, we will provide a derivation of Eq. (5).

In [4], we have shown that the light-like Wilson line in QCD naturally emerges when path
integral formulation is used to prove nonrelativistic QCD (NRQCD) factorization at all orders
in coupling constant in heavy quarkonium production. Similarly, in [5], we have shown that
the light-like Wilson line in QCD naturally emerges when path integral formulation is used
to prove factorization of the soft and collinear divergences of the gluon distribution function
at high-energy colliders at all orders in coupling constant. In this paper, we will prove that
the light-like Wilson line in QCD naturally emerges when path integral formulation is used
to prove factorization of the soft and collinear divergences of the quark distribution function
at high-energy colliders at all orders in coupling constant. Hence, we find that the light-like
Wilson line in QCD naturally emerges when path integral formulation of QCD is used to
prove factorization of the soft and collinear divergences at all orders in coupling constant in
QCD processes at high-energy colliders.

The paper is organized as follows. In Sec. 1, we derive the light-like Wilson line in QCD
without path ordering as given by Eq. (5). In Sec. 2, we study the gauge transformation of the
light-like Wilson line in QCD without path ordering. In Sec.3, we prove that the light-like
Wilson line in QCD naturally emerges when path integral formulation of QCD is used to
prove factorization of the soft and collinear divergences at all orders in coupling constant in
QCD processes at high-energy colliders. Finally, we draw conclusions.

1. THE LIGHT-LIKE WILSON LINE IN QCD WITHOUT PATH ORDERING

The SU(3) pure gauge in QCD is given by Eq.(3), which contains infinite number of
noncommuting terms. Simplifying all the infinite number of noncommuting terms in Eq. (3),
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we find that the SU(3) pure gauge A**(x) is given by [6]:

A" (z) = 0" )[eng)l} (7)
z) =0"w’(z) | ————| ,
gM(z) |,
where
Mp(x) = f2Wwe (). (8)
Expanding the exponential in Eq. (7), we find
na _ w, b g 92 2 93 3
AP (z) = [0"w"(2)] |14+ 5 M (2) + 5 MP (2) + = M3 (2) +...| . 9)

2! 3! 4!

ab

In QED, the U(1) pure gauge potential produced by a point charge e is linearly proportional
to the electric charge e [2,6,7], i.e.,

OHw(x) x e. (10

Since w(z) is linearly proportional to e, we find that w®(z) is linearly proportional to g [6,7].
Since w®(z) is linearly proportional to g, we write

w(z) = g% (x), (11)
where 3%(z) is independent of g. Using Eq.(11) in (9), we find
éA‘“’(x) = [018(2)] |1+ Z—TN(:E) + (9;)21\72(33) + (gj!)SN?’(z) te a2
where
Nap(x) = fo*B°(x). (13)

Multiplying g? Ny (z) in Eq.(12), we obtain

[gN () A*()]* =

- ') [ ) + PN + Lo - LN+ ] L as
' ' ab

Adding 9"3°(x) in Eq. (14), we find
DH[A(x)] 5% (x) =
(9°)?

- o) [1+ 2N + L)+ Ll +

(9*)*
41

N*(z) +] . (15)
ab

where

DP[A(x)] = 6", + gf P AS (). (16)
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Multiplying g2 in Eq. (12) and then taking derivative with respect to g2, we obtain

(9°)? 12 (9°)° \s
51 N (ac)—l—TN () +... " (17)

1 djgar(z)]
2g dg

= [0"B°(2)] |1+ ¢°N(z) +

Since right-hand sides of Egs. (15) and (17) are equal, we find

1 dlgAr(z)]
1 () — — 20 AP
D (A3 () = 5 SET (18
Converting 5%(z) to w®(x) by using Eq. (11), we find from Eq. (18)
1 d[gAr (x)]
Iz a - _
DHA@)lw* (@) = 5= (19)
Multiplying the same z* independent four-vector I* in Eq. (19), we find
Aa
l- dlgA*(x)] =20 D[A(z)|w*(z). (20)
dg
Dividing [ - D[A(z)] from left in Eq. (20), we obtain
1 dfi - gA* ()] 1 dlgA(=)] 1"
a(. — = . 21
< [21 - D[A(zﬂLb g o oAm] g ) D
which gives the non-Abelian phase
T : 1 dlgA(@)]]"
P — otgTw(z) _ Ta X ) 22
= o {io7 [t 2

