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U(5) — SU(3) NUCLEAR SHAPE TRANSITION
WITHIN THE INTERACTING BOSON MODEL
APPLIED TO DYSPROSIUM ISOTOPES

M. Kotb'
Physics Department, Faculty of Science, Al-Azhar University, Cairo

In the framework of the Interacting Boson Model (IBM) with intrinsic coherent state, the shape
Hamiltonian from spherical vibrator U(5) to axially symmetric prolate deformed rotator SU(3) is
examined. The Hamiltonian used is composed of a single-boson energy term and a quadrupole term.
The potential energy surfaces (PES’s) corresponding to the U(5)-SU(3) transition are calculated with
variation of scaling and control parameters. The model is applied to **°~*%2Dy chain of isotopes. In
this chain, a change from spherical to well-deformed nuclei is observed when moving from the lighter to
the heavier isotopes. '*®*Dy is a good candidate for the critical point symmetry X (5). The parameters
of the model are determined by using a computer simulated search program in order to minimize
the deviation between our calculated and some selected experimental energy levels, B(E2) transition
rates, and the two-neutron separation energies S2,. We have also studied the energy ratios and the
B(E2) values for the yrast state of the critical nucleus. The nucleon pair transfer intensities between
ground—ground and ground-beta states are examined within the IBM and boson intrinsic coherent
framework.

B p 6ote uccrenyercs u3MeHeHne OPMbI I MHJIBTOHH H cepuueckoro Bubp top U(5) mpu me-
pexosie K KCH JIbHO-CUMMETPUYHOMY BBITSHYTOMY pOT Topy SU(3) B p MK X MOZE/IH B3 UMOJCUCTBYIO-
nmx 6030H0B (MBB) ¢ BHYTpeHHHM KOT€PEHTHBIM COCTOSHHEM. MICIONb3yeMblid I MAIBTOHH H COOEPXUT
YJIeH, ONMCHIB IOLINI SHEPTHI0 OXHOro 0O030H , U KB JPYIOJBHBIA WieH. [I0OBEpXHOCTH MOTEHLH JIbHOM
9HEepruu, cooteTcTBytomue nepexony U(5)—U(3), BBIUUCISIOTCS B PH LHEH T P METPOB CKEWIMHT U
KOHTpoNs. Mojiesb CToNb3yeTcs Al ONUC HuA M30Tonos uenouku 20~ '%2Dy. B p ccm Tpus emoii
HernoJke H OIof eTcs M3MeHeHHe OT chepHYecKUuX K CHIBHO Ie(hOpMHPOB HHBIM Sp M IIPH Hepexofe
OT Nerkux K Gojiee TSKeNbIM n30Ton M. Mzoron '*°Dy spnserca Xopoum K HAMA TOM U1 H GIIOAEHHS
KpuTHdeckoi Touku cummerpur X (5). I1 p MeTpbl MOZeIH BBIMUCISIOTCS MPOTP MMON CHMYJIHDPOB H-
HOTO NMOUCK MUHMMYM (DYHKLIUM OTKJIOHEHUs BBIYMCIIEHHBIX 3H YEHWIl ypOBHs ®HEPIHU, CKOPOCTH Ie-
pexon B(E2) u sHeprun OTAeNeHNs AByX HEUTPOHOB S2,, OT MX DKCIIEPUMEHT JIBHBIX 3H 4YeHumil. T Kxke
OBUTM HCCIIEIOB Hbl OTHOIIEHMS M 3H YeHus B(E2) s yrast-COCTOSHHS KPUTHYECKOro siup . Bbrum-
CIIeHbl HTHTEHCHBHOCTH MEPEX0J0B HYKJIOHHBIX II P OCHOB —OCHOB H OCHOB —0€T -COCTOSHHS B P MK X
MBB u B npeanonoXeHuy BHyTPEHHEH KOrepeHTHOCTH GO30HOB.

