ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА. ТЕОРИЯ

АНИЗОТРОПИЯ СПЕКТРОВ МГНОВЕННЫХ НЕЙТРОНОВ ДЕЛЕНИЯ 233 U(n,F)

В. М. Маслов ¹

Угловая анизотропия вторичных нейтронов в нейтронных эмиссионных спектрах (НЭС) четно-четных и четно-нечетных ядер-мишеней и в наблюдаемых спектрах мгновенных нейтронов деления (СМНД) четно-нечетных ядер мишеней 239 Pu и 235 U обусловлена предравновесным механизмом эмиссии первого нейтрона реакции $(n,nX)^1$ и его влиянием на спектр предделительных нейтронов реакций (n,xnf). В случае СМНД средняя энергия $(n,nf)^1$ нейтронов зависит от угла эмиссии относительно падающего пучка нейтронов θ , как следствие, сечение деления, среднее число мгновенных нейтронов деления (МНД) и полная кинетическая энергия осколков (продуктов) деления (ТКЕ) также зависят от θ . Большая чувствительность к испусканию $(n,xnf)^1$ нейтронов в переднюю и заднюю полусферы предсказана для реакции 233 U(n,F). Эксклюзивные спектры предделительных нейтронов реакций 233 U $(n,xnf)^1$ 233 В сисклюзивные спектры нейтронов $(n,n\gamma)$ и $(n,xn)^1$. Расчетные эксклюзивные спектры $(n,xnf)^1$. В соответствуют согласованному описанию наблюдаемых сечений деления $(n,xnf)^2$ для нейтронов с энергией $(n,xnf)^2$ Нейтронов с вкладом эмиссионного деления $(n,xnf)^2$ в наблюдаемое сечение деления $(n,xnf)^2$ нейтронов с вкладом эмиссионного деления $(n,xnf)^2$ в наблюдаемое сечение деления $(n,xnf)^2$ получено отношение средних энергий СМНД $(x)^2$ для эмиссии $(n,xnf)^3$ нейтронов в реакции $(n,xnf)^3$ «вперед» и «назад», оно существенно выше, чем для реакций $(n,xnf)^2$ получено отношение средних энергий СМНД $(x)^2$ для эмиссии $(n,xnf)^3$ нейтронов в реакции $(n,xnf)^3$ «вперед» и «назад», оно существенно выше, чем для реакций $(n,xnf)^3$ получено отношение средних энергий СМНД $(x)^2$ для эмиссии $(n,xnf)^3$ нейтронов в реакции $(n,xnf)^3$ «вперед» и «назад», оно существенно выше, чем для реакций $(n,xnf)^3$ получено отношение средних энергий СМНД $(n,xnf)^3$ нейтронов в реакции $(n,xnf)^3$ получено отношение средних

Angular anisotropy of secondary neutrons in neutron emission spectra (NES) of even–even and even–odd target nuclides and prompt fission neutron spectra (PFNS) of even–odd target nuclides $^{239}\mathrm{Pu}$ and $^{235}\mathrm{U}$ is due to pre-equilibrium emission of $(n,nX)^1$ neutrons and its influence on prefission neutrons in (n,xnf) reaction. Average energy of $(n,nf)^1$ neutrons depends on the emission angle θ , i.e. fission cross section, prompt neutron number and total kinetic energy depend on θ as well. Strong sensitivity to forward and backward emission of pre-fission neutrons in $(n,xnf)^1$ reaction is predicted for $^{233}\mathrm{U}(n,F)$. Exclusive neutron spectra of $^{233}\mathrm{U}(n,xnf)^{1,...,x}$, $(n,n\gamma)$ and $(n,xn)^{1,...,x}$ are calculated within Hauser–Feshbach formalism alongside with (n,F) and (n,xn) reaction cross sections, angular dependence of first neutron $^{233}\mathrm{U}(n,nX)^1$ emission being included. Exclusive neutron spectra $^{233}\mathrm{U}(n,xnf)^{1,...,x}$ at $\theta \sim 90^\circ$ are consistent with $^{232,233}\mathrm{U}(n,F)$ within $E_n \sim 0.01$ –20 MeV energy range. Approximation of $\omega(\theta)$ obtained for $^{239}\mathrm{Pu}(n,F)$ and $^{235}\mathrm{U}(n,F)$ allows one to correlate angular anisotropy of $^{233}\mathrm{U}(n,xnf)^1$ neutrons with emissive fission $^{233}\mathrm{U}(n,xnf)$ contribution to the observed fission cross section of $^{233}\mathrm{U}(n,F)$. The ratio of mean PFNS energies for forward and backward emission of $^{239}\mathrm{Pu}(n,F)$.

PACS: 24.75.+i; 25.40.-h; 25.85.Ec

¹E-mail: mvm2386@yandex.ru

Анализ наблюдаемых СМНД для реакций $^{235}{\rm U}(n,F)$ и $^{239}{\rm Pu}(n,F)$ [1] показал, что для целого ряда структур имеет место корреляция с предделительными $(n, xnf)^{1,...,x}$ нейтронами. Предделительными считаются x нейтронов, которые испускаются из ядра (A+1), где A — массовое число ядра-мишени, при условии, что остаточного возбуждения достаточно для деления любого из (A+1-x) ядер. Предделительные нейтроны вблизи порога реакции (n, xnf) имеют довольно низкую энергию по сравнению с нейтронами, испускаемыми возбужденными осколками деления. Амплитуда вариаций средних энергий $\langle E \rangle$ СМНД для 239 Ри(n,F) намного ниже, чем в случае реакции $^{235}U(n,F)$. Для реакций $^{239}Pu(n,F)$ и $^{235}U(n,F)$ установлена корреляция между формой спектра MHД при различных углах эмиссии $(n, xnf)^1$ нейтронов относительно импульса налетающих нейтронов и вкладами эмиссионного деления в наблюдаемые сечения деления [2]. Здесь и в дальнейшем верхний индекс $(1,\ldots,x)$ идентифицирует последовательно испускаемые нейтроны. Это приводит к тому, что средняя энергия СМНД уменьшается вблизи порогов реакций (n, xnf), что детально изучено для реакций 239 Ри(n, F) и 235 U(n, F) [3–7]. Вариации наблюдаемых средних энергий СМНД $\langle E \rangle$ вблизи порогов реакций (n, xnf), как показано в [1, 2, 8], обусловлены эксклюзивными спектрами предделительных $(n, xnf)^{1,...,x}$ нейтронов. Угловая анизотропия эксклюзивных спектров нейтронов реакций $(n, nf)^1$ и $(n, 2nf)^1$ различным образом влияет на наблюдаемые СМНД 239 Pu(n,F) и 235 U(n,F) и их средние энергии [2]. Это обстоятельство связано с различием вкладов эмиссионного деления в наблюдаемые сечения деления для реакций 239 Pu(n,F) и 235 U(n,F). Отношение средних энергий СМНД $\langle E \rangle$ для эмиссии предделительных нейтронов «вперед» и «назад» относительно импульса налетающих нейтронов резко растет с ростом средних энергий предделительных нейтронов, причем в реакциях 235 U(n, xnf)сильнее, чем в реакциях 239 Pu(n, xnf) [1-8]. Подобные эффекты, очевидно, возможны и для реакции 233 U(n,F). Распределение энергии деления в реакции 233 U(n,F)между кинетической энергией осколков, энергией возбуждения и предделительными нейтронами проявляется пока только в локальных максимумах в полной кинетической энергии ТКЕ осколков и продуктов деления [9].