From [4,5] we find that the light-like Wilson line in QCD for the soft and collinear divergences
is given by
zy
Pexp |ig / dat Ay (2)T | = i9T W (w5) o=igT " (i) —

T

= { Pexp —ig/d)\l-Aa(acf +INT*| » Pexp ig/d)\l-Ab(:vi—i—l)\)Tb . (23)
0 0

Using Eq. (22) in Eq. (23), we find that the light-like Wilson line in QCD without path ordering
is given by

Pexp g 7 At AT :exp{igTa [2l~D[{4(£Ef)]Z. d[gé;zf)]r}x
x exp{igTb {21 . D[lA(xi)]l' d[g‘sézi)]]b}, (24)

which reproduces Eq. (5), where the right-hand side does not contain path ordering P.
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Since the light-like Wilson line in QCD does not depend on the path but depends only on
the end points [4,5], we find from Eqgs. (22) and (23) that the non-Abelian phase or the gauge
link in QCD without path ordering is given by

P exp —ig]od)\l Az +INT®| = exp {igT“ [21 . Dl[A(z)]l' d[gjg(x)]r}, (25)

which reproduces Eq. (6) used to study factorization of the soft and collinear divergences in
QCD, where the right-hand side of the above equation does not contain path ordering P.

2. NON-ABELIAN GAUGE TRANSFORMATION
OF THE LIGHT-LIKE WILSON LINE IN QCD WITHOUT PATH ORDERING

In order to study the gauge transformation of the light-like Wilson line in QCD without
path ordering, we proceed as follows. The non-Abelian gauge transformation is given by

TA (x) = U(z) T A (2)U () + %[%U(I)]U’l (@), (26)
where

Ulz) = e9T"e" (@), (27)

Since the matrices 7'* are noncommuting, we find from Eq. (27)

TaU_l(.Z') — Tae_igTb“’b(I) — 7ol + (—ig)wab($)+

+ %Tbj—’cwb(x)wc(x) + (_;—'!g)gTchwab(x)wc (I)wd(l‘)—f—
+ #TchTdTewb(m)wc(x)wd(x)we(:E) T BT

By repeated use of the commutation relation
[T*, T') = ifebeTe (29)
we find from Eq. (28)

T°U Y (z) = [T + (—ig)T"w"(2)T* + g T Tewb ()w (2) T+

2!
+ (_;‘?)3TbTCwab(:E)wc(:E)wd(:E)T“—i—
+ (_i—'g)élwab(:c)Tch(:E)wad(x)Tewe )T+ ...+
T (cigifuP ()T + (—ig) Tl ()i fotu ()T
4 (_ig)Q ifabdwb(x)ifdcewc(l')Te-i-

2!
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n (7;‘?)3wab(x)Tch(x)ifadewd(x)Te + (7;_?)3]7%}’(x)ifacewc(m)ifedgwd(x)Tg—i—
+ (7ig)3ifabewb(x)ifngwc(x)’[:fgdhu}d(IE)Th+

3!