PACS: 21.60.Ev; 23.20.Lv; 27.70.+q
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INTRODUCTION

The Interacting Boson Model (IBM) [1] provided us with an alternative description of
nuclear collective excitations, which in contrast to the geometrical models, is of an algebraic
nature. This realistic theoretical model was able to describe the low-energy collective states
and the electromagnetic transitions of a large number of even—even nuclei successfully. In
the original version of the IBM (IBM1), nuclei are regarded as systems composed of bosons,
which carry either angular momentum L = 0 (s bosons) or angular momentum L = 2
(d bosons) [1]. The system of bosons, for which the number of bosons equals half the
number of valence fermions N = n/2 and interactions through a Hamiltonian that typically
includes up to two-body interactions, is number conserving and rotationally invariant. The
symmetry of the s and d bosons is the U(6) group structure; it has three solvable dynamical
symmetries U (5), SU(3), and O(6), geometrically corresponding to spherical vibration, axial
symmetric rotation, and ~y-unstable rotation, respectively. These three dynamical symmetries
are the vertices of the Casten triangle [2] that represents the nuclear phase diagram [3].

In the last few years, three transitional regions in atomic nuclei were studied [4-22], in par-
ticular, phase transition between the three dynamical limits of the IBM, transition from spher-
ical U(5) to y-unstable O(6), and transition from well-deformed SU(3) to y-unstable O(6).
The connection between the Bohr—Mottelson collective model [23] and the IBM comes from
considering the IBM as the second quantization of the shape variables 5 and v (3 denotes
the ellipsoidal deformation and v is the measure of axial asymmetry). The intrinsic state
formalism [24] was used. Phase transitions in nuclear shapes were observed at the boundary
between regions characterized by different intrinsic shapes of quadrupole deformation.

Tachello [25-27] in his study of critical point behavior of nuclei introduced new dynamic
symmetries called E(5) [25], X (5) [26], and Y (5) [27] critical point symmetries. The E(5) is
designed to describe the critical point at the transition from spherical to deformed ~y-unstable
shapes. The potential to be used in the differential Bohr equation is assumed to be y-indepen-
dent, and for the [ degree of freedom an infinite square well is taken. The X (5) and Y (5)
are designed to describe the critical points between spherical and axially deformed shapes
and between axial and triaxial deformed shapes, respectively. Bonatsos et al. [28] introduced
the Z(5) critical point symmetry for the prolate-to-oblate nuclear shape transition.

To understand the shape phase transition in isotopic chains of nuclei, authors usually used
the most general IBM Hamiltonian up to two-body terms using the creation-annihilation or
the multipole forms. These forms contain many parameters (at least seven). In the present
work, an alternative approach is used, a very simple Hamiltonian contains two terms and
two parameters restricted to only one control parameter adapted to study the behavior of
critical points in the U(5)-SU(3) transition. The corresponding PES will be given by the
expectation value of this Hamiltonian in the intrinsic coherent state. The predictions of
the X (5) critical point symmetry for different observables are consistent with the results
of the IBM Hamiltonian procedure. The paper is concentrated on the U(5)-SU(3) shape
transition by using the IBM with intrinsic coherent states. The paper is organized as follows.
In Sec. 1, the IBM Hamiltonian, the intrinsic coherent state, and PES’s indentifying the shape
transition are described. The location of the critical points in the shape transition is identified
in Sec.2. In Sec.3, the proposed model is applied to Dy isotopic chain and the numerical
results are discussed. Finally, a conclusion is given.
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1. INTERACTING BOSON MODEL DESCRIPTION AND POTENTIAL ENERGY
SURFACES (PES’s) FOR THE U (5)-SU(3) SHAPE TRANSITION

We start with the simplified transitional Hamiltonian that includes spherical and deformed
terms of the form o
H = eqng + kQ - Q, (1)
with the usual d-boson number operator 74 and the usual SU (3) generator quadrupole oper-
ator () defined by

g =y dldy, )
17

Q=[s" xd+df x 3@ 4+ x[d" x d?. 3)

For introducing geometry into the IBM, the following boson creation operator for axial
symmetry nuclei is usually used:

1
Ti(8) = ——==ls" + 8dj], @)
where I'T is the boson creation operator acting in the intrinsic system and 3 is the quadrupole
deformation parameter describing the geometrical shape.
We regard the normalized state [29]

1
¢y = — (BN |0 (5)
&) = 1) 0)
as an intrinsic coherent normalized state for the sd IBM for a nucleus with N valence bosons
outside a doubly closed shell state |0) (the boson vacuum).
We use |c) as a variational trial function in constructing the potential energy surface (PES)