Испарительные предделительные нейтроны испускаются сферически-симметрично относительно пучка налетающих нейтронов. Угловая анизотропия СМНД, обнаруженная в реакции 239 Pu(n, F) [3], связана с предравновесным механизмом эмиссии нейтрона $(n, nX)^1$. Направление вылета первого нейтрона реакции 233 U $(n, nX)^1$, равно как и всех его парциальных составляющих в эксклюзивных спектрах нейтронов реакций $(n, n\gamma)^1$, $(n, 2n)^1$, $(n, 3n)^1$ и интересующих нас нейтронов реакций $(n, nf)^1$, $(n, 2nf)^1$ и $(n, 3nf)^1$, также коррелирует с импульсом налетающих нейтронов. Направление эмиссии мгновенных нейтронов деления из осколков деления коррелирует главным образом с направлением разлета осколков, т.е. осью деления. Те и другие нейтроны регистрируются в экспериментах в совпадении с осколками деления. В [3-7] МНД регистрировались ~ 50 детекторами, расположенными под различными углами относительно падающего пучка. Анонсированные в [10] измерения СМНД для 233 U(n,F), которые будут выполнены аналогично измерениям для 235 U(n,F) и 239 Pu(n,F) [3-7], уместно предварить теоретической оценкой СМНД с помощью методов, описанных в [1,2,8]. Цель работы состоит в предсказании анизотропии спектров мгновенных нейтронов деления ${}^{233}{\rm U}(n,F)$ для энергии налетающих нейтронов $E_n < 20\,$ МэВ с помощью развитых методов, согласующихся с прецизионными измерениями СМНД 235 U(n,F) [6,7], 238 U(n,F) [11] и 239 Pu(n,F) [3–5].

Анизотропная часть дважды дифференциального спектра первого нейтрона $(d^2\sigma(\varepsilon,E_n,\theta))/(d\varepsilon\,d\theta)$ [1,2], соответствующая возбуждениям ядра 233 U $U\sim 1-6$ МэВ, будет проявляться в дважды дифференциальных эмиссионных спектрах, причем главным образом в анизотропии части спектра эмиссии нейтронов, соответствующей реакции $(n, n\gamma)^1$. Угловая анизотропия спектров эмиссии нейтронов относительно пучка налетающих нейтронов в реакциях $^{235}\text{U}+n$, $^{238}\text{U}+n$ и $^{239}\text{Pu}+n$ была обнаружена в [12]. Наиболее исследованными для определения спектра первого нейтрона реакции $(n, nX)^1$ являются ядра-мишени 238 U и 232 Th [13, 14]. Для четно-четных ядермишеней учет прямого возбуждения коллективных уровней полосы основного состояния $J^{\pi}=0^+,\,2^+,\,4^+,\,6^+,\,8^+$ выполнен в модели жесткого ротатора, а прямого возбуждения уровней γ -ротационных полос $K\pi=0^+,\,2^+$ и уровней октупольной полосы $K^{\pi} = 0^{-} - \mathrm{c}$ помощью модели мягкого деформируемого ротатора (см. [15] и ссылки там). Это позволило получить адекватную аппроксимацию [1,2,8] угловой зависимости непрерывного спектра эмиссии первого нейтрона ${}^{238}{\rm U}(n,nX)^1$, соответствующую энергии возбуждения $U=1-6\,$ МэВ. Эта аппроксимация адекватна для взаимодействий ${}^{235}\text{U} + n$ и ${}^{239}\text{Pu} + n$ [1, 2, 8], она будет использована и в случае ${}^{233}\text{U} + n$.

Анизотропная часть дважды дифференциального спектра первого нейтрона $(d^2\sigma(\varepsilon,E_n,\theta))/(d\varepsilon\,d\theta)$, соответствующая возбуждениям, сравнимым с барьером деления ядер 233 U, проявится в эксклюзивных спектрах $(n,nf)^1$, $(n,2nf)^1$ и $(n,2n)^1$ [1,2] и, как следствие, в наблюдаемых под разными углами относительно пучка налетающих нейтронов СМНД 233 U(n,F).

Спектр мгновенных нейтронов $S(\varepsilon,E_n,\theta)$ — это суперпозиция эксклюзивных спектров предделительных нейтронов $(n,nf)^1, \quad (n,2nf)^{1,2}, \quad (n,3nf)^{1,2,3} - (d^2\sigma^k_{nxn}(\varepsilon,E_n,\theta))/(d\varepsilon\,d\theta)\;(x=0,1,2,3;k=1,\ldots,x),$ где θ — угол эмиссии нейтронов $(n,nf)^1$ относительно налетающего пучка, а также спектров мгновенных нейтронов $S_{A+1-x}(\varepsilon,E_n,\theta),$ испускаемых из осколков деления:

$$S(\varepsilon, E_{n}, \theta) = \tilde{S}_{A+1}(\varepsilon, E_{n}, \theta) + \tilde{S}_{A}(\varepsilon, E_{n}, \theta) + \tilde{S}_{A-1}(\varepsilon, E_{n}, \theta) + \tilde{S}_{A-2}(\varepsilon, E_{n}, \theta) =$$

$$= \nu_{p}^{-1}(E_{n}, \theta) \left\{ \nu_{p1}(E_{n})\beta_{1}(E_{n}, \theta) S_{A+1}(\varepsilon, E_{n}, \theta) + \nu_{p2}(E_{n} - \langle E_{nnf}(\theta) \rangle) \beta_{2}(E_{n}, \theta) \times \right.$$

$$\times S_{A}(\varepsilon, E_{n}, \theta) + \beta_{2}(E_{n}, \theta) \frac{d^{2}\sigma_{nnf}^{1}(\varepsilon, E_{n}, \theta)}{d\varepsilon d\varepsilon} + \nu_{p3} \left(E_{n} - B_{n}^{A} - \langle E_{n2nf}^{1}(\theta) \rangle - \left. - \langle E_{n2nf}^{2}(\theta) \rangle \right) \beta_{3}(E_{n}, \theta) S_{A-1}(\varepsilon, E_{n}, \theta) + \beta_{3}(E_{n}, \theta) \left[\frac{d^{2}\sigma_{n2nf}^{1}(\varepsilon, E_{n}, \theta)}{d\varepsilon d\theta} + \left. + \frac{d^{2}\sigma_{n2nf}^{2}(\varepsilon, E_{n}, \theta)}{d\varepsilon d\theta} \right] + \nu_{p4}(E_{n} - B_{n}^{A} - B_{n}^{A-1} - \langle E_{n3nf}^{1}(\theta) \rangle - \langle E_{n3nf}^{2}(\theta) \rangle - \left. - \langle E_{n3nf}^{3}(\theta) \rangle \right) \beta_{4}(E_{n}, \theta) S_{A-2}(\varepsilon, E_{n}, \theta) + \beta_{4}(E_{n}, \theta) \times \left. \times \left[\frac{d^{2}\sigma_{n3nf}^{1}(\varepsilon, E_{n}, \theta)}{d\varepsilon d\theta} + \frac{d^{2}\sigma_{n3nf}^{2}(\varepsilon, E_{n}, \theta)}{d\varepsilon d\theta} + \frac{d^{2}\sigma_{n2nf}^{3}(\varepsilon, E_{n}, \theta)}{d\varepsilon d\theta} \right] \right\}. \tag{1}$$

В уравнении (1) $\tilde{S}_{A+1-x}(arepsilon,E_n, heta)$ — вклад x-го шанса деления в наблюдаемый спектр мгновенных нейтронов деления, $\left\langle E^k_{nxnf}\left(heta
ight) \right
angle$ — средняя энергия k-го нейтрона реак-