+ —(*g’ bt () T ()T ()i 290 ()T
(—ig)*
2121
(—ig)*

+ Twab(x)ifacgwc(x)ifgdhwd(l,)ifheiwe(l,)Ti+

+ '(7;9)4ifabgwb(z)ifQChWC(:L‘)ifhdiwd(x)ifiejwe(:E)Tj +...1, @30

+

Twb(2)Tewe (2)i f 9w (2)i f9°" we (x) T+

which gives after simplification

T 4 (—ig)T W (z)T* + —(_ig)QTchwb(x)wc(x)T“—l—

arr—1 _
TU  (z) = 51

+ (_;;—?)?’TbTCwab(z)wc(iE)Wd(z)Ta+

_sa\4
+ %wab(:U)Tcwc(ac)wad(x)Tewe(x)T“ ot

+ [1 + (—ig)wab(x) + ﬂwab(x)Tcwc(ac) + .. } (—ig)if“dewd(ac)Te—i—

2!
+ [1 + (—ig)wab(x) + @wab(ac)Tcwc(x) +.. } ﬂif“pdwp(x)ifdhewh(ac)Te—i—

2! 2!
+ 14+ (—ig)T%w(x) + .. .]@if“bewb(x)ifecgwc(x)ifgdhwd(Jc)Th—i—

3!
(7ig)4 - pabp, b - rpch, ¢ - phdq, d - pges, e s
+ 14 .. ] ——if*PW’(z)i fP"w(x)i f" M w ()i fI°w ()T + ... |.

1 31)

From Eq.(31) we find
—in)2
TU Y2) =U *a)|T* + (—ig)z’fadewd(x)Te + %ifagdwg(ac)ifdhewh(xﬂﬂe—i—

" @ifabewb(l,)ifecgwc(x)ifgdhwd(x)Th+
3!

+ '(7;9)4ifabgwb(z)ifQChWC(:L‘)ifhdiwd(x)ifiejwe(:E)Tj +...0, 32

which gives
U(z)T°U~Hz) = [e"9M @], T, (33)
where M, () is given by Eq.(8). From Eq. (33) we find
U(x)T* A% (z)U " (z) = [e9M )], T* AL, (2). (34)
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Similarly, by simplifying infinite number of noncommuting terms in [0, U (z)]U~*(z) we
find [6]:
edM(x) _ 1

1 e -1
gM (z)

U@ ) = |

} [0uw” ()] T, (39)
ab
where M,;,(x) is given by Eq. (8).

Hence, by using Egs. (34) and (35) in Eq. (26) we find

e9M(z) _ 1

A5 = My 0) + |t

} b [0’ ()], (36)

which is the finite gauge transformation in QCD, where M,;(z) is given by Eq.(8). Under
infinitesimal gauge transformation we find from Eq. (36)

A () = AR () + gV (1) AP () + 0 (), (7

which is the infinitesimal gauge transformation in QCD familiar in the literature [16].
When A**(z) is the SU(3) pure gauge, we find by using Eq. (7) in (36) that

e29M(z) _ 1

A0(w) = |y

] [0Fw® (2)]. (38)
ab
By using Eq.(11) in (38) we find

292N (z) _
A () — {e 1

13O
| e (9)

where N,(x) is given by Eq. (13), which is independent of g, because 3%(z) is independent
of g, see Eq.(11). Multiplying the matrix g/N(z) in Eq. (39), we obtain

DHA'(2)]8%(x) = [e2" V@], 948 (2)), (40)
where
DA (2)] = 60y, + g f*C A" (x). (41)

By multiplying g in Eq. (39) and then taking the derivative with respect to g, we find

d[gA;;(I_)] = 4g [N D], [0 (@)]. “2)

Using Eq. (40) in (42), we obtain
QI agpria ) ). 3)

By using Eq. (11) in (43) we find
A @ _ 4 pria ()t (o). (44)

dg
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By multiplying the same z* independent four-vector [* in Eq. (44) we obtain

dlgA" (@)

l
dg

=41 - D[A'(z)|w®(z). (45)

By dividing [ - D[A’(x)] from left in Eq. (45) we find

ot 2
21 - D[A'(z)] dg

} = 2w (z). (46)

Under the non-Abelian gauge transformation as given by Eq. (26) we find from Eq. (22)

Pla) = exp {ig r {21 - D[lA’(x)]l ' d[gfl;x” } } ' @0

Hence, from Egs. (46), (47), (22), and (27) we find
() =Ulz) ®(z), () =0 (2) U }(w), (48)

which is the gauge transformation of the non-Abelian phase in QCD under the non-Abelian
gauge transformation as given by Eq. (26).
From Egs. (22), (23), and (48) we find

P exp —ig/d)\l Az +INT*| =U(z)Pexp —ig/d)\l CAY(x+INT

0 0
U(.Z') — eigT“wa (x) ,

(49)

which is the gauge transformation of the non-Abelian gauge link in QCD under the
non-Abelian gauge transformation as given by Eq. (26).