N 2
B(V.5) = (el = eapy s +
N N(N -1 2 2
+k {mb +(1+x*)B%) + ﬁ [w? - 4\/;xﬁ3 cos 3y + ?x%‘*ﬂ . (6)

It has the following general form [4, 5] for v = 0:

Ax 32 + A3 + Ayt
(1+p2)?
where the coefficients Ao, A3z, A4, and Ay have the following linear combinations of the

Hamiltonian parameters ¢4 and k:

E(N,B) =N

+ AO) (7)

Ay = e+ (4N + x* — 8)k, )
2

Ay = —4\/;xk(N 1), ©)

A4e+<2N7+5X24> k, (10)

Ao = 5k. (11)
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Introducing the control parameter y defined as
==, (12)

we arrive at the standard two-dimensional parameterization of the ()-consistent IBM Hamil-
tonian (1) which depends on only one control parameter y:

H = (e = b)[(1 - y)ia — yQ - Q). (13)

For y = 0, we get the U(5) limit and for intermediate values of the control parameter v,
the energy surface function will describe a certain point on the IBM symmetry triangle. In
general, there is a spherical-deformed first-order phase transition as a function of y. The PES
takes the general form

aﬁ2 + bﬁ3 + 054

E(N,3) =\ EYRE +d, (14)
where
a=(1-y)— 4N+ x> —8)y, (15)
b= 4\/gxy(N -1), (16)
c=(1-y) - (Lff—él) Y, (17)
d = —5y, (18)
A= (e—k)N. (19)

2. CRITICALITY CONDITIONS

Minimizing of the PES equation (14) with respect to § for the given values of the control
parameter y gives the equilibrium value 3y defining the phase of transition (b*> = 4ac).
2

The condition to find the antispinodal point is <W

> = 0 and gives the relation
B=0

a = 0. Thus,
1

INC o7 20)

Yant =
For x = —V/7/2, y = 1/((4N — 21)/4).
If we eliminate the contribution of the one-body terms of the quadrupole—quadrupole
11
interaction N (5 + 162> / (1 + /3?), the coefficients in the PES for large-N limit of the
IBM read as

2 2
a=(1—-y)—4Ny, b4\/;xNy, c=(1-y)— ;xQNy-
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The critical point (when b? = 4ac) is located at y.. extracted from the equation

O (O IO IR

At y. the depth of the 3 = 0 and 8 # 0 minima becomes equal. The antispinodal point,
0’FE

where 3 # 0 the minimum disappearance occurs, when a = 0 ((3—52) = O), that is at
=0

_ 1

AN+ 17

This antispinodal point follows shortly before the critical point y, < y..

Taking the first-order derivative of the PES with respect to 8 and equaling it to zero, we

get the shape equilibrium equation for y = —+/7/2:

Ya

2a + 3b3 + (4c — 2a) 5% — b3 = 0,
which leads to
[(1—y) — 4Ny] — 3V2NyB + [(1 — y) + 3Ny|8* + V2Nyp* = 0. 22)

For the U(5) limit, with y = 0, the equilibrium deformation parameter 3, = =i, that is no
real 3 exists for the U(5) limit. This means that the U(5) limit corresponds to a spherical
vibrator shape.

For the SU(3) limit, with y = 1, the cubic equation becomes

443V28-332—V28° =0

and the allowed parameter is 3 = /2.

The variation of the order parameter 3 with respect to the control parameter y in Eq. (22)
is illustrated in Fig. 1. The characteristic cycle of the order parameter when the first-order
phase transition takes place is observed. Spherical hysteresis phase (3 = 0) is up to y = 0.2
and then the system jumps to the deformed minimum.

L5
B

14

0.5

—0.5 T T T T T

0 0.2 0.4 0.6 0.8 1 y 1.2

Fig. 1. Shape phase diagram for the U(5)-SU(3) transition. The behavior of deformation parameter 3
with control parameter y
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For large-N limit, the parameters a, b, and ¢ become

1—y 1—y 1
—|—Y 4| Ny, b=-2V2N = —Y _ 2| Ny
¢ [Ny ] . VaNy, [Ny 2} Y

Solving Eq. (21), b? = 4ac for x = —+/7/2, yields the solutions y = 1, y = 2/(9N +2), and
the equilibrium values By = 0 and By = 1/(2v/2).
The PES takes the form

1 \2
2 _
J— constﬁO <60 2\/§> . (23)
(1+5%)
The PES involves spherical minimum at 5 = 0 and a prolate deformed minimum at

Bo =1/(2v2).