ции (n,xnf) со спектром $(d^2\sigma^k_{nxn}(\varepsilon,E_n,\theta))/(d\varepsilon\,d\theta)$, где $k\leqslant x$. Спектры $S(\varepsilon,E_n,\theta)$, $S_{A+1-x}(\varepsilon,E_n,\theta)$ и эксклюзивные спектры предделительных нейтронов $(d^2\sigma^k_{nxn}\times \times (\varepsilon,E_n,\theta))/(d\varepsilon\,d\theta)$ нормированы на единицу. Спектры нейтронов, испаряющихся из осколков деления $S_{A+1-x}(\varepsilon,E_n,\theta)$, как предложено в [16], были представлены суммой двух распределений Уатта [17] с разными температурами, соответствующими легкому и тяжелому осколкам. Индекс x обозначает шанс деления ядер $^{234-x}$ U после эмиссии предделительных нейтронов, $\beta_x(E_n,\theta)=\sigma_{n,xnf}(E_n,\theta)/\sigma_{n,F}(E_n,\theta)$ — вклад x-го шанса деления в наблюдаемое сечение деления, $\nu_p(E_n,\theta)$ — наблюдаемое среднее число мгновенных нейтронов, $\nu_{px}(E_{nx})$ — среднее число МНД, испускаемых из осколков деления ядер $^{234-x}$ U. Среднее число мгновенных нейтронов $\nu_p(E_n)$ определяется как

$$\nu_p(E_n) = \nu_{\text{post}} + \nu_{\text{pre}} = \sum_{x=1} \nu_{px}(E_{nx}) + \sum_{x=1} (x-1)\beta_x(E_n).$$
 (2)

Выделение постделительных $\nu_{\rm post}(E_n)$ и предделительных $\nu_{\rm pre}(E_n)$ компонент нейтронов деления основано на совместном описании среднего числа мгновенных нейтронов $\nu_p(E_n)$ и сечений деления для $E_n < 20~{\rm MpB}$.

После эмиссии x предделительных (n, xnf) нейтронов энергия возбуждения остаточных ядер $^{234-x}$ U уменьшается на величину энергий связи нейтронов B_{nx} и их средних кинетических энергий:

$$U_x = E_n + B_n - \sum_{x,1 \le k \le x} \left(\left\langle E_{nxnf}^k \left(\theta \right) \right\rangle + B_{nx} \right). \tag{3}$$

Энергия возбуждения осколков деления ядер $^{234-x}{
m U}$ определяется как

$$E_{nx} = E_r - E_{fx}^{\text{pre}} + E_n + B_n - \sum_{x,1 \le k \le x} \left(\left\langle E_{nxnf}^k \left(\theta \right) \right\rangle + B_{nx} \right). \tag{4}$$

Значения ТКЕ, кинетических энергий осколков до момента эмиссии мгновенных нейтронов $E_F^{\rm pre}$, моделируются как суперпозиция ТКЕ ядер $^{234-x}{\rm U}$, дающих вклад в наблюдаемое сечение деления:

$$E_F^{\text{pre}}(E_n) = \sum_{x=0}^X E_{fx}^{\text{pre}}(E_{nx}) \frac{\sigma_{n,xnf}}{\sigma_{n,F}}.$$
 (5)

Кинетическая энергия продуктов деления, т.е. осколков после эмиссии мгновенных нейтронов из осколков $E_F^{
m post}$ определяется как

$$E_F^{\text{post}} \approx E_F^{\text{pre}} \left(1 - \frac{\nu_{\text{post}}}{A + 1 - \nu_{\text{pre}}} \right).$$
 (6)

На рис. 1 представлены вклады $\beta_1(E_n)$ и $\beta_2(E_n)$ для первого и второго шансов деления в наблюдаемом сечении деления 235 U(n,F). Темные точки [18] соответствуют вкладам $\beta_1=\sigma_{n,f}/\sigma_{n,F}$ и $\beta_2=\sigma_{n,nf}/\sigma_{n,F}$ в наблюдаемое сечение деления 235 U(n,F). Они существенно отличаются от оценок $\beta_x(E_n)=\sigma_{n,xnf}\sigma_{n,F}$ [1,2]. В [18] вклады $\beta_1(E_n)$ и $\beta_2(E_n)$ оценивались по результатам анализа распределения множественности нейтронов деления. Такая оценка, очевидно, неустойчива и чувствительна к

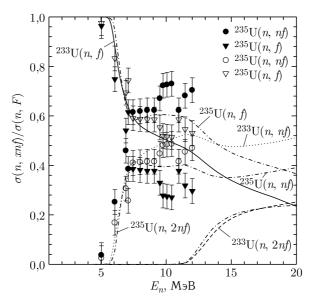


Рис. 1. Отношение парциальных составляющих (n,xnf) к сечению деления нейтронами: • $-\beta_2(E_n)$ [18]; $\nabla -\beta_1(E_n)$ [18]; $\circ -\tilde{\beta}_2(E_n)$ [18]; $\nabla -\tilde{\beta}_1(E_n)$ [18]; сплошная линия $-{}^{233}\mathrm{U}(n,f)$; пунктирная $-{}^{233}\mathrm{U}(n,nf)$; штриховая $-{}^{233}\mathrm{U}(n,2nf)$; штрихпунктирная $-{}^{235}\mathrm{U}(n,f)$, ${}^{235}\mathrm{U}(n,nf)$, ${}^{235}\mathrm{U}(n,nf)$

экспериментальным погрешностям, она не является полностью экспериментальной хотя бы потому, что средние энергии предделительных нейтронов в [18] расчетные, а их абсолютные значения авторы никак не комментируют. Светлые точки на рис. 1 получены перенормировкой данных [18]: $\tilde{\beta}_2(E_n)=0.67\beta_2(E_n)$. В результате перенормировки $\tilde{\beta}_1(E_n)$ и $\tilde{\beta}_2(E_n)$ много лучше согласуются с оценкой [1, 2], особенно вблизи порогов реакции 235 U(n,nf). Оценка $\beta_1(E_n)$ и $\beta_2(E_n)$ для 235 U(n,F) [1,2] более обоснована, поскольку позволяет воспроизвести наблюдаемые [6,7] СМНД $S(\varepsilon,E_n)$ с помощью вариаций $\tilde{S}_{235}(\varepsilon,E_n)$ и $\tilde{S}_{236}(\varepsilon,E_n)$. Вклады $\beta_2(E_n)^{233}$ U(n,F) для энергий $E_n>8$ МэВ выше порога реакции $S_2(E_n)$ 0 систематически превышают $S_2(E_n)$ 1 для $S_2(E_n)$ 2 для $S_2(E_n)$ 3 систематически превышают $S_2(E_n)$ 3 для $S_2(E_n)$ 4 для $S_2(E_n)$ 6 систематически превышают $S_2(E_n)$ 6 для $S_2(E_n)$ 6 для

Относительные вклады $\tilde{S}_A(\varepsilon,E_n)$ и $\tilde{S}_{A+1}(\varepsilon,E_n)$ в наблюдаемые СМНД $S(\varepsilon,E_n)$ зависят от формы предделительных спектров нейтронов и энергии возбуждения U_x осколков деления. Для 235 U(n,F) максимальный относительный вклад предделительных спектров нейтронов в СМНД имеет место для $E_n \sim 6,5$ МэВ, при этом он выше, чем в случае 233 U(n,F). Для 233 U(n,F) максимум имеет место при $E_n \sim 6$ МэВ, он выше, чем в случае 235 U(n,F). На рис. 2 видно, что относительный вклад $\beta_2(E_n)\nu_p^{-1}\frac{d^2\sigma_{nnf}^1(\varepsilon,E_n)}{d\varepsilon\,d\varepsilon}$ в СМНД для 233 U(n,F) вблизи порога при $E_n \sim 6,5$ МэВ систематически ниже, чем в случае реакции 235 U(n,F). Нейтроны реакции 233 U $(n,nf)^1$ существенно снижают энергию возбуждения U_1 , это проявляется в энергетической зависимости СМНД из осколков деления.