From Egs.(23) and (49) we find that, under the non-Abelian gauge transformation as
given by Eq. (26), the light-like Wilson line in QCD transforms as

P exp ig/dx“A’;(x)Ta =U(zy) < Pexp ig/daz“AZ(z)T“ U~ (x), 50)

U(z) = glgT W (@)

3. EMERGENCE OF THE LIGHT-LIKE WILSON LINE
IN QCD IN THE PROOF OF FACTORIZATION THEOREM
AT HIGH-ENERGY COLLIDERS

Note that in [4] we have shown that the light-like Wilson line in QCD naturally emerges
when path integral formulation is used to prove NRQCD factorization at all orders in coupling
constant in heavy quarkonium production. Similarly, in [5], we have shown that the light-
like Wilson line in QCD naturally emerges when path integral formulation is used to prove
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factorization of the soft and collinear divergences of the gluon distribution function at high-
energy colliders at all orders in coupling constant. In this section, we will prove that the
light-like Wilson line in QCD naturally emerges when path integral formulation is used to
prove factorization of the soft and collinear divergences of the quark distribution function at
high-energy colliders at all orders in coupling constant.

The generating functional in the path integral method of QCD is given by [16,17]:

Z1s) = [ aQladlias]der (“%57)

1 1
X exp {i/d4x [ — ZFaiu[Q] — %(GMQ““)Q—F
+ P[0y — m + gT V' QY + J - Q + i + wn} } (51)

where J"%(z) is the external source for the quantum gluon field Q#*(z) and #;(x) is the
external source for the Dirac field v;(z) of the quark, and

F3,[Q] = 0,Q5(x) — 0,Qji(2) + ¢ f " Qp()Q5 (x),  F*7,[Q] = FF*[Q]F, Q] (52)

The light-like quark traveling with light-like four-velocity I# produces the SU(3) pure gauge
potential A*%(x) at all the time-space positions x*, except at the position x perpendicular to
the direction of motion of the quark (1-x = 0) at the time of the closest approach [2,6,7].
Hence, the soft and collinear behavior of the nonperturbative correlation function in QCD due
to the presence of the light-like Wilson line in QCD can be studied by using path integral
formulation of the background field method of QCD in the presence of the SU(3) pure gauge
background field [4,5].

The background field method of QCD was originally formulated by ’t Hooft [18] and
later extended by Klueberg-Stern and Zuber [19,20] and by Abbott [17]. This is an elegant
formalism which can be useful to construct gauge-invariant nonperturbative Green’s functions
in QCD. This formalism is also useful to study quark and gluon production from classical
chromofield [21] via the Schwinger mechanism [22], to compute 3 function in QCD [23], to
perform calculations in lattice gauge theories [24], and to study evolution of QCD coupling
constant in the presence of chromofield [25].

It can be mentioned here that in soft collinear effective theory (SCET) [26] it is also
necessary to use the idea of background fields [17] to give well-defined meaning to several
distinct gluon fields [9].

Note that a massive color source traveling at speed much less than speed of light cannot
produce the SU(3) pure gauge field [2,6,7]. Hence, when one replaces the light-like Wilson
line with the massive Wilson line, one expects the factorization of soft/infrared divergences
to break down. This is in conformation with the finding in [27], which used the diagrammatic
method of QCD. In case of massive Wilson line in QCD, the color transfer occurs and the
factorization breaks down. Note that, in case of the massive Wilson line, there are no collinear
divergences.
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The generating functional in the path integral formulation of the background field method
of QCD is given by [17-19]:

21, Jonil = [laQiaia]aee (2552 )

X exp {i/d4z[ EFGZV[A+ Q] - %(GG(Q))2+

+ Pliy" 0y —m + gT " (A+ Q)i + J - Q + i) + 1/777} } (53)

where the gauge fixing term is given by
G(Q) = 9,Q"" + gf*** A}, Q" = D,[A]Q", (54)
which depends on the background field A*“(z) and
Fi [A+ Q1 = 0ulA] + Q7] — 0u[A], + Q] + gf*"[4], + QU][4] + Q7. (55)

We have followed the notations of [17-19], and accordingly denoted the quantum gluon field
by @"* and the background field by A*¢.