Figure 2,a shows the behavior of the scaled PES F(() near the minimum at § = 0 and
Bo = 1/(2v/2) for (1 —y)/(Ny)),, = 9/2, it approaches a constant for large 3. The position
and height of the barrier separating the two minima are given by

g 1t VI+TA \ﬂ/“rﬁg:g_wz (24)
0
2
B <—1+— \B/1+53> - 3%(1% 122). (25)
0

The symmetric phase takes place at y = 0, because the PES has a unique minimum at
3 = 0. When y increases, one reaches the spinodal point at (1 — y)/(Ny) = 5 (Fig.2,b),
where the second local nonsymmetric minimum at 3 # 0 arises, it pushes the symmetric one
till both attain the same depth at the critical point y = 2/(9N + 2) (Fig.2,a). Beyond this
value, the symmetric minimum at 3 = 0 becomes the local minimum till (1 —y)/(Ny) = 4
(Fig. 2, c), where it becomes unstable antispinodal point.

0.5 0.8 0.4
wn w2 wn
2 04 “1 & 077 P& 0.3 ¢
' 0.6 '
0.3+ 0.5 1 0.2 1
02 04 0.1
’ 0.3 1 ’
0.1+ 0.2 0
0.1+
0+ _014
0- 0.1
—0.1 T T T T —0.1 T T T T -0.2 T T T
-1 -05 0 05 1 1.5 -1-05 0 05 1 1.5 —0.5 0.5 1.5
B B B

Fig. 2. A plot of the scaled PES in the large-N limit and xy = —+/7/2 as a function of deformation
parameter (3 (phase diagram). The critical point ((1 —y)/(Ny)), = 4.5 is represented in plot a. Plots b
and ¢ show the two cases (1 —y)/(Ny) =5and (1 —y)/(Ny) =4
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3. NUMERICAL CALCULATIONS APPLIED TO EVEN-EVEN Dy ISOTOPES

In order to determine the best model parameters y, x, and A for each nucleus of Dy
isotopic chain 1°°~162Dy, some experimental values of energy levels and B(E2) transition
probabilities are selected and fitted with the IBM calculated ones by minimizing the mean
square deviation using a computer simulated search program. The entire procedure is repeated
for a new set of parameters, until a reasonable compromise is found between the theoretical
and experimental ones. The mean square deviation in the energy and B(FE2) values are
quantified with the common definition of the chi squared

2 i (EEXP(L-> _ Ecal(IZ_>)2
XB = Ng Z (exp. errors)? ’ (26)

1 B(E2)™® — B(E2)%)?
2:(( ) (E2)°)

2 ?

2 _ 27
XB(p2) (exp. errors) @7

Np(p2) %
where N is the number of experimental points entering into the fitting procedure. Only six
lowest levels I7 = 0,21, 4% 61,8% 107 are used, because the model cannot be applied over
an energy range including the band crossing. The experimental data are taken from the national
nuclear data center [30]. Table 1 lists the adopted best set of parameters in the Hamiltonian
for 1°0=162Dy isotopic chain. The PES’s calculated by using the Hamiltonian equation (14)
to describe the U(5)-SU (3) transition for isotopic chain *°~162Dy are illustrated in Fig.3.
The potentials are shown as a function of deformation parameter § along the axial trajectory
v = 0,60°. The corresponding model parameters are listed in Table 1. Here, we observe the
shape transition from spherical nucleus '*°Dy to well-deformed prolate nuclei *3~162Dy. We
remark that the PES is not flat, exhibiting a deeper minimum in the prolate (3 > 0) region
and a shallower minimum in the oblate (3 < 0) region. Relatively flat PES occurs for *°Dy
nucleus (boson number N = 12), suggested as a good example of the X (5) critical point
symmetry. The isotopic chain passes from U(5) to SU(3) limit when the number of bosons
is increasing from N =9 to N = 15.