Средние энергии $\langle E \rangle$ СМНД 233 U(n,F) и 235 U(n,F) практически совпадают, как видно на рис. 3 для $\theta \sim 90^\circ$, т.е. $\langle \omega(\theta) \rangle_{\theta} \approx \omega(90^\circ)$ (см. ниже). В [1,2] показа-

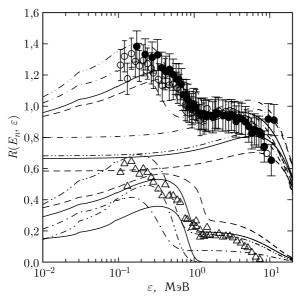


Рис. 2. Парциальные составляющие СМНД: $\circ - {}^{235}\mathrm{U}(n,F)$ [6], $\triangle - {}^{235}\mathrm{U}(n,nf)$ [6]; • — 235 U(n,F) [7] при $E_n=6.5$ МэВ; сплошные линии — 233 U(n,F), 233 U(n,f), 233 U(n,nf) и 233 U $(n,nf)^1$ при $E_n=6.5$ МэВ; штрихпунктирные линии — 233 U(n,F), 233 U(n,F), 233 U(n,nf) при $E_n=6,0\,$ МэВ; штриховые линии $-\,^{233}$ U $(n,F),\,^{233}$ U $(n,f),\,^{233}$ U(n,nf) при $E_n=7.0~{
m M}$ эВ; штрихпунктирные линии с двумя точками — ${}^{235}{
m U}(n,F), {}^{235}{
m U}(n,f), {}^{235}{
m U}(n,nf)$ и $^{235}{
m U}(n,nf)^1$ при $E_n=6,5~{
m M}$ ${
m B}$

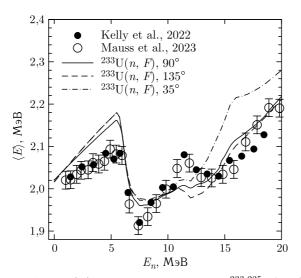


Рис. 3. Средняя энергия СМНД $\langle E \rangle$ для деления нейтронами $^{233,235}{\rm U}(n,F)$: темные кружки — 235 U(n,F) [6]; светлые кружки 235 U(n,F) [7]; сплошная линия $-\langle E(90^\circ)\rangle$; штриховая - $\langle E(135^{\circ})\rangle$; штрихпунктирная — $\langle E(30^{\circ})\rangle$ для $^{233}\mathrm{U}(n,F)$

но, что зависимость $\langle E \rangle$ СМНД 235 U(n,F) и 239 Pu(n,F) [3–6] от угла θ можно объяснить угловой зависимостью эмиссии первого предделительного нейтрона. Описанное в [1,2] моделирование угловой зависимости эксклюзивных спектров предделительных нейтронов позволяет получить оценку отношений СМНД $S(\varepsilon, E_n, \theta)$, $\langle S(\varepsilon, E_n, \Delta \theta) \rangle_{\Delta E_n} / \langle S(\varepsilon, E_n, \Delta \theta^1) \rangle_{\Delta E_n}$ для эмиссии предделительных нейтронов 233 U $(n, xnf)^{1,...,x}$ в переднюю $\Delta \theta \sim 35$ –40° и заднюю $\Delta \theta^1 \approx 130$ –140° полусферы для широкого интервала значений энергии $\Delta E_n \sim 15$ –17,5 МэВ [1–3]. Отношения средних энергий СМНД $\langle E(\theta \approx 37,5^\circ) \rangle / \langle E(\theta^1 \approx 135^\circ) \rangle$, т. е. $\langle E \rangle$ для нейтронов, регистрируемых под углами $\Delta \theta \sim 35$ –40° и $\Delta \theta^1 \sim 130$ –150° для интервала значений энергии нейтронов $E_n \sim 1$ –12 и 1–20 МэВ [3] для реакций 235 U(n,F) и 239 Pu(n,F) отличаются друг от друга. Можно предположить, что для реакции 233 U(n,F) зависимость $\langle S(\varepsilon, E_n, \Delta \theta) \rangle_{\Delta E_n} / \langle S(\varepsilon, E_n, \Delta \theta^1) \rangle_{\Delta E_n}$ и $\langle E(\theta \approx 37,5^\circ) \rangle / \langle E(\theta^1 \approx 135^\circ) \rangle$ для СМНД 233 U(n,F), эти значения $\langle E \rangle$ особенно чувствительны к рассеянию нейтронов $(n,xnf)^1$ в переднюю полусферу.

Дважды дифференциальный эмиссионный нейтронный спектр $(d^2\sigma(\varepsilon,E_n,\theta))/(d\varepsilon\,d\theta)$ определяется как суперпозиция спектров мгновенных нейтронов деления $S(\varepsilon,E_n,\theta)$, эксклюзивных спектров нейтронов $(n,n\gamma)^1$, $(n,2n)^{1,2}$ и $(n,3n)^{1,2,3}$, $(d^2\sigma_{nxn}^k(\varepsilon,E_n,\theta))/(d\varepsilon\,d\theta)$, нормированных на единицу, а также спектров упруго- и неупруго-рассеянных нейтронов, $(d^2\sigma_{nn\gamma}(\varepsilon,E_q,E_n,\theta))/(d\varepsilon\,d\theta)$, сопровождающихся возбуждением дискретных коллективных состояний ядра 233 U (см. [1,2]). В таком представлении эмиссионные расчетные спектры нормированы с учетом сечений реакций (n,n) и (n,F), а также средней множественности мгновенных нейтронов деления.

Вклад реакций эмиссионного деления (n,xnf) в наблюдаемое сечение деления (n,F)

$$\sigma_{nF}(E_n) = \sigma_{nf}(E_n) + \sum_{x=1}^{X} \sigma_{n,xnf}(E_n)$$
(7)

определяется вероятностью деления $P_f^{J\pi}\left(E\right)$ ядер U с массовыми числами (A+1-x) как

$$\sigma_{n,xnf}(E_n) = \sum_{J\pi}^{J} \int_{0}^{U_x} W_{A+1-x}^{J\pi}(U) P_{f(A+1-x)}^{J\pi}(U) dU,$$
 (8)

где $W^{J\pi}_{A+1-x}(U)$ — заселенность состояний (A+1-x) ядра с энергией возбуждения U после эмиссии x предделительных нейтронов [19, 20].