1
Note that the gauge fixing term 2—(G"(Q))2 in Eq.(53) (where G*(Q) is given by
!

Eq. (54)) is invariant for gauge transformation of Aj;:
SA} = gfab':AZwC + 0w (type I transformation), (56)
provided one also performs a homogeneous transformation of @ [17,19]:
0Q;, = gf " Q" (57)

The gauge transformation of background field A}, as given by Eq. (56) along with the homo-
geneous transformation of @y, in Eq. (57) gives

S(AS + Q%) = gf ™ (AL + Qb )w" + D", (58)

which leaves (—1/4)F®” [A + Q] invariant in Eq. (53).
For fixed Aﬁ’ i.e., for

6AZ =0 (type II transformation), (59)
the gauge transformation of Qz [17,19]:
3Qp, = gf (AL + Qp)we + G, (60)
gives Eq. (58), which leaves (71/4)F‘1;2W [A + Q] invariant in Eq. (53).

It is useful to remember that, unlike QED [8], finding an exact relation between the
generating functional Z[J, n, 7] in QCD in Eq. (51) and the generating functional Z[A, J, n, 7]
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in the background field method of QCD in Eq. (53) in the presence of the SU(3) pure gauge
background field is not easy. The main difficulty is due to the gauge fixing terms which are
different in both cases. While the Lorentz (covariant) gauge fixing term ——(9,Q"*)* in
Eq.(51) in QCD is independent of the background field A**(z), the background field gauge
_a(Ga (Q))? in Eq.(53) in the background field method of QCD depends on

the background field A*®(z), where G*(Q) is given by Eq.(54) [17-19]. Hence, in order
to study nonperturbative correlation function in the background field method of QCD in the
presence of the SU(3) pure gauge background field, we proceed as follows.

By changing Q — @ — A in Eq.(53) we find

fixing term —

Z[A, J,n,7] = exp (—i / d%J-A) / [dQ][dx)][dn)] det (5(22(?)) X
X exp {i/d%[ iF”fw[Q] _ %(G‘}(Q))Q HT0+

+ Y[iv" 0, — m + gT Y Q4 + i + 1/177} } (61)

where the gauge fixing term from Eq. (54) becomes
G4(Q) = 0,Q"" + gf**“ ALQM" — 0, A" = D, [A]Q"* — 9, A", (62)
and Eq. (57) (by using Eq. (56), type I transformation [17,19]) becomes
5Q% = gf*Qhw’ + 9w (63)

Equations (62) and (63) can also be derived by using type II transformation, which can be seen
as follows. By changing Q — @ — A in Eq. (53) we find Eq. (61), where the gauge fixing term
from Eq.(54) becomes Eq.(62), and Eq. (60) (by using Eq.(59)) becomes Eq.(63). Hence,
we obtain Egs. (61), (62), and (63), whether we use the type I or type II transformation.
Hence, we find that we will obtain the same Eq.(84), whether we use the type 1 or type II
transformation.