Table 1. The adopted best model parameters y, x, and )\ as derived in fitting procedure used in the
calculations for the Dy isotopic chain for the U(5)-SU(3) shape transition

Parameter | '*°Dy | 52Dy | '54py | 1%6py | 158py | 160py 162y
N 9 10 11 12 13 14 15

Y 0.0333 | 0.041 | 0.0536 | 0.06 | 0.0576 0.06 0.0653
X -1.32 -1.32 -1.1 -0.86 -0.8 -0.53 -0.3
A 14.51 16.212 | 17.336 | 16.21 19.17 | 20.178 | 21.405

One of the best signatures of a shape transition is the behavior of the yrast excitation
energy ratios Ry o/ = E(I + 2)/E(2]) along the isotopic chain. The ratios for U(5)
and SU(3) dynamical symmetry limits are given by

I+2

_ 2
RI+2/2 = (I+2)(I+3) (28)

5 for SU(3),

with 1 =0,2,4,6,. ..
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Fig. 3. Sketches of the calculated PES’s as a function of deformation parameter 3 for the U(5)-SU(3)
transition in '°°~'5?Dy isotopic chain (with N = 9—15). The sketch at boson number N = 12
represents the critical nucleus Dy

Also, to indentify the shape phases and their transition, it is helpful to examine the ratios
of the E2 reduced transition probabilities between the levels of the ground-state band. These
ratios are known for U(5) and SU(3) of the IBM from the equation

B(E2;I+2—1)

B(E2;2f —0})

%(H 2) <1 - %) for U(5),

= (29)
15 (1+2)(I+1)

seraer s (o) (1 aveg) o osve

The E2 operator in the IBM is given by T(E2) = eQ), where ( is the quadrupole operator

Briop =

defined in Eq.(3) and e is the effective charge. For '°5Dy the value of y is —0.86, which
matches the value of e = 0.2.

In Tables 2, 3 and Fig. 4, we give the comparison of the yrast excitation energy ratios R
and the yrast B(E2) ratios By,/o in the ground-state band calculated by the present model
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Table 2. The energy ratios R;i,/» = Table 3. The B(E) ratios B; ,/; = B(E2;
E(I+2)/E(2]) for "Dy and comparison I+2—1)/B(E2;2} —0f) for Dy and
with experimental and U(5), SU(3) dynam- comparison with experimental and U (5), SU(3)

ical symmetries for low-lying states dynamical symmetries for low-lying states
156 156
D D
1] UG | su®) Y 1] UG | sus) Y
Cal. Exp. Cal. | Exp.
0 1 1 1 1 0 1 1 1 1
2 2 3.333 3.033 2.927 2 | 1.833 | 1.4065 | 1.4 1.7
4 3 7 5.809 5.579 4 2.5 1.5054 | 1.8 1.5
6 4 12 9.157 8.811 6 3 1.5097 | 2.1 1.9
8 5 18.333 | 12.973 | 12.427 8 | 3.333 | 14619 | 2.3 2.5
20
el T UO) a b
—=— SUQ3)
16 —+— Cal.
14
12 ¢
a N
10 %
& S
8 —
6 —
4 —
0.5
2 —
L
T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
Spin Spin

Fig. 4. Energy and B(E2) ratios for Dy and comparison with the U(5) and SU(3) limits.
a) The energy ratios Rrio/2 = E(I +2)/E(2]). b) The B(E2) ratios Bryo/o = B(E2;1 +2 —
I)/B(E2;2f — 01). The dots correspond to experimental values

for the critical nucleus Dy and the predictions of U(5) and SU(3) dynamical symmetry
limits; furthermore, the experimental values (dots) are also represented. We can see that our
calculations fit the X (5) critical point symmetry.

Besides the energy ratios and the E2 transition rates, the pair transfer intensity and the
two-neutron separation energies are important signatures for driven shape phase transition
in even—even nuclei with respect to the total number of bosons. Calculations have been
deformed for the IBM pair transfer intensities I, 41 connecting the state in nucleus which
has N bosons with the state which has N + 1 bosons as a function of boson number for
the Dy isotopic chain (Np = 9—16). Tables 4a and 4b and Fig.5 illustrate the intensities
between ground state—ground state (gs Of — gs Of) (Fig.4) and between ground state—/3 state
(gs0] — Bs03) (Fig.5). A comparison with the U(5) and SU(3) limits in the IBM and in
boson intrinsic coherent state (BICS) is also given. A sharp rise at 15Dy (Np = 12) is seen,
which is considered as a transitional nucleus in the calculations.
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Table 4a. Pair transfer intensities for Dy isotopic chain for (gs 07 — gs07)