Спектр эмиссии первого нейтрона $(n,nX)^1$, $(d^2\sigma_{nnx}^1(\varepsilon,E_n,\theta))/(d\varepsilon\,d\theta)$ моделирует угловую и энергетическую зависимости нейтронных эмиссионных спектров 235 U+n [21], 238 U+n [14], а также спектров предделительных нейтронов 235 U(n,F) [1,2,21]:

$$\frac{d^2 \sigma_{nnx}^1(\varepsilon, E_n, \theta)}{d\varepsilon \, d\theta} \approx \frac{d^2 \tilde{\sigma}_{nnx}^1(\varepsilon, E_n, \theta)}{d\varepsilon \, d\theta} + \sqrt{\frac{\varepsilon}{E_n}} \frac{\omega(\theta)}{E_n - \varepsilon}.$$
 (9)

Усредненную по углу эмиссии функцию $\omega(\theta), \langle \omega(\theta) \rangle_{\theta}$ (см. детали параметризации в [2]) в интервале углов $\theta_2 - \theta_1 = 135 - 30^\circ$ можно аппроксимировать как $\langle \omega(\theta) \rangle_{\theta} \approx$

 $pprox \omega(90^\circ)$, тогда интегральный спектр можно представить в виде (см. [2])

$$\frac{d\sigma_{nnx}^{1}(\varepsilon, E_{n})}{d\varepsilon} \approx \left[\frac{d\tilde{\sigma}_{nnx}^{1}(\varepsilon, E_{n})}{d\varepsilon} + \sqrt{\frac{\varepsilon}{E_{n}}} \frac{\langle \omega(\theta) \rangle_{\theta}}{E_{n} - \varepsilon}\right] \frac{\Gamma_{f}^{A}(E_{n} - \varepsilon)}{\Gamma^{A}(E_{n} - \varepsilon)}.$$
 (10)

Дважды дифференциальный эксклюзивный спектр первого нейтрона в реакции $(n,nf)^1$ можно определить как

$$\frac{d^2 \sigma_{nnf}^1(\varepsilon, E_n, \theta)}{d\varepsilon \, d\theta} = \left[\frac{d^2 \tilde{\sigma}_{nnx}^1(\varepsilon, E_n, \theta)}{d\varepsilon \, d\theta} + \sqrt{\frac{\varepsilon}{E_n}} \frac{\omega(\theta)}{E_n - \varepsilon} \right] \frac{\Gamma_f^A(E_n - \varepsilon, \theta)}{\Gamma^A(E_n - \varepsilon, \theta)}. \tag{11}$$

Спектр первого нейтрона для реакции (n,2nx), т.е. $(n,2nx)^1$, определяется спектром первых нейтронов реакции $(n,nX)^1$ и вероятностью эмиссии нейтрона из ядра A, а спектр первого нейтрона $(n,2nf)^1$ для реакции (n,2nf) определяется, как описано в [1,2].

Вклад эксклюзивных спектров предделительных нейтронов реакций $^{233}\mathrm{U}(n,xnf)^{1,2}$ в НЭС есть $\frac{\sigma_{n,xnf}(E_n,\theta)}{4\pi}\frac{d\sigma_{nnf}^{1,2}(\varepsilon,E_n,\theta)}{d\varepsilon}$. Они составляют только малую часть спектра нейтронов $(n,nX)^1$, но при этом определяют угловую зависимость наблюдаемых спектров мгновенных нейтронов деления $^{233}\mathrm{U}(n,F)$ относительно падающего пучка нейтронов.

Угловая анизотропия спектров мгновенных нейтронов деления относительно пучка падающих нейтронов была выделена в реакции 239 Pu(n,F) [3] для интервала значений энергии налетающих нейтронов $E_n \sim 15-17,5$ МэВ для эмиссии вперед, $\Delta\theta \sim 35-40^\circ$, и назад, $\Delta\theta^1 = 130-140^\circ$. На рис.4 отношение $R^{\rm exp}$ СМНД 239 Pu(n,F) для интервала значений энергии $E_n \sim 15-17,5$ МэВ для эмиссии вперед, $\Delta\theta \sim 35-40^\circ$, и назад, $\Delta\theta^1 = 130-140^\circ$, сравнивается с расчетным отношением СМНД для 233 U(n,F):

$$R(\varepsilon, 15-17.5) \approx \frac{\int\limits_{15}^{17.5} \nu_p(E_n, \approx 30^\circ) \, \sigma_{nF}(E_n, \approx 30^\circ) \, S(\varepsilon, E_n, \theta \approx 30^\circ) \, \varphi(E_n) \, dE_n}{\int\limits_{15}^{17.5} \nu_p(E_n, \theta \approx 135^\circ) \, \sigma_{nF}(E_n, \theta \approx 135^\circ) \, S(\varepsilon, E_n, \theta \approx 135^\circ) \, \varphi(E_n) \, dE_n},$$

где $\varphi(E_n)$ — спектр нейтронов в налетающем пучке. Спектры $S(\varepsilon,E_n,\theta)$ нормированы на единицу. В первом приближении $R(\varepsilon,15-17,5)$ (12) можно определить как отношение сумм функционалов $\nu_p(E_n,\theta)\,\sigma_{nF}(E_n,\theta)\,S(\varepsilon,E_n\approx 15-17,5,\Delta\theta)$ и $\nu_p(E_n,\theta)\,\sigma_{nF}(E_n,\theta)\,S(\varepsilon,E_n\approx 15-17,5,\Delta\theta)$ и $\nu_p(E_n,\theta)\,\sigma_{nF}(E_n,\theta)\,S(\varepsilon,E_n\approx 15-17,5,\Delta\theta)$ для $E_n\sim 15$ МэВ, $E_n\sim 16$ МэВ, $E_n\sim 17$ МэВ и $E_n\sim 17,5$ МэВ. Величины $\nu_p(E_n,\theta)$ и $\sigma_{nF}(E_n,\theta)$ вычисляются при тех же E_n , что и $S(\varepsilon,E_n\approx 15-17,5,\Delta\theta)$. Структуры в составляющих $R(\varepsilon,15-17,5)$ (для монохроматических пучков) усредняются, в результате $R^{\rm exp}$ и $R(\varepsilon,15-17,5)$ согласуются друг с другом только по форме, но не по абсолютной величине. Сплошная линия для отношения $R(\varepsilon,15-17,5)$ для $R^{\rm exp}$ и $R(\varepsilon,15-17,5)$ для $R^{\rm exp}$ согласуются друг с другом в пределах погрешностей $R^{\rm exp}$. Очевидно, что расчетная анизотропия предделительных нейтронов реакций $R^{\rm exp}$ (см. уравнение (12))

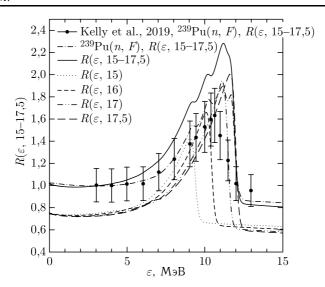
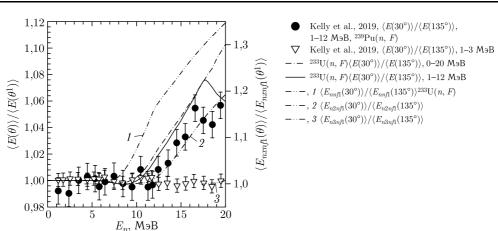



Рис. 4. Отношения СМНД $R^{\rm exp}=S(\varepsilon,E_n\approx 15-17.5,\Delta\theta)/S(\varepsilon,E_n\approx 15-17.5,\Delta\theta)^{239}$ Ри(n,F) и $R(\varepsilon,15-17.5)$ для 233 U(n,F) для эмиссии вперед, $\Delta\theta\sim 35-40^\circ$, и назад, $\Delta\theta^1=130-140^\circ$; 239 Ри(n,F): темные кружки — [3]; сплошная линия — СМНД 233 U(n,F), парциальные вклады нормированы при $\varepsilon\sim 3-5$ МэВ к одинаковому числу делений; далее СМНД 233 U(n,F) нормированы к 1: пунктирная линия — $R(\varepsilon,15),E_n\sim 15$ МэВ; штриховая — $R(\varepsilon,16),E_n\sim 16$ МэВ; штрихпунктирная линия с двумя точками — $R(\varepsilon,17),E_n\sim 17$ МэВ; штриховая линия с длинными штрихами — $R(\varepsilon,17.5),E_n\sim 17.5$ МэВ; штрихпунктирная — СМНД 239 Ри(n,F), парциальные вклады нормированы при $\varepsilon\sim 3-5$ МэВ к одинаковому числу делений

выше, чем в случае 235 U(n,xnf) и 239 Pu(n,F). Это проявление корреляции угловой анизотропии вторичных нейтронов с вкладом эмиссионного деления (n,nf) в наблюдаемое сечение деления и угловой анизотропией эмиссионных нейтронных спектров.