The equation

Qi (x) = Qi) + gf " w (1) Q) () + 8 () (64)

in Eq. (63) is valid for infinitesimal transformation (w < 1), which is obtained from the finite
equation

1 5 a a
T°Q) (w) = U(2)T*Qj(x)U~" (x) + E[auU(x)]U’l(x), Ux) = e (65)
Simplifying infinite numbers of noncommuting terms in Eq.(65) (by using Egq.(33)
and [6]), we find that

edM (=) _ 1

1% — egM(z) b T
@plo) = aQh) + | <

} 0@, Mu(z) = f¥ue(@). (66)
ab
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Changing the variables of integration from unprimed to the primed ones in Eq. (61), we
find

Z[A, J,n,n] = exp (z / daJ - A) / [dQ'][dy)'][dv'] det (Mg_ﬂ) X

X exp {i/d‘lx[ iF“fw[Q’] - %(G’}(Q’))Q +J-Q+

+ Q' [iy" 0y — m + gT QY + ' + 1/777} } (67)

This is because of a change of variables from unprimed to the primed ones, the value of
integration does not change.
Under the finite transformation, using Eq. (66), we find

Q"
Qb

where we have used (for any matrix H)

/) = Q) et | 525 | = 0@ et 6] = [aQ]exp [T+ (o211 = (4G, 68
det H = exp [Tt (In H)]. (69)
The fermion field transforms as
V(@) = Ty (a). (70)
Using Egs. (66) and (70), we find

) = L),
P'[iy" 0y —m + gT QW = Y[iy" 8, — m + gT v Q1v, (71)

F,[Q = F,[Ql

Using Egs. (68) and (71) in Eq. (67), we find

Z[A, J,n, 7] = exp (i/d4zJ~A) /[dQ][dd_}][dw] det (Mg_ﬂ) X

1 1
X exp {z’/d%[— TFOwlQl = o= (GHQN)* + 7 Q'+

+ Plin" 8, — m + gT Qi + ' + 1/7’77} } (72)
From Eq. (62) we find

GHQ) = 0,Q ™" + gf* " AL,Q " — 9, A (73)
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By using Eqgs. (7) and (66) in Eq. (73) we find

edM(z) _ 1

-t [T ]|

which gives

GHQ') = 0" [[e"™ D)@ (x)]+
e9M(z) _ 1 e9M(z) _ 1

- N e |
(75)

From Eq. (75) we find

G I — M egM(:n) b T abc Ml (x egl\/[(a:) -1 egl\/[(a:) d T 76
H(®D. I Jas @y ()] +9f () M@, It JeaQyu ()], (76)
which gives
GHQ") = [0y Q), (x)+
eIM(z) _ 1

+ QY (@) ™M) ] + [awx) [ H g P M@ Q). (7T)

gM ()

From [6] we find

Te [eichwC (.L)]

ik kjs

e gM(z) _ 1
oM ] = ig[0rw’ (2)] [e ]
ab

gM(x)
Mab(x) = fabcwc(l,)’

(78)

which in the adjoint representation of SU(3) gives (by using T2, = —i fob°)

e9M(z) _ 1

[esM @), = [Hwe (z)] [ gM (z)

:| gfbac[eM(z)]cd’ Mab(l‘) _ fabcwc(l‘). (79)
be
Using Eq.(79) in (77), we find

GHQ') = [e9M)] 0" Qb (), (80)

which gives

(GHQ)? = (0,Q"())*. (81)
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Since for n x n matrices A and B we have
det (AB) = (det A) (det B), (82)

we find by using Eq. (80) that

ot {50(;;552')] et la{[egwnxgzbauczﬁ(z)]] et {[egmx)}ac%} B
= [detlfe )], ] [det {%” = exp [Tr (In eV )] det {W] _
— det {W] .

Using Eqgs. (81) and (83) in Eq. (72), we find

Z[A, J,n,7] = exp (—i / d%J-A) / [dQ][dx)][dn)] det [W} X

X exp {i/d4x[— iFafw[Q] — %(GMQW)Q +J Q'+

+ &[W“@L -m+ gT“’y“QZ]w + Y’ + w'n} } (84)
From Egs. (7) and (66) we find

Q'L (x) — A () = M D] wQ (), Map(z) = [ w (x). (85)

Note that Egs.(84) and (85) are valid, whether we use type I transformation (Egs.(56)
and (57)) or type II transformation (Egs. (59) and (60)).