Symmetry Ny
limits 9 10 11 12 13 14 15
U(5) IBM) 10 11 12 13 14 15 16
U(5) (BICS) 10 11 12 13 14 15 16

SU(3) IBM) 3.684 | 4.015 | 4.347 | 4.68 | 5.012 | 5.344 | 5.677
SU(3) (BICS) 3.33 3.66 4 4.33 4.66 5 5.33
Cal. 10 11 12 1.666 | 1.623 | 1.513 | 1.475

Table 4b. Pair transfer intensities for Dy isotopic chain for (gs 0] — (s0])

Symmetry Np
limits 9 10 11 12 13 14 15
U(5) (IBM) 0 0 0 0 0 0 0
U(5) (BICS) 0 0 0 0 0 0 0

SU(3) (IBM) 0.6687 | 0.6683 | 0.6680 | 0.6678 | 0.6676 | 0.6675 | 0.6674
SU(3) (BICS) 0.666 0.666 0.666 0.666 0.666 0.666 0.666

Cal. 0 0.75 1.4 1.15 0.9 0.7 0.68
18 1.6
16 a 1.4 -
14 1.2
- 12 o
= 107 =
0.8
T8 T
= . <061
4 - 0.4
2 - 0.2 +
0 T T T T 0 T
6 8 10 12 14 16 6 11 16
Boson number Ng Boson number Ng

Fig. 5. Pair transfer intensities /ny—n+1 as a function of boson number Np for Dy isotopic chain:
a) between ground states (gs) of nuclei with N and N + 1 bosons; b) between ground state of nucleus
with N bosons and 3 state of nucleus with N + 1 bosons

The two-neutron separation energy is defined as the energy required to remove two
neutrons (one boson) from a given isotope, and for a constant proton number it is given by
Son(N) = BE(N) — BE(N —1) = A+ B(N — 1) + A(BE), (30)

where N is the boson number and A, B are considered to be constants along the isotopic chain
and are determined by fitting procedure for Dy isotopic chain to be A = 17.842 MeV and
B = —0.156 MeV. In Table 5 and Fig. 6, the calculations of S5, match the experimentally
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Table 5. The values of the two-neutron separation energies Sa,, for Dy isotopic chain

Separation Ng
energy 9 10 11 12 13 14 15

San (exp.) 17.000 | 16.438 | 16.282 | 16.036 | 15.407 | 14.646 | 13.926
San(cal.) 16910 | 16.331 | 16.110 | 15.921 | 15.106 | 14.302 | 13.510

18

16

14

12

SZna MeV

10

6 T T T

8 10 12 14 16
Np

Fig. 6. Comparison between the calculated and experimental two-neutron separation energies So, for
Dy isotopic chain

observed behavior. The appearance of kink in Ss, at Ng = 12 (}°Dy) indicates that the
shape phase transition occurs at this point.

CONCLUSIONS

In the present paper, we have studied the shape phase transition from a spherical vibra-
tor U(5) to axially symmetric deformed prolate rotor SU(3) with an alternative approach in
the framework of the IBM. The Hamiltonian used is composed of a single-boson energy term
and a quadrupole term and contains only two parameters. We have transformed the Hamil-
tonian into the consistent Q formalism (CQF) of the IBM depending on control and scaling
parameters. By using the boson intrinsic coherent state, the PES’s and the critical points are
analyzed by varying the control parameter. The large boson number limits of the IBM at the
critical points are also obtained. We have applied our results to 159~162Dy isotopic chain, that
is known to display the first-order U(5)-SU(3) shape phase transition. For each nucleus the
parameters of the model have been obtained by performing the standard x? fitting procedure
adopted to minimize the mean square deviation between the calculated and the experimental
selected low-lying excitation energies and B(E?2) transition rates. The nucleus %Dy has
been found to be close to the critical point symmetry X (5). The behavior of energy ratios
and B(E?2) ratios in the ground-state band is examined and compared to the prediction of
vibrational U(5) and rotational SU(3) limits of the IBM.
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