Зависимость энергии первого предделительного нейтрона от угла эмиссии в реакциях $(n,nf)^1$ и $(n,2nf)^1$ позволяет предсказать зависимость отношения средних энергий СМНД для предельных случаев эмиссии предделительных нейтронов 233 U $(n,xnf)^{1,2,3}$ [4] «вперед» и «назад», которая может быть измерена [10]. Отношение средних энергий экспериментальных СМНД $\langle E(\theta) \rangle / \langle E(\theta^1) \rangle$ [1] для спектров мгновенных нейтронов деления для 233 U(n,F), испущенных в переднюю, $\Delta\theta \sim 35-40^\circ$, и заднюю, $\Delta\theta^1 = 130-140^\circ$, полусферы, резко растет, начиная с энергии $E_n \sim 11$ МэВ (рис. 5). Рост отношения сильнее, чем в случае измеренного отношения $\langle E(\theta) \rangle / \langle E(\theta^1) \rangle$ для 239 Pu(n,F). Причиной тому являются главным образом предделительные нейтроны реакции $(n,nf)^1$. Для $E_n > 16$ МэВ расчетные величины отношений $\langle E(\theta \approx 30^\circ) \rangle / \langle E(\theta^1 \approx 135^\circ) \rangle$ для 233 U(n,F) в интервале $\varepsilon \sim 0-20$ МэВ существенно выше расчетной оценки для диапазона $\varepsilon \sim 1-12$ МэВ.

Данные [6] для реакции 235 U(n,F) показаны на рис. 6 умноженными на нормировочный фактор 0,99, в результате такой перенормировки достигается согласие экспериментальных и расчетных величин $\langle E(\theta \approx 30^\circ) \rangle / \langle E(\theta^1 \approx 135^\circ) \rangle$ как по форме, так и по абсолютной величине. Отношение средних энергий экспериментальных СМНД

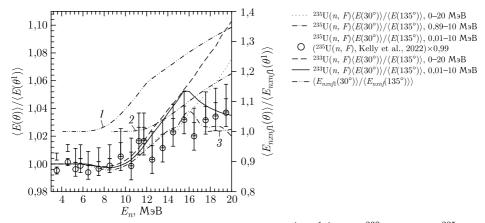


Рис. 6. Отношение средних энергий СМНД $\langle E(\theta) \rangle / \langle E(\theta^1) \rangle$ для 233 U(n,F) и 235 U(n,F): светлые кружки — $\langle E(\theta \approx 30^\circ) \rangle / \langle E(\theta^1 \approx 135^\circ) \rangle \cdot 0.99$, 235 U(n,F), диапазон значений энергии $\varepsilon \sim 1$ —10 МэВ [6]; штриховая линия — $\langle E(\theta \approx 30^\circ) \rangle / \langle E(\theta^1 \approx 135^\circ) \rangle$, 233 U(n,F), диапазон значений энергии $\varepsilon \sim 0$ —20 МэВ; сплошная — $\langle E(\theta \approx 30^\circ) \rangle / \langle E(\theta^1 \approx 135^\circ) \rangle$, 233 U(n,F), диапазон значений энергии $\varepsilon \sim 0.01$ —10 МэВ; штрихпунктирные линии с двумя точками $I, 2, 3 - \langle E_{n,xnf}(\theta \approx 30^\circ) \rangle / \langle E_{n,xnf}(\theta^1 \approx 135^\circ) \rangle$, x = 1,2,3; пунктирная линия — $\langle E(\theta \approx 30^\circ) \rangle / \langle E(\theta^1 \approx 135^\circ) \rangle$, x = 1,2,3; пунктирная линия — $\langle E(\theta \approx 30^\circ) \rangle / \langle E(\theta^1 \approx 135^\circ) \rangle$, x = 1,2,3; пунктирная линия — $\langle E(\theta \approx 30^\circ) \rangle / \langle E(\theta^1 \approx 135^\circ) \rangle$, x = 1,2,3; пунктирная линия — $\langle E(\theta \approx 30^\circ) \rangle / \langle E(\theta^1 \approx 135^\circ) \rangle$, x = 1,2,3; пунктирная линия — $\langle E(\theta \approx 30^\circ) \rangle / \langle E(\theta^1 \approx 135^\circ) \rangle$, x = 1,2,3; пунктирная линия — $\langle E(\theta \approx 30^\circ) \rangle / \langle E(\theta^1 \approx 135^\circ) \rangle$, x = 1,2,3; пунктирная линия — $\langle E(\theta \approx 30^\circ) \rangle / \langle E(\theta^1 \approx 135^\circ) \rangle$, x = 1,2,3; пунктирная линия — $\langle E(\theta \approx 30^\circ) \rangle / \langle E(\theta^1 \approx 135^\circ) \rangle$, x = 1,2,3; пунктирная линия — $\langle E(\theta \approx 30^\circ) \rangle / \langle E(\theta^1 \approx 135^\circ) \rangle$, x = 1,2,3; пунктирная линия — $\langle E(\theta \approx 30^\circ) \rangle / \langle E(\theta^1 \approx 135^\circ) \rangle$, x = 1,2,3; пунктирная линия — $\langle E(\theta \approx 30^\circ) \rangle / \langle E(\theta^1 \approx 135^\circ) \rangle$, x = 1,2,3; пунктирная линия — $\langle E(\theta \approx 30^\circ) \rangle / \langle E(\theta^1 \approx 135^\circ) \rangle$, x = 1,2,3; пунктирная линия — $\langle E(\theta \approx 30^\circ) \rangle / \langle E(\theta^1 \approx 135^\circ) \rangle$, x = 1,2,3; пунктирная линия — $\langle E(\theta \approx 30^\circ) \rangle / \langle E(\theta^1 \approx 135^\circ) \rangle$, x = 1,2,3; пунктирная линия — $\langle E(\theta \approx 30^\circ) \rangle / \langle E(\theta^1 \approx 135^\circ) \rangle$, x = 1,2,3; пунктирная линия — $\langle E(\theta \approx 30^\circ) \rangle / \langle E$