Since we have used Eq. (26) to study the gauge transformation of the Wilson line in QCD,
we will use type I transformation, see Egs. (56) and (57), in the rest of the paper, which gives
for finite transformation [17,19]:

Tt (@) = M D y(2),  Ma(e) = f08(2). (86)

From Egs. (84), (85), and (86) we find

0.2,

214,71} = [laQlasav)aet |20

X exp {z‘/d% { - %F“fw[@] - %((LQ““)Q +J-Q+

+ Plin" 8, — m + gT QU + ' + 11777} } 87)
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Under the non-Abelian gauge transformation the fermion source transforms as [17,19]:
0 (z) = 9T gy (z). (88)
From Egs. (70) and (88) we find
/= T
ny =ap, Y=y, (89)

which gives from Eq. (87)

X

214,711 = [ aQladlias]der | e

X exp {i/d‘lx{— iFafw[Q] - %(@LQ“G)Q +J-Q+

+Plin 8, — m + gT QY + 7t + 1/177} } (90)

Hence, from Egs. (90) and (51) we find that in QCD
Z[Tmn) = Z[A, T 0.7, ©On

when the background field A*%(x) is the SU(3) pure gauge as given by Eq.(3). The
corresponding relation in QED is given by

ZI:J) "77 77] = Z[A) J) "7/) ﬁ/]7 (92)

when the background field A*(x) is the U(1) pure gauge as given by Eq.(1). Note that,
unlike Eq. (91) in QCD, there is no J’ in Eq. (92) in QED, because while the (quantum) gluon
directly interacts with classical chromo-electromagnetic field, the (quantum) photon does not
directly interact with classical electromagnetic field.

The nonperturbative correlation function of the type (0[«(z)(2")|0) in QCD is given
by [8]:

O1)6(e)0) = 5 7 2L ©3)

Similarly, the nonperturbative correlation function of the type (0[t)(z)i(x")|0) 4 in the back-
ground field method of QCD is given by [8]:

_ ) 0
! = Z[A 7| 7=n=r=0- 4
O )00 = 55 5 21T 0.0 o4
When background field A#*(x) is the SU(3) pure gauge as given by Eq.(3), we find from
Egs. (91), (93), (94), (86), and (88) that

(Ol(2)1(2")|0) = (Ol (x)@(2)@" («')¥(a")[0) a, (95)
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which proves factorization of the soft and collinear divergences at all orders in coupling
constant in QCD, where (see Eq. (23) and [4,5])

®(x) = Pexp —igTa/d)\l.Aa(erl)\) — 9T W (2) (96)
0

is the non-Abelian phase or the gauge link in QCD.

From Eqg. (95) we find that the correct definition of the quark distribution function at high-
energy colliders, which is consistent with the number operator interpretation of the quark and
is gauge-invariant and is consistent with the factorization theorem in QCD, is given by

1 i Pty
fop(z) = E/dy_e‘”w‘" x
.
igTa/dzAJra(O,z,OT)]]¢(0)|P>, 97)

x (PlY(0,y~,07)y" lp exp
0

which is valid in covariant gauge, in light-cone gauge, in general axial gauges, in general
noncovariant gauges, and in the general Coulomb gauge, etc., respectively [5]. In Eq.(97),
¥ (x) is the Dirac field of the quark and A#*(z) is the SU(3) pure gauge background field as
given by Eq. (3).

Hence, we find from Eq.(97) and from [4, 5] that the light-like Wilson line in QCD
naturally emerges when path integral formulation of QCD is used to prove factorization of
the soft and collinear divergences at all orders in coupling constant in QCD processes at
high-energy colliders.

CONCLUSIONS

Unlike the Wilson line in QED, the Wilson line in QCD contains path ordering. In this
paper, we have got rid of the path ordering in the light-like Wilson line in QCD by simplifying
all the infinite number of noncommuting terms in the SU(3) pure gauge. We have proved that
the light-like Wilson line in QCD naturally emerges when path integral formulation of QCD
is used to prove factorization of the soft and collinear divergences at all orders in coupling
constant in QCD processes at high-energy colliders.
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