 $\langle E(\theta) \rangle \, / \, \langle E(\theta^1) \rangle \, [1]$ для спектров мгновенных нейтронов деления для 233 U(n,F), испущенных в переднюю, $\Delta \theta \sim 35-40^\circ$, и заднюю, $\Delta \theta^1 = 130-140^\circ$, полусферы, растет, начиная с энергии $E_n \sim 11$ МэВ (см. рис. 6) гораздо сильнее, чем в случае измеренного отношения $\langle E(\theta) \rangle \, / \, \langle E(\theta^1) \rangle \,$ для 235 U(n,F). Для $E_n > 16$ МэВ расчетные величины отношений $\langle E(\theta \approx 30^\circ) \rangle \, / \, \langle E(\theta^1 \approx 135^\circ) \rangle \, ^{233}$ U(n,F) для $\varepsilon \sim 0-20$ МэВ также существенно выше расчетной оценки для 235 U(n,F) в диапазоне $\varepsilon \sim 1-12$ МэВ. Для эксклюзивных нейтронных спектров реакции 233 U $(n,nf)^1$ отношения средних энергий $\frac{d^2\sigma_{nnf}^1(\varepsilon,E_n,\theta\approx 30^\circ)}{d\varepsilon\,d\theta}$ и $\frac{d^2\sigma_{nnf}^1(\varepsilon,E_n,\theta\approx 135^\circ)}{d\varepsilon\,d\theta}$ намного выше по абсолютной величине, чем $\langle E(\theta) \rangle \, / \, \langle E(\theta^1) \rangle$, но повторяют форму отношения средних энергий экспериментальных СМНД $\langle E(\theta\approx 30^\circ) \rangle \, / \, \langle E(\theta^1 \approx 135^\circ) \rangle \, [4]$ (рис. 7).

Отношение средних энергий эксклюзивных нейтронных спектров реакции 233 U $(n,nf)^1$ $\frac{d^2\sigma_{nnf}^1(\varepsilon,E_n,\theta\approx30^\circ)}{d\varepsilon\,d\theta}$ и $\frac{d^2\sigma_{nnf}^1(\varepsilon,E_n,\theta\approx135^\circ)}{d\varepsilon\,d\theta}$, $\langle E_{n,xnf}(\theta\approx30^\circ)\rangle/\langle E_{n,xnf}(\theta^1\approx135^\circ)\rangle$, намного выше по абсолютной величине (см. рис. 7), чем отношение средних энергий СМНД $\langle E(\theta)\rangle/\langle E(\theta^1)\rangle$, однако оно похоже по форме на отношение средних энергий экспериментальных СМНД $\langle E(\theta\approx30^\circ)\rangle/\langle E(\theta^1\approx135^\circ)\rangle$ для 239 Pu(n,F) [3] и 235 U(n,F) [6]. Угловая зависимость отношения средних энергий эксклюзивных нейтронных спектров реакции 233 U $(n,2nf)^1$, $\frac{d^2\sigma_{n2nf}^1(\varepsilon,E_n,\theta\approx30^\circ)}{d\varepsilon\,d\theta}$ и $\frac{d^2\sigma_{n2nf}^1(\varepsilon,E_n,\theta\approx150^\circ)}{d\varepsilon\,d\theta}$, намного слабее. В отношении средних энергий эксклю-

и $\frac{1}{d\varepsilon d\theta}$, намного слабее. В отношении средних энергии эксклюзивных нейтронных спектров реакции $\frac{233}{233}$ U $(n,3nf)^1$, $\frac{d^2\sigma_{n3nf}^1(\varepsilon,E_n,\theta\approx 30^\circ)}{d\varepsilon d\theta}$

и $\frac{d^2\sigma_{n3nf}^1(\varepsilon,E_n, hetapprox 150^\circ)}{d\varepsilon\,d heta}$, угловой зависимости почти нет.

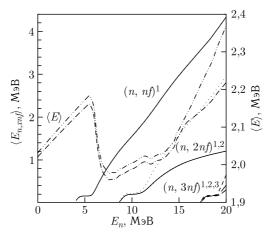


Рис. 7. Средняя энергия СМНД $\langle E \rangle$ для реакции 233 U(n,F): штрихпунктирная линия с двумя точками — диапазон значений энергии $\varepsilon \sim 0$ —20 МэВ; штрихпунктирная — диапазон значений энергии $\varepsilon \sim 0,1$ —10 МэВ; сплошная, пунктирная и штриховые линии — $\langle E_{n,xnf}(\theta \approx 90^\circ) \rangle$, x=1,2,3 соответственно

Оценка $\langle E \rangle$ для 233 U(n,F) жестко коррелирует с формой СМНД. Средние энергии $\langle E \rangle$ — это лишь довольно грубая интегральная характеристика СМНД, однако и она подвержена влиянию угловой анизотропии предделительных нейтронов. Зависимость $\langle E \rangle$ (E_n) для 233 U(n,F) сравнивается с данными для диапазона значений энергии нейтронов $\varepsilon \sim 0.01-10$ МэВ [6,7] для 235 U(n,F) на рис. 3. Величина $\langle E \rangle$, определенная для этого диапазона, походит на совокупность экспериментальных данных [6,7]. Наибольшее изменение $\langle E \rangle$ для эмиссии нейтронов (n,nf) «вперед» имеет место для $E_n > 13$ МэВ. Для $E_n > 13-15$ МэВ спектр МНД довольно жесткий и $\langle E \rangle$ для диапазона $\varepsilon \sim 10^{-5}$ эВ – 20 МэВ имеет более крутую энергетическую зависимость. Заметны корреляции вариаций $\langle E \rangle$ для 233 U(n,F) вблизи порогов реакций 233 U(n,nf) и 233 U(n,2nf) с формой СМНД и вкладами $\beta_x(E_n) = \sigma_{n,xnf}/\sigma_{n,F}$, эксклюзивными нейтронными спектрами $(n,xnf)^{1,...,x}$, а также расчетными и наблюдаемыми [9] ТКЕ. Влияние эксклюзивных спектров нейтронов $(n,nf)^1$ и $(n,2nf)^{1,2}$ на $\langle E \rangle$ для 233 U(n,F) намного сильнее, чем для реакций 235 U(n,F) и 239 Pu(n,F).

ЗАКЛЮЧЕНИЕ

Отношение средних энергий СМНД $\langle E \rangle$ для эмиссии предделительных нейтронов в переднюю и заднюю полусферы резко растет с ростом средних энергий предделительных нейтронов. Расчетное отношение $\langle E(\theta \approx 30^\circ) \rangle \, / \, \langle E(\theta^1 \approx 135^\circ) \rangle$ для СМНД 233 U(n,F) выше, чем в случае СМНД 235 U(n,F) и 239 Pu(n,F), что вполне согласуется с более высоким относительным вкладом реакции $^{233}{\rm U}(n,nf)$ в наблюдаемое сечение деления $^{233}\mathrm{U}(n,F)$. Анализ наблюдаемых спектров мгновенных нейтронов деления для реакций 235 U(n,F) и 239 Pu(n,F) показал, что для целого ряда структур имеет место корреляция с предделительными $(n, xnf)^{1,...,x}$ нейтронами, причем сила этой корреляции зависит от делимости ядра-мишени и делимостей ядер, образующихся при последовательной эмиссии нейтронов. Спектры предделительных нейтронов вблизи порога реакции (n, xnf) оказались сравнительно мягкими, по сравнению с нейтронами, испускаемыми возбужденными осколками деления. Это приводит к тому, что средняя энергия СМНД уменьшается вблизи порогов реакций (n, xnf) для реакций 233 U(n,F), 235 U(n,F) и 239 Pu(n,F) по-разному [22,23]. Амплитуда вариаций $\langle E \rangle$ СМНД для 233 U(n,F) намного выше, чем в случае реакции 239 Pu(n,F). Установлена максимальная корреляция между формой спектра МНД при различных углах эмиссии $(n, xnf)^1$ нейтронов относительно налетающих нейтронов и вкладами эмиссионного деления в наблюдаемое сечение деления для реакции $^{233}{\rm U}(n,F)$ по сравнению с реакциями 239 Pu(n,F) и 235 U(n,F). Показано, что угловая анизотропия эксклюзивных спектров нейтронов реакций 233 U $(n,nf)^1$ и 233 U $(n,2nf)^1$ существенно влияет на СМНД и их средние энергии. Это обстоятельство связано с различием вкладов эмиссионного деления в наблюдаемые сечения деления для реакций 233 U(n,F), 235 U(n,F) и 239 Pu(n,F). Отношение средних энергий СМНД $\langle E \rangle$ для эмиссии предделительных нейтронов «вперед» и «назад» резко растет с ростом средних энергий предделительных нейтронов в реакциях $^{233}U(n, F)$, причем сильнее, чем в реакциях $^{235}U(n, F)$ и $^{239}Pu(n, F)$, что может быть подтверждено измерениями, анонсированными в [10].

СПИСОК ЛИТЕРАТУРЫ

- 1. *Маслов В. М.* Спектры мгновенных нейтронов деления в реакциях 235 U(n,f) и 239 Pu(n,f) // ЯФ. 2023. Т. 86, № 5. С. 562; https://sciencejournals.ru/view-article/?j=yadfiz&y=2023&v=86&n=5&a= YadFiz2305031 Maslov.
- 2. *Маслов В. М.* Анизотропия спектров мгновенных нейтронов деления 239 Pu(n,F) и 235 U(n,F) // Письма в ЭЧАЯ. 2023. Т. 20, № 6(251). С. 1401; http://www1.jinr.ru/Pepan_letters/ panl_2023_6/03_Maslov_r.pdf.
- 3. *Kelly K. J., Kawano T., O'Donnel J. M. et al.* Pre-Equilibrium Asymmetries in the 239 Pu(n, f) Prompt Fission Neutron Spectrum // Phys. Rev. Lett. 2019. V. 122. P. 072503.
- 4. *Kelly K. J., Devlin M., O'Donnel J. M. et al.* Measurement of the ²³⁹Pu(*n*, *f*) Prompt Fission Neutron Spectrum from 10 keV to 10 MeV Induced by Neutrons of Energy 1–20 MeV // Phys. Rev. C. 2020. V. 102. P. 034615.
- 5. Marini P., Taieb J., Laurent B. et al. Prompt-Fission-Neutron Spectra in the 239 Pu(n, f) Reaction // Ibid. V. 101. P. 044614.
- 6. *Kelly K.J., Gomez J.A., Devlin M. et al.* Measurement of the ²³⁵U(n, f) Prompt Fission Neutron Spectrum from 10 keV to 10 MeV Induced by Neutrons of Energy from 1 MeV to 20 MeV // Phys. Rev. C. 2022. V. 105. P. 044615.
- 7. Mauss B., Taieb J., Laurent B. et al. Prompt-Fission-Neutron Spectra in the 235 U(n,f) Reaction. Nucl. Data Week. 2022. JEFDOC-2200; https://oecd-nea.org/dbdata/nds_jefdoc/jefdoc-2200.pdf.
- 8. *Маслов В. М.* Спектры мгновенных нейтронов деления реакции 240 Pu(n,F), 239 Pu(n,F) и 238 U(n,F) // Письма в ЭЧАЯ. 2023. Т. 20, № 4(249). С. 571; http://www1.jinr.ru/Pepan_letters/ panl_2023_4/03_Maslov_r.pdf.
- Higgins D., Greife U., Tovesson F. et al. Fission Fragment Mass Yields and Total Kinetic Energy Release in Neutron-Induced Fission of ²³³U from Thermal Energies to 40 MeV // Phys. Rev. C. 2020. V. 101. P. 014601.
- Kelly K. J., Devlin M., O'Donnell J. M. et al. LANSCE CoGNAC and Chi-Nu Experimental Updates. Nuclear Data Week(s). 2023. CSEWG-USNDP-NDAG. LA-UR-23-33042. 2023; https://indico.bnl.gov/event/18701/contributions/82692/.
- Kelly K. J., Devlin M. J., O'Donnell M. et al. Measurement of the ²³⁸U(n, f) Prompt Fission Neutron Spectrum from 10 keV to 10 MeV Induced by Neutrons with 1.5–20 MeV Energy // Phys. Rev. C. 2023. V. 108. P. 024603.
- 12. Kammerdiener J. L. Neutron Spectra Emitted by ²³⁹Pu, ²³⁸U, ²³⁵U, Pb, Nb, Ni, Al and C Irradiated by 14 MeV Neutrons. UCRL-51232. 1972.
- 13. *Maslov V. M.* Angular Anisotropy of Secondary Neutron Spectra in 232 Th+n // Proc. of the 29th Intern. Seminar on Interaction of Neutrons with Nuclei: Fund. Interactions & Neutrons, Nucl. Structure, Ultra-Cold Neutrons, Related Topics, Dubna, May 29 June 2, 2023. P. 290.
- 14. *Маслов В. М.* Анизотропия спектров мгновенных нейтронов деления 232 Th(n,F) и 238 U(n,F) // Тез. докл. 73-й Междунар. конф. по ядерной физике «Ядро-2023: Фундаментальные вопросы и приложения», ВНИИЭФ, Саров, Россия, 2023. С.119; http://book.sarov.ru/product/nucleus-2023-73-conference-abstracts/; http://book.sarov.ru/wp-content/uploads/2023/11/Nucleus-2023-73-conference-abstracts.pdf.
- 15. Maslov V. M., Porodzinskij Yu. V., Tetereva N. A. et al. Excitation of Octupole, Beta- and Gamma-Vibration Band Levels of ²³⁸U by Inelastic Neutron Scattering // Nucl. Phys. A. 2006. V. 764. P. 212.
- 16. Корнилов Н. В., Кагаленко А. Б., Hambsch F.-J. Расчет спектров мгновенных нейтронов деления на основе новой систематики экспериментальных данных // ЯФ. 1999. Т. 62. С. 209.

- Watt B. E. Energy Spectrum of Neutrons from Thermal Fission of ²³⁵U // Phys. Rev. 1952. V. 87. P. 1037.
- 18. Fraïsse B., Bélier G., Méot V. et al. Complete Neutron-Multiplicity Distributions in Fast-Neutron-Induced Fission // Phys. Rev. C. 2023. V. 108. 014610.
- 19. Uhl M., Strohmaier B. IRK-76/01, IRK. Vienna, 1976.
- Maslov V. M. ²³⁷U Neutron-Induced Fission Cross Section // Phys. Rev. C. 2005. V. 72. P. 044607.
- 21. *Maslov V. M.* Anisotropy in Pre-Fission Neutron Spectra of 235 U(n, f) // Proc. of the 29th Intern. Seminar on Interaction of Neutrons with Nuclei (ISINN-29), Dubna, May 29 June 2, 2023. P. 272–289; http://isinn.jinr.ru/proceedings/isinn-29/pdf/Maslov_1r.pdf.
- 22. Maslov V. M., Pronyaev V. G., Tetereva N. A. et al. 235 U(n,F), 233 U(n,F) and 239 Pu(n,F) Prompt Fission Neutron Spectra // J. Kor. Phys. Soc. 2011. V. 59. P. 1337.
- 23. Maslov V. M., Baba M., Hasegawa A., Kagalenko A. B., Kornilov N. V., Tetereva N. A. Neutron Data Evaluation of ²³³U, INDC (BLR) 18. Vienna: IAEA, 2003; https://www-nds.iaea.org/publications/ indc/indc-blr-0018/.

Получено 27 января 2024 